首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Living in groups provides benefits but also incurs costs such as attracting disease vectors. For example, synanthropic flies associate with human settlements, and higher fly densities increase pathogen transmission. We investigated whether such associations also exist in highly mobile nonhuman primate (NHP) Groups. We studied flies in a group of wild sooty mangabeys (Cercocebus atys atys) and three communities of wild chimpanzees (Pan troglodytes verus) in Taï National Park, Côte d'Ivoire. We observed markedly higher fly densities within both mangabey and chimpanzee groups. Using a mark–recapture experiment, we showed that flies stayed with the sooty mangabey group for up to 12 days and for up to 1.3 km. We also tested mangabey‐associated flies for pathogens infecting mangabeys in this ecosystem, Bacillus cereus biovar anthracis (Bcbva), causing sylvatic anthrax, and Treponema pallidum pertenue, causing yaws. Flies contained treponemal (6/103) and Bcbva (7/103) DNA. We cultured Bcbva from all PCR‐positive flies, confirming bacterial viability and suggesting that this bacterium might be transmitted and disseminated by flies. Whole genome sequences of Bcbva isolates revealed a diversity of Bcbva, probably derived from several sources. We conclude that flies actively track mangabeys and carry infectious bacterial pathogens; these associations represent an understudied cost of sociality and potentially expose many social animals to a diversity of pathogens.  相似文献   

2.
Flies (Diptera: Muscidae) that breed in faeces and other organic refuse (filth flies) have been implicated as vectors of pathogenic bacteria including Escherichia coli O157:H7, which cause haemorrhagic colitis in humans, and Campylobacter, which is the principal causative agent of human enteritis. The potential role of filth flies in the epidemiology of these pathogens in the United States was investigated by examining the prevalence of Campylobacter spp. and E. coli O157:H7 from two Arkansas turkey facilities. Polymerase chain reaction was conducted on DNA extractions of individual Musca domestica Linnaeus, Stomoxys calcitrans (Linnaeus), Hydrotaea aenescens (Wiedemann), Adia cinerella Fallen and turkey faecal samples using primers specific for E. coli H7, O157 and Campylobacter spp. Culturing verified that the flies were carrying viable Campylobacter spp. and E. coli O157:H7. Results from this study indicated that M. domestica, S. calcitrans, H. aenescens and Anthomyids are capable of carrying Campylobacter in North American poultry facilities and that the E. coli O157:H7 is carried by house flies and black dump flies associated with poultry. This PCR method provided a rapid and effective method to identify Campylobacter spp. and E. coli O157:H7 directly from individual filth flies.  相似文献   

3.
Filth flies associated with a cattle barn and a municipal landfill were tested positive by combined immunofluorescent antibody and fluorescent in situ hybridization for Cryptosporidium parvum and Giardia lamblia on their exoskeletons and in their guts. More pathogens were carried by flies from the cattle barn than from the landfill; 81% of C. parvum and 84% of G. lamblia pathogens were presumptively viable.  相似文献   

4.
Filth flies associated with a cattle barn and a municipal landfill were tested positive by combined immunofluorescent antibody and fluorescent in situ hybridization for Cryptosporidium parvum and Giardia lamblia on their exoskeletons and in their guts. More pathogens were carried by flies from the cattle barn than from the landfill; 81% of C. parvum and 84% of G. lamblia pathogens were presumptively viable.  相似文献   

5.
While learning to avoid toxic food is common in mammals and occurs in some insects, learning to avoid cues associated with infectious pathogens has received little attention. We demonstrate that Drosophila melanogaster show olfactory learning in response to infection with their virulent intestinal pathogen Pseudomonas entomophila. This pathogen was not aversive to taste when added to food. Nonetheless, flies exposed for 3 h to food laced with P. entomophila, and scented with an odorant, became subsequently less likely to choose this odorant than flies exposed to pathogen-laced food scented with another odorant. No such effect occurred after an otherwise identical treatment with an avirulent mutant of P. entomophila, indicating that the response is mediated by pathogen virulence. These results demonstrate that a virulent pathogen infection can act as an aversive unconditioned stimulus which flies can associate with food odours, and thus become less attracted to pathogen-contaminated food.  相似文献   

6.
The Son-killer bacterium, Arsenophonus nasoniae, infects Nasonia vitripennis (Hymenoptera: Pteromalidae), a parasitic wasp that attacks filth flies. This gammaproteobacterium kills a substantial amount of male embryos produced by an infected female. Aside from male death, the bacterium does not measurably affect the host, and how it is maintained in the host population is unknown. Interestingly, this bacterial symbiont can be transmitted both vertically (from mother to offspring) and horizontally (to unrelated Nasonia wasps developing in the same fly host). This latter mode may allow the bacterium to spread throughout the ecological community of filth flies and their parasitoids, and to colonize novel species, as well as permit its long-term persistence.We tested 11 species of filth flies and 25 species of their associated parasitoids (representing 28 populations from 16 countries) using diagnostic PCR to assess the bacterium’s actual host range. In addition to 16S rRNA, two loci were targeted: the housekeeping gene infB, and a sequence with high homology to a DNA polymerase gene from a lysogenic phage previously identified from other insect symbionts. We identified infections of A. nasoniae in four species of parasitoids, representing three taxonomic families. Highly similar phage sequences were also identified in three of the four species. These results identify the symbiont as a generalist, rather than a specialist restricted solely to species of Nasonia, and also that horizontal transmission may play an important role in its maintenance.  相似文献   

7.
Cooperation between Drosophila flies in searching behavior   总被引:1,自引:0,他引:1  
In Drosophila melanogaster food search behaviour, groups of flies swarm around and aggregate on patches of food. We wondered whether flies explore their environment in a cooperative way as interactions between individual flies within a population might influence the flies' ability to locate food sources. We have shown that the food search behavior in the fruit fly Drosophila is a two-step process. Firstly, 'primer' flies search the environment and randomly land on different food patches. Secondly, the remaining group of flies move to the most favorable food source and aggregate there. We call this a 'search–aggregation' cycle. Our data demonstrate that flies do not individually assess all available food resources. Rather, social interactions between flies appear to affect their choice of a specific food patch. A genetic analysis of this 'search–aggregation' behavior shows that flies carrying mutations in specific genes (for example, the dunce ( dnc ) gene which codes for a phosphodiesterase) were defective in this search–aggregation behavior when compared to normal flies. Future investigations of the neuronal signaling involved in this behavior will help us to understand the complexities of this aspect of Drosophila social behaviour.  相似文献   

8.
Breeders of greyhound dogs traditionally feed racing animals and nursing bitches raw meat, and that meat generally is obtained frozen from commercial renderers. Previous studies have shown that the rendered meat is frequently contaminated with enteric bacteria, including Salmonella spp., and that during thawing the rendered meat is exposed to filth flies common in dog kennels. Nursing greyhound pups tend to experience a high morbidity and mortality from intestinal infections, and we attempted to determine in this study whether enterics could be spread to pups through contaminated flies. At intervals during 1995 and 1996, flies were trapped or were net-collected from 10 dog breeding kennels in the region around Abilene, KS. Trapped flies were identified and counted to determine population numbers, and netted flies were cultured in tetrathionate broth and streaked to medium selecting for Salmonella sp. and other lactose-negative Gram (−) bacteria. The relative numbers of different fly species varied with the sampling method, but traps and sweep nets produced similar proportions of the different fly species. Blow flies were twice as likely to be contaminated with enteric bacteria as any other fly. The most common enteric bacteria found were Proteus spp., followed by Providencia spp., Pseudomonas spp., and Salmonella spp. The incidence of Salmonella and Proteus spp. seemed to correlate more with accessibility of flies to dog excrement than to rendered meat. The apparent high incidence of enteric contamination of filth flies clearly implicates them as vectors of enteric diseases in kennels. Received: 7 July 1997 / Accepted: 26 August 1997  相似文献   

9.
10.
Brand?o-Filho et al. and Oliveira et al. have recently reported the detection of Leishmania in sylvatic and synanthropic animals that were captured in areas of Brazil that are endemic for leishmaniasis. Such investigations raise the issue of reservoirs of important endemic diseases by using modern molecular biology and biochemical techniques that complement traditional methods. Ecoepidemiological studies focusing on possible reservoirs have been important for providing contributions to prophylaxis and control measures to be employed by public health authorities.  相似文献   

11.
It has only recently been possible to detect sufficient genetic diversity among anthrax isolates to allow genotype grouping (Keim et al. 1997). Early results of such grouping suggest that the southern African subcontinent may be the geographical origin of Bacillus anthracis. This report describes a pilot investigation of the genetic diversity of a study group of isolates from the Kruger National Park, South Africa, and efforts to detect spatio-temporal clustering within the study group. This study has also served as further validation for the newly developed Multi-Locus VNTR Analysis (MLVA), designed to simplify genotyping of B. anthracis isolates. The results reveal a diverse range of genotypes within the park allied with three genotype reference groups, and show that the MLVA procedure is robust for rapid analysis of B. anthracis genotypes. We also observed multiple genotype groups within epidemics and between geographically and temporally close epidemic episodes. This is in contrast to earlier characterizations of anthrax epidemics. The result of a Mantel test for time-space clustering indicates clustering of the anthrax isolates selected for the study.  相似文献   

12.
Pathogenic bacteria require iron to replicate inside mammalian hosts. Recent studies indicate that heme acquisition in Gram-positive bacteria is mediated by proteins containing one or more near-iron transporter (NEAT) domains. Bacillus anthracis is a spore-forming, Gram-positive pathogen and the causative agent of anthrax disease. The rapid, extensive, and efficient replication of B. anthracis in host tissues makes this pathogen an excellent model organism for the study of bacterial heme acquisition. B. anthracis secretes two NEAT hemophores, IsdX1 and IsdX2. IsdX1 contains a single NEAT domain, whereas IsdX2 has five, a novel property among hemophores. To understand the functional significance of harboring multiple, non-identical NEAT domains, we purified each individual NEAT domain of IsdX2 as a GST fusion and analyzed the specific function of each domain as it relates to heme acquisition and transport. NEAT domains 1, 3, 4, and 5 all bind heme, with domain 5 having the highest affinity. All NEATs associate with hemoglobin, but only NEAT1 and -5 can extract heme from hemoglobin, seemingly by a specific and active process. NEAT1, -3, and -4 transfer heme to IsdC, a cell wall-anchored anthrax NEAT protein. These results indicate that IsdX2 has all the features required to acquire heme from the host and transport heme to the bacterial cell wall. Additionally, these results suggest that IsdX2 may accelerate iron import rates by acting as a "heme sponge" that enhances B. anthracis replication in iron-starved environments.  相似文献   

13.
In 1912 Blastocystis hominis was identified as a new species and classified as a yeast (Brumpt 1912). In the early 1920s several groups confirmed its classification as a yeast, specifically a member of the genus Schizosaccharomyces (discussed by Zierdt et al. 1967). Apart from an occasional case report, the classification of B. hominis and its role as a harmless intestinal yeast was not questioned for another 50 years. Then, Zierdt (1967) suggested that it should be classified in the phylum Protozoa, subphylum Sporozoa, and that it should be considered as a potential pathogen. The likely role of B. hominis as a human pathogen has recently become more firmly established (Garcia et al. 1984; Sheehan et al. 1986) and its classification has been changed. Although the classification of B. hominis as a protozoon was assumed widely, classification as a sporozoon was not accepted, and the most recent definitive classification of the Protozoa did not even list B. hominis (Lee et al. 1985). Then, based essentially on a review of the known characteristics of the organism, it was recently reclassified into the subphylum Sarcodina (Zierdt 1988). Clearly, the phylogeny of this emerging human pathogen needs definitive analysis (Mehlhorn 1988).  相似文献   

14.
Environmentally transmitted diseases are comparatively poorly understood and managed, and their ecology is particularly understudied. Here we identify challenges of studying environmental transmission and persistence with a six‐sided interdisciplinary review of the biology of anthrax (Bacillus anthracis). Anthrax is a zoonotic disease capable of maintaining infectious spore banks in soil for decades (or even potentially centuries), and the mechanisms of its environmental persistence have been the topic of significant research and controversy. Where anthrax is endemic, it plays an important ecological role, shaping the dynamics of entire herbivore communities. The complex eco‐epidemiology of anthrax, and the mysterious biology of Bacillus anthracis during its environmental stage, have necessitated an interdisciplinary approach to pathogen research. Here, we illustrate different disciplinary perspectives through key advances made by researchers working in Etosha National Park, a long‐term ecological research site in Namibia that has exemplified the complexities of the enzootic process of anthrax over decades of surveillance. In Etosha, the role of scavengers and alternative routes (waterborne transmission and flies) has proved unimportant relative to the long‐term persistence of anthrax spores in soil and their infection of herbivore hosts. Carcass deposition facilitates green‐ups of vegetation to attract herbivores, potentially facilitated by the role of anthrax spores in the rhizosphere. The underlying seasonal pattern of vegetation, and herbivores' immune and behavioural responses to anthrax risk, interact to produce regular ‘anthrax seasons’ that appear to be a stable feature of the Etosha ecosystem. Through the lens of microbiologists, geneticists, immunologists, ecologists, epidemiologists, and clinicians, we discuss how anthrax dynamics are shaped at the smallest scale by population genetics and interactions within the bacterial communities up to the broadest scales of ecosystem structure. We illustrate the benefits and challenges of this interdisciplinary approach to disease ecology, and suggest ways anthrax might offer insights into the biology of other important pathogens. Bacillus anthracis, and the more recently emerged Bacillus cereus biovar anthracis, share key features with other environmentally transmitted pathogens, including several zoonoses and panzootics of special interest for global health and conservation efforts. Understanding the dynamics of anthrax, and developing interdisciplinary research programs that explore environmental persistence, is a critical step forward for understanding these emerging threats.  相似文献   

15.
Kyriacou et al. (2007) have questioned a number of issues with our recent paper on a lack of clinal variation in the period and clock timing genes in Drosophila melanogaster from eastern Australia. Here we show why their arguments are not valid and reiterate that clinal variation in genes and molecular markers need to be assessed on field flies collected over a brief period of time.  相似文献   

16.
Chosed R  Dent SY 《Molecular cell》2007,26(2):160-162
Two recent studies in Molecular Cell (Lan et al., 2007; Rudolph et al., 2007) implicate histone demethylation by LSD1 in the regulation of boundaries between silenced and active chromatin domains in both fission yeast and flies, but by distinct mechanisms.  相似文献   

17.
Identifying how infection modifies host behaviours that determine social contact networks is important for understanding heterogeneity in infectious disease dynamics. Here, we investigate whether group social behaviour is modified during bacterial infection in fruit flies (Drosophila melanogaster) according to pathogen species, infectious dose, host genetic background and sex. In one experiment, we find that systemic infection with four different bacterial species results in a reduction in the mean pairwise distance within infected female flies, and that the extent of this change depends on pathogen species. However, susceptible flies did not show any evidence of avoidance in the presence of infected flies. In a separate experiment, we observed genetic- and sex-based variation in social aggregation within infected, same-sex groups, with infected female flies aggregating more closely than infected males. In general, our results confirm that bacterial infection induces changes in fruit fly behaviour across a range of pathogen species, but also highlight that these effects vary between fly genetic backgrounds and can be sex-specific. We discuss possible explanations for sex differences in social aggregation and their consequences for individual variation in pathogen transmission.  相似文献   

18.
This study aimed to elucidate the bacteriological events occurring within the gut of Calliphora vicina, selected as the European representative of blow flies held responsible for the spread of anthrax during epidemics in certain parts of the world. Green-fluorescent-protein-carrying derivatives of Bacillus anthracis were used. These lacked either one of the virulence plasmids pXO1 and pXO2 and were infected, or not infected, with a worm intestine phage (Wip4) known to influence the phenotype and survival of the pathogen. Blood meals were prepared for the flies by inoculation of sheep blood with germinated and, in case of pXO2+ strains, encapsulated cells of the four B. anthracis strains. After being fed for 4 h an initial 10 flies were externally disinfected with peracetic acid to ensure subsequent quantitation representing ingested B. anthracis only. Following neutralization, they were crushed in sterile saline. Over each of the ensuing 7 to 10 days, 10 flies were removed and processed the same way. In the absence of Wip4, strains showed steady declines to undetectable in the total B. anthracis counts, within 7–9 days. With the phage infected strains, the falls in viable counts were significantly more rapid than in their uninfected counterparts. Spores were detectable in flies for longer periods than vegetative bacteria. In line with the findings in both biting and non-biting flies of early workers our results indicate that B. anthracis does not multiply in the guts of blow flies and survival is limited to a matter of days.  相似文献   

19.
Studying the neural basis of walking behavior, one often faces the problem that it is hard to separate the neuronally produced stepping output from those leg movements that result from passive forces and interactions with other legs through the common contact with the substrate. If we want to understand, which part of a given movement is produced by nervous system motor output, kinematic analysis of stepping movements, therefore, needs to be complemented with electrophysiological recordings of motor activity. The recording of neuronal or muscular activity in a behaving animal is often limited by the electrophysiological equipment which can constrain the animal in its ability to move with as many degrees of freedom as possible. This can either be avoided by using implantable electrodes and then having the animal move on a long tether (i.e. Clarac et al., 1987; Duch & Pflüger, 1995; Böhm et al., 1997; Gruhn & Rathmayer, 2002) or by transmitting the data using telemetric devices (Kutsch et al, 1993; Fischer et al., 1996; Tsuchida et al. 2004; Hama et al., 2007; Wang et al., 2008). Both of these elegant methods, which are successfully used in larger arthropods, often prove difficult to apply in smaller walking insects which either easily get entangled in the long tether or are hindered by the weight of the telemetric device and its batteries. In addition, in all these cases, it is still impossible to distinguish between the purely neuronal basis of locomotion and the effects exerted by mechanical coupling between the walking legs through the substrate. One solution for this problem is to conduct the experiments in a tethered animal that is free to walk in place and that is locally suspended, for example over a slippery surface, which effectively removes most ground contact mechanics. This has been used to study escape responses (Camhi and Nolen, 1981; Camhi and Levy, 1988), turning (Tryba and Ritzman, 2000a,b; Gruhn et al., 2009a), backward walking (Graham and Epstein, 1985) or changes in velocity (Gruhn et al., 2009b) and it allows the experimenter easily to combine intra- and extracellular physiology with kinematic analyses (Gruhn et al., 2006).We use a slippery surface setup to investigate the timing of leg muscles in the behaving stick insect with respect to touch-down and lift-off under different behavioral paradigms such as straight forward and curved walking in intact and reduced preparations.  相似文献   

20.
The Qinghai–Tibet Plateau (QTP) comprises a platform (sometimes called the Qinghai–Tibet Plateau sensu stricto), the Himalayas, and Hengduan Mountains (Liang et al.,2018; Mao et al.,2021). The latter two parts and adjacent highlands are also called the Pan-Himalaya. Numerous plants are distributed there with many endemic species, probably because of the high diverse landscapes created by continuous geological and climatic activities (Favre et al.,2015; Mao et al.,2021). As the well known biodiversity hotspot of the alpine plants in the world (Sun et al.,2017), many studies have been conducted on evolutionary origin and ecological adaptation of those species occurring in the QTP (e.g., Wen et al.,2014, 2019; Zhang et al.,2019). In the present special issue, we collected 15 related papers on this topic. Among them, two are invited reviews. Mao et al. (2021) provide a comprehensive review of evolutionary origin of species diversity on the QTP. Especially, they outlined major disputes and likely causes in this research topic, including circumscribing and naming the QTP, the QTP uplifts, dating of molecular phylogenetic trees, non-causal correlations between QTP uplifts and species diversification and the unified ice sheet. The authors also summarized genomic advancements related to high-altitude adaptation of both plants and animals. Tong et al. (2021) reviewed the reproductive strategies of animal-pollinated alpine plants on the QTP, involving pollination system, pollen limitation, self-pollination, and sexual system. In this region, 95.4% of animal-pollinated plants are pollinated by insects (i.e., bees, moths, butterflies, and flies) with only 4% by vertebrates (i.e., bats and birds). Self-pollination through self-compatibility shift from outcrossing has become an effective reproductive strategy to overcome pollen limitation in alpine plants. The other 13 research papers aimed to address origin and adaptation of alpine flora involving three major lines of evidence: genomics, ecology, and paleobotany. We hope that the collection of these papers will increase our understanding of the origin, speciation, and adaptation of alpine species on the QTP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号