首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Computational methods for estimating diversification rates from extant species phylogenetic trees have become abundant in evolutionary research. However, little evidence exists about how their outcome compares to a complementary and direct source of information: the fossil record. Furthermore, there is virtually no direct test for the congruence of evolutionary rates based on these two sources. This task is only achievable in clades with both a well‐known fossil record and a complete phylogenetic tree. Here, we compare the evolutionary rates of ruminant mammals as estimated from their vast paleontological record—over 1200 species spanning 50 myr—and their living‐species phylogeny. Significantly, our results revealed that the ruminant's fossil record and phylogeny reflect congruent evolutionary processes. The concordance is especially strong for the last 25 myr, when living groups became a dominant part of ruminant diversity. We found empirical support for previous hypotheses based on simulations and neontological data: The pattern captured by the tree depends on how clade specific the processes are and which clades are involved. Also, we report fossil evidence for a postradiation speciation slowdown coupled with constant, moderate extinction in the Miocene. The recent deceleration in phylogenetic rates is connected to rapid extinction triggered by recent climatic fluctuations.  相似文献   

2.
This study documents previously unknown taxonomic and morphological diversity among early Palaeozoic crinoids. Based on highly complete, well preserved crown material, we describe two new genera from the Ordovician and Silurian of the Baltic region (Estonia) that provide insight into two major features of the geological history of crinoids: the early evolution of the flexible clade during the Great Ordovician Biodiversification Event (GOBE), and their diversification history surrounding the end‐Ordovician mass extinction. The unexpected occurrence of a highly derived sagenocrinid, Tintinnabulicrinus estoniensis gen. et. sp. nov., from Upper Ordovician (lower Katian) rocks of the Baltic palaeocontinent provides high‐resolution temporal, taxonomic and palaeobiogeographical constraints on the origin and early evolution of the Flexibilia. The Silurian (lower Rhuddanian, Llandovery) Paerticrinus arvosus gen. et sp. nov. is the oldest known Silurian crinoid from Baltica and thus provides the earliest Baltic record of crinoids following the aftermath of the end‐Ordovician mass extinction. A Bayesian ‘fossil tip‐dating’ analysis implementing the fossilized birth–death process and a relaxed morphological clock model suggests that flexibles evolved c. 3 million years prior to their oldest fossil record, potentially involving an ancestor–descendant relationship (via ‘budding’ cladogenesis or anagenesis) with the paraphyletic cladid Cupulocrinus. The sagenocrinid subclade rapidly diverged from ‘taxocrinid’ grade crinoids during the final stages of the GOBE, culminating in maximal diversity among Ordovician crinoid faunas on a global scale. Remarkably, diversification patterns indicate little taxonomic turnover among flexibles across the Late Ordovician mass extinction. However, the elimination of closely related clades may have helped pave the way for their subsequent Silurian diversification and increased ecological role in post‐Ordovician Palaeozoic marine communities. This study highlights the significance of studies reporting faunas from undersampled palaeogeographical regions for clade‐based phylogenetic studies and improving estimates of global biodiversity through geological time.  相似文献   

3.
To elucidate potential ecological and evolutionary processes associated with the assembly of plant communities, there is now widespread use of estimates of phylogenetic diversity that are based on a variety of DNA barcode regions and phylogenetic construction methods. However, relatively few studies consider how estimates of phylogenetic diversity may be influenced by single DNA barcodes incorporated into a sequence matrix (conservative regions vs. hypervariable regions) and the use of a backbone family‐level phylogeny. Here, we use general linear mixed‐effects models to examine the influence of different combinations of core DNA barcodes (rbcL, matK, ITS, and ITS2) and phylogeny construction methods on a series of estimates of community phylogenetic diversity for two subtropical forest plots in Guangdong, southern China. We ask: (a) What are the relative influences of single DNA barcodes on estimates phylogenetic diversity metrics? and (b) What is the effect of using a backbone family‐level phylogeny to estimate topology‐based phylogenetic diversity metrics? The combination of more than one barcode (i.e., rbcL + matK + ITS) and the use of a backbone family‐level phylogeny provided the most parsimonious explanation of variation in estimates of phylogenetic diversity. The use of a backbone family‐level phylogeny showed a stronger effect on phylogenetic diversity metrics that are based on tree topology compared to those that are based on branch lengths. In addition, the variation in the estimates of phylogenetic diversity that was explained by the top‐rank models ranged from 0.1% to 31% and was dependent on the type of phylogenetic community structure metric. Our study underscores the importance of incorporating a multilocus DNA barcode and the use of a backbone family‐level phylogeny to infer phylogenetic diversity, where the type of DNA barcode employed and the phylogenetic construction method used can serve as a significant source of variation in estimates of phylogenetic community structure.  相似文献   

4.
Large‐scale phylogenies provide a framework for interdisciplinary investigations in taxonomy, evolutionary biology, biogeography, ecology, and conservation. Integration of regional tree of life and species distribution data has greatly promoted spatial phylogenetic studies on biodiversity, floristic assembly, and biogeographic regionalization. In this study, we updated the phylogenetic tree of Chinese vascular plants by integrating data from public databases and sequences newly generated by our laboratory, to facilitate the exploration of floristic and ecological questions at a country scale. A phylogenetic tree with 15 092 tips and 14 878 species was obtained, including 13 663 species (44.0%) and 2953 genera (95.7%) native to China. Only two families (Corsiaceae and Mitrastemonaceae) and 133 genera native to China are not sampled in this study. Low proportion of sampling is detected in orders with high species diversity and those with low species diversity. The Hengduan Mountains, plus the western Qinghai–Tibet Plateau and western Xinjiang, show the greatest gap of target molecular data for angiosperms. Our phylogeny of Chinese vascular plants recovers relationships among and within major lineages that are highly congruent with published phylogenies at a broader scale. Most families (98.7%) are supported as monophyletic, and 573 genera (17.9%) are recognized as non‐monophyletic. Finally, hotspots of phylogenetic diversity for the Chinese angiosperms at both the genus and species levels are identified based on our phylogram, implicating conservation priorities for phylogenetic diversity. The updated phylogeny of Chinese vascular plants is publically available to generate subtrees through our automated phylogeny assembly tool SoTree in the DarwinTree platform ( http://www.darwintree.cn/flora-sotree-v2/index.shtml ).  相似文献   

5.

Background

Species number, functional traits, and phylogenetic history all contribute to characterizing the biological diversity in plant communities. The phylogenetic component of diversity has been particularly difficult to quantify in species-rich tropical tree assemblages. The compilation of previously published (and often incomplete) data on evolutionary relationships of species into a composite phylogeny of the taxa in a forest, through such programs as Phylomatic, has proven useful in building community phylogenies although often of limited resolution. Recently, DNA barcodes have been used to construct a robust community phylogeny for nearly 300 tree species in a forest dynamics plot in Panama using a supermatrix method. In that study sequence data from three barcode loci were used to generate a well-resolved species-level phylogeny.

Methodology/Principal Findings

Here we expand upon this earlier investigation and present results on the use of a phylogenetic constraint tree to generate a community phylogeny for a diverse, tropical forest dynamics plot in Puerto Rico. This enhanced method of phylogenetic reconstruction insures the congruence of the barcode phylogeny with broadly accepted hypotheses on the phylogeny of flowering plants (i.e., APG III) regardless of the number and taxonomic breadth of the taxa sampled. We also compare maximum parsimony versus maximum likelihood estimates of community phylogenetic relationships as well as evaluate the effectiveness of one- versus two- versus three-gene barcodes in resolving community evolutionary history.

Conclusions/Significance

As first demonstrated in the Panamanian forest dynamics plot, the results for the Puerto Rican plot illustrate that highly resolved phylogenies derived from DNA barcode sequence data combined with a constraint tree based on APG III are particularly useful in comparative analysis of phylogenetic diversity and will enhance research on the interface between community ecology and evolution.  相似文献   

6.
The monophyly and phylogeny of the adaptive radiation of Hawaiian finches (Fringillidae: Drepanidini; honeycreepers, auct.) were studied using parsimony analysis of comparative osteology, combined with Templeton (Wilcoxon signed‐ranks) tests of alternative phylogenetic hypotheses. Eighty‐four osteological characters were scored in 59 terminal taxa of drepanidines, including 24 fossil forms, and in 30 outgroup species. The optimal phylogenetic trees show considerable agreement, and some conflict, with independently derived ideas about drepanidine evolution. The monophyly of a large Hawaiian radiation was upheld, although one fossil taxon from Maui fell outside the drepanidine clade. The finch‐billed species were placed as basal drepanidine taxa, and continental cardueline finches (Carduelini) were identified as the radiation's closest outgroups. The study found anatomical as well as phylogenetic evidence that the radiation had a finch‐billed ancestor. The optimal trees identify the red‐and‐black plumage group as a clade, and suggest that the tubular tongue evolved only once in the radiation. Because comparative osteology provides too few characters to strongly support all the nodes of the tree, it was helpful to evaluate statistical support for alternative hypotheses about drepanidine relationships using the Templeton test. Among the alternatives that received significant statistical support are a relationship of the drepanidines with cardueline finches rather than with the Neotropical honeycreepers (Thraupini), classification of the controversial genera Paroreomyza and Melamprosops as drepanidines, and a secondary loss of the tubular tongue in Loxops mana. The hypothesis of monophyly for all the Hawaiian taxa in the study was not rejected statistically. The study provides a framework for incorporating morphological and palaeontological information in evolutionary studies of the Drepanidini. © 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 141 , 207–255.  相似文献   

7.
《Annales de Paléontologie》2019,105(2):109-118
Cyrtocrinids (Cyrtocrinida) are fully sessile post-Palaeozoic crinoids (Crinoidea) of unusual morphology exhibiting complex diversity dynamics and evolutionary history. To date, however, no study has ever examined the macro-evolutionary patterns of body-size trends in these crinoids. A compilation of a body-size dataset for cyrtocrinid genera revealed a trend of increasing size throughout their evolutionary history. A maximum-likelihood approach showed that the observed trend is best characterized by a general random walk. Recorded body-size pattern is thus consistent with the Cope-Depéret's rule implying the existence of active, directional selective pressures towards larger body-sizes. The case provides a rare example of directional body-size trend in the fossil record.  相似文献   

8.
Phylogeny is the evolutionary history of a group or the lineage of organisms and is reconstructed based on morphological, molecular and other characteristics. The genealogical relationship of a group of taxa is often expressed as a phylogenetic tree. The difficulty in categorizing the phylogeny is mainly due to the existence of frequent homoplasies that deceive observers. At the present time, cladistic analysis is believed to be one of the most effective methods of reconstructing a phylogenetic tree. Excellent computer program software for phylogenetic analysis is available. As an example, cladistic analysis was applied for nematode genera of the family Acuariidae, and the phylogenetic tree formed was compared with the system used currently. Nematodes in the genera Nippostrongylus and Heligmonoides were also analyzed, and the validity of the reconstructed phylogenetic trees was observed from a zoogeographical point of view. Some of the theories of parasite evolution were briefly reviewed as well. Coevolution of parasites and humans was discussed with special reference to the evolutionary relationship between Enterobius and primates.  相似文献   

9.
Orthoptera is the most diverse order among the polyneopteran groups and includes familiar insects, such as grasshoppers, crickets, katydids, and their kin. Due to a long history of conflicting classification schemes based on different interpretations of morphological characters, the phylogenetic relationships within Orthoptera are poorly understood and its higher classification has remained unstable. In this study, we establish a robust phylogeny of Orthoptera including 36 of 40 families representing all 15 currently recognized superfamilies and based on complete mitochondrial genomes and four nuclear loci, in order to test previous phylogenetic hypotheses and to provide a framework for a natural classification and a reference for studying the pattern of divergence and diversification. We find strong support for monophyletic suborders (Ensifera and Caelifera) as well as major superfamilies. Our results corroborate most of the higher‐level relationships previously proposed for Caelifera, but suggest some novel relationships for Ensifera. Using fossil calibrations, we provide divergence time estimates for major orthopteran lineages and show that the current diversity has been shaped by dynamic shifts of diversification rates at different geological times across different lineages. We also show that mitochondrial tRNA gene orders have been relatively stable throughout the evolutionary history of Orthoptera, but a major tRNA gene rearrangement occurred in the common ancestor of Tetrigoidea and Acridomorpha, thereby representing a robust molecular synapomorphy, which has persisted for 250 Myr.  相似文献   

10.
刘涛  李晓贤 《广西植物》2010,30(6):796-804
应用最大似然法(ML)、贝叶斯推论(BI)、邻接法(NJ)和似然比检验(hLRTs)进行泽泻目分子系统学研究。所用的rbcL基因序列代表了泽泻目14科46属以及作为外类群的6相关属。研究结果表明,*等级制似然比检验表明泽泻目rbcL序列最适合的DNA进化模型为GTR+I+G,最大似然法、贝叶斯法和邻接法构建的系统发育树拓扑结构相似,没有显著的差异,但贝叶斯树支持率较高;泽泻目为一单系类群,由两个主要谱系分支构成,深层分布格局由5个主要分支构成。基于分子系统发育树,文中对泽泻目科间、水鳖科+茨藻科、泽泻科+花蔺科+黄花蔺科、和"Cymodoeaceae complex"的系统发育关系进行了讨论。研究结果还表明,泽泻目系统发育关系可能还需要更多的证据进一步的澄清。  相似文献   

11.
Numerous evolutionary studies have sought to explain the distribution of diversity across the limbs of the tree of life. At the same time, ecological studies have sought to explain differences in diversity and relative abundance within and among ecological communities. Traditionally, these patterns have been considered separately, but models that consider processes operating at the level of individuals, such as neutral biodiversity theory (NBT), can provide a link between them. Here, we compare evolutionary dynamics across a suite of NBT models. We show that NBT can yield phylogenetic tree topologies with imbalance closely resembling empirical observations. In general, metacommunities that exhibit greater disparity in abundance are characterized by more imbalanced phylogenetic trees. However, NBT fails to capture the tempo of diversification as represented by the distribution of branching events through time. We suggest that population-level processes might therefore help explain the asymmetry of phylogenetic trees, but that tree shape might mislead estimates of evolutionary rates unless the diversification process is modeled explicitly.  相似文献   

12.
Tamarix is one of the taxonomically most complex genera among the angiosperms, and there is little consensus regarding its infrageneric classification. Here we present the most complete phylogenetic reconstruction of the genus to date. This includes a DNA phylogenetic tree based on nuclear ribosomal ITS, and a plastid DNA phylogeny based on three intergenic spacers (trnS‐trnG, ndhF‐rpl32, and trnQ‐rps16). In total, both nuclear and plastid phylogenetic analyses include more than 70 samples of 39 species from 27 countries, which represent close to 60% of the diversity of the genus. Two complementary trees, based only on one plastid marker, are also included. The first, based on trnS‐trnG, is used to increase the number of species related to T. amplexicaulis. The second, based on ndhF‐rpl32, is used to investigate the separation between T. tetrandra and T. parviflora. The incongruence between the available infrageneric classifications and the molecular results is confirmed. A reticulate evolution is inferred from the trees, showing characters such as vaginate leaves appearing at different stages along the evolutionary history of the genus. The presence of T. canariensis outside the Canary Islands is cast into doubt, and all such records from NW Africa and Europe are here considered to belong to T. gallica. The results also suggest independence of T. karelinii from T. hispida, and T. parviflora from T. tetrandra. Relationships between a number of species are still not resolved, and additional studies will be needed to further refine the complex taxonomy of Tamarix.  相似文献   

13.
Reconstruction of evolutionary history of the ciliate order Spathidiida has proven elusive. There are weakly statistically supported deeper nodes in 18S rRNA gene phylogenies on one hand, while several statistically strongly supported clusters containing morphologically dissimilar taxa that usually lack any common apomorphies on the other hand. To clarify whether silent aspects of the spathidiid phylogeny are results of methodological problems of tree‐building algorithms, we examined informativness of the macronuclear rRNA locus using an increased taxon and marker sampling as well as a complex statistical approach. Likelihood mapping revealed that the macronuclear rRNA locus has enough phylogenetic information to infer spathidiid relationships. However, some noise and conflicts hamper inference of deeper branching events, as documented by short parallelograms in the star‐like central part of the split graphs and by low numbers of phylogenetically informative nucleotide homologies supporting deeper nodes of phylogenetic trees. Based on the diversification analyses and the γ‐statistic, we assembled a body of evidence that the spathidiid phylogeny retains the signature of one or several rapid radiations in the Palaeozoic and a subsequent gradual extinction that has started in the Mesozoic. A combination of these two phenomena along with polyphyly of three large spathidiid genera (Spathidium, Epispathidium and Arcuospathidium) are speculated to be the main reasons for fuzzy phylogenetic picture within the order Spathidiida. Because natural classification of spathidiids cannot be provided at the present state of knowledge, we suggest to keep the existing morphology‐based generic classification, but stress that the large spathidiid genera are artificial collective groups.  相似文献   

14.
Many prokaryotes have multiple ribosomal RNA operons. Generally, sequence differences between small subunit (SSU) rRNA genes are minor (<1%) and cause little concern for phylogenetic inference or environmental diversity studies. For Halobacteriales, an order of extremely halophilic, aerobic Archaea, within-genome SSU rRNA sequence divergence can exceed 5%, rendering phylogenetic assignment problematic. The RNA polymerase B' subunit gene (rpoB') is a single-copy conserved gene that may be an appropriate alternative phylogenetic marker for Halobacteriales. We sequenced a fragment of the rpoB' gene from 21 species, encompassing 15 genera of Halobacteriales. To examine the utility of rpoB' as a phylogenetic marker in Halobacteriales, we investigated three properties of rpoB' trees: the variation in resolution between trees inferred from the rpoB' DNA and RpoB' protein alignment, the degree of mutational saturation between taxa, and congruence with the SSU rRNA tree. The rpoB' DNA and protein trees were for the most part congruent and consistently recovered two well-supported monophyletic groups, the clade I and clade II haloarchaea, within a collection of less well resolved Halobacteriales lineages. A comparison of observed versus inferred numbers of substitution revealed mutational saturation in the rpoB' DNA data set, particularly between more distant species. Thus, the RpoB' protein sequence may be more reliable than the rpoB' DNA sequence for inferring Halobacteriales phylogeny. AU tests of tree selection indicated the trees inferred from rpoB' DNA and protein alignments were significantly incongruent with the SSU rRNA tree. We discuss possible explanations for this incongruence, including tree reconstruction artifact, differential paralog sampling, and lateral gene transfer. This is the first study of Halobacteriales evolution based on a marker other than the SSU rRNA gene. In addition, we present a valuable phylogenetic framework encompassing a broad diversity of Halobacteriales, in which novel sequences can be inserted for evolutionary, ecological, or taxonomic investigations.  相似文献   

15.
In phylogenetic analyses with combined multigene or multiprotein data sets, accounting for differing evolutionary dynamics at different loci is essential for accurate tree prediction. Existing maximum likelihood (ML) and Bayesian approaches are computationally intensive. We present an alternative approach that is orders of magnitude faster. The method, Distance Rates (DistR), estimates rates based upon distances derived from gene/protein sequence data. Simulation studies indicate that this technique is accurate compared with other methods and robust to missing sequence data. The DistR method was applied to a fungal mitochondrial data set, and the rate estimates compared well to those obtained using existing ML and Bayesian approaches. Inclusion of the protein rates estimated from the DistR method into the ML calculation of trees as a branch length multiplier resulted in a significantly improved fit as measured by the Akaike Information Criterion (AIC). Furthermore, bootstrap support for the ML topology was significantly greater when protein rates were used, and some evident errors in the concatenated ML tree topology (i.e., without protein rates) were corrected. [Bayesian credible intervals; DistR method; multigene phylogeny; PHYML; rate heterogeneity.].  相似文献   

16.
The fossil record of early vertebrates has been influential in elucidating the evolutionary assembly of the gnathostome bodyplan. Understanding of the timing and tempo of vertebrate innovations remains, however, mired in a literal reading of the fossil record. Early jawless vertebrates (ostracoderms) exhibit restriction to shallow-water environments. The distribution of their stratigraphic occurrences therefore reflects not only flux in diversity, but also secular variation in facies representation of the rock record. Using stratigraphic, phylogenetic and palaeoenvironmental data, we assessed the veracity of the fossil records of the jawless relatives of jawed vertebrates (Osteostraci, Galeaspida, Thelodonti, Heterostraci). Non-random models of fossil recovery potential using Palaeozoic sea-level changes were used to calculate confidence intervals of clade origins. These intervals extend the timescale for possible origins into the Upper Ordovician; these estimates ameliorate the long ghost lineages inferred for Osteostraci, Galeaspida and Heterostraci, given their known stratigraphic occurrences and stem–gnathostome phylogeny. Diversity changes through the Silurian and Devonian were found to lie within the expected limits predicted from estimates of fossil record quality indicating that it is geological, rather than biological factors, that are responsible for shifts in diversity. Environmental restriction also appears to belie ostracoderm extinction and demise rather than competition with jawed vertebrates.  相似文献   

17.
Various factors, including taxon density, sampling error, convergence, and heterogeneity of evolutionary rates, can potentially lead to incongruence between phylogenetic trees based on different genomes. Particularly at the generic level and below, chloroplast capture resulting from hybridization may distort organismal relationships in phylogenetic analyses based on the chloroplast genome, or genes included therein. However, the extent of such discord between chloroplast DNA (cpDNA) trees and those trees based on nuclear genes has rarely been assessed. We therefore used sequences of the internal transcribed spacer regions (ITS-1 and ITS-2) of nuclear ribosomal DNA (rDNA) to reconstruct phylogenetic relationships among members of the Heuchera group of genera (Saxifragaceae). The Heuchera group presents an important model for the analysis of chloroplast capture and its impact on phylogenetic reconstruction because hybridization is well documented within genera (e.g., Heuchera), and intergeneric hybrids involving six of the nine genera have been reported. An earlier study provided a well-resolved phylogenetic hypothesis for the Heuchera group based on cpDNA restriction-site variation. However, trees based on ITS sequences are discordant with the cpDNA-based tree. Evidence from both morphology and nuclear-encoded allozymes is consistent with the ITS trees, rather than the cpDNA tree, and several points of phylogenetic discord can clearly be attributed to chloroplast capture. Comparison of the organellar and ITS trees also raises the strong likelihood that ancient events of chloroplast capture occurred between lineages during the early diversification of the Heuchera group. Thus, despite the many advantages and widespread use of cpDNA data in phylogeny reconstruction, comparison of relationships based on cpDNA and ITS sequences for the Heuchera group underscores the need for caution in the use of organellar variation for retrieving phylogeny at lower taxonomic levels, particularly in groups noted for hybridization.  相似文献   

18.
Ecological studies are increasingly considering phylogenetic relationships among species. The phylogeny is used as a proxy or filter to improve statistical tests and retain evolutionary elements, such as niche conservation. We used the phylogenetic topology to improve the model for occurrence of Trichoptera genera in Cerrado (Brazilian Savanna) streams. We tested whether parameters generated by logistic models of occurrence, using phylogenetic signals, are better than models generated without phylogenetic information. We used a model with Bayesian updating to examine the influence of stream water pH and phylogenetic relationship among genera on the occurrence of Trichoptera genera. Then, we compared this model with the logistic model for each Trichoptera genus. The probability of occurrence of most genera increased with water pH, and the phylogeny‐based explicit logistic model improved the parameters estimated for observed genera. The inferred relationship between genera occurrence and stream pH improved, indicating that phylogeny adds relevant information when estimating ecological responses of organisms. Water with elevated acidity (low pH values) may be restrictive for the occurrence of Trichoptera larvae, especially if the regional streams exhibit neutral to alkaline water, as is observed in the Cerrado region. Using phylogeny‐based modeling to predict species occurrence is a prominent opportunity to extend our current statistical framework based on environmental conditions, as it enables a more precise estimation of ecological parameters.  相似文献   

19.
The branching times of molecular phylogenies allow us to infer speciation and extinction dynamics even when fossils are absent. Troublingly, phylogenetic approaches usually return estimates of zero extinction, conflicting with fossil evidence. Phylogenies and fossils do agree, however, that there are often limits to diversity. Here, we present a general approach to evaluate the likelihood of a phylogeny under a model that accommodates diversity-dependence and extinction. We find, by likelihood maximization, that extinction is estimated most precisely if the rate of increase in the number of lineages in the phylogeny saturates towards the present or first decreases and then increases. We demonstrate the utility and limits of our approach by applying it to the phylogenies for two cases where a fossil record exists (Cetacea and Cenozoic macroperforate planktonic foraminifera) and to three radiations lacking fossil evidence (Dendroica, Plethodon and Heliconius). We propose that the diversity-dependence model with extinction be used as the standard model for macro-evolutionary dynamics because of its biological realism and flexibility.  相似文献   

20.
Resolving the infrageneric classification of species-rich genera has been challenging in plant taxonomy. Ilex L. is a subcosmopolitan genus with over 600 species of dioecious trees and shrubs. Many classification systems based on morphological data have been proposed during the past 250 years. However, these systems (such as Loesener's and Galle's systems) may not truly reflect Ilex's evolutionary trajectories because most of those system's infrageneric hierarchies are not monophyletic. In this study, we reconstructed a phylogeny of Ilex L. comprising 15 moderately to highly supported clades using rigorously identified samples (202 species) and closely authenticated gene sequences of three nuclear genes [internal transcribed spacer (ITS), external transcribed spacer (ETS), and nepGS]. The newly generated phylogenetic tree resembles essentially that of the nuclear tree of Manen et al., but shows conspicuous topological differences with the phylogeny of Yao et al. Closely scrutinizing morphological variation and distributional patterns of 202 species, this study found that most lineages of Ilex identified herein are well defined by a particular trait or a combination of morphological and distributional traits, displaying phylogeny–morphology–distribution conformity that has seldom been uncovered in previous studies. Given the general phylogeny–morphology–distribution conformity revealed in this genus, we put forward an updated sectional classification system for Ilex that temporarily contains 14 sections. The new classification will provide a robust framework for studying the evolution and diversification of this ecologically and economically important genus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号