首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Many species are shifting their ranges in response to the changing climate. In cases where such shifts lead to the colonization of a new ecosystem, it is critical to establish how the shifting species itself is impacted by novel environmental and biological interactions. Anthropogenic habitats that are analogous to the historic habitat of a shifting species may play a crucial role in the ability of that species to expand or persist in suboptimal colonized ecosystems. We tested if the anthropogenic habitat of docks, a likely mangrove analog, provides improved conditions for the range‐shifting mangrove tree crab Aratus pisonii within the colonized suboptimal salt marsh ecosystem. To test if docks provided an improved habitat, we compared the impact of the salt marsh and dock habitats on ecological and life history traits that influence the ability of this species to persist and expand into the salt marsh and compared these back to baselines in the historic mangrove ecosystem. Specifically, we examined behavior, physiology, foraging, and the thermal conditions of A. pisonii in each habitat. We found that docks provide a more favorable thermal and foraging habitat than the surrounding salt marsh, while their ability to provide conditions which improved behavior and physiology was mixed. Our study shows that anthropogenic habitats can act as analogs to historic ecosystems and enhance the habitat quality for range‐shifting species in colonized suboptimal ecosystems. If the patterns that we document are general across systems, then anthropogenic habitats may play an important facilitative role in the range shifts of species with continued climate change.  相似文献   

2.
During coastal wetland restoration, foundation plant species are critical in creating habitat, modulating ecosystem functions, and supporting ecological communities. Following initial hydrologic restoration, foundation plant species can help stabilize sediments and jump‐start ecosystem development. Different foundation species, however, have different traits and environmental tolerances. To understand how these traits and tolerances impact restoration trajectories, there is a need for comparative studies among foundation species. In subtropical and tropical climates, coastal wetland restoration practitioners can sometimes choose between salt marsh and/or mangrove foundation species. Here, we compared the early life history traits and environmental tolerances of two foundation species: (1) a salt marsh grass (Spartina alterniflora) and (2) a mangrove tree (Avicennia germinans). In an 18‐month study of a recently restored coastal wetland in southeastern Louisiana (USA), we examined growth and survival along an elevation gradient and compared expansion and recruitment rates. We found that the rapid growth, expansion, and recruitment rates of the salt marsh grass make it a better species for quickly establishing ecological structure at suitable elevations. The slower growth, limited expansion, and lower recruitment of the mangrove species show its restricted capacity for immediate structural restoration, especially in areas where it co‐occurs with perennial salt marsh species. Our findings suggest that the structural attributes needed in recently restored areas can be achieved sooner using fast‐growing foundation species. Following salt marsh grass establishment, mangroves can then be used to further assist ecosystem development. This work highlights how appropriate foundation species can help jump‐start ecosystem development to meet restoration objectives.  相似文献   

3.
We live in an era of unprecedented ecological change in which ecologists and natural resource managers are increasingly challenged to anticipate and prepare for the ecological effects of future global change. In this study, we investigated the potential effect of winter climate change upon salt marsh and mangrove forest foundation species in the southeastern United States. Our research addresses the following three questions: (1) What is the relationship between winter climate and the presence and abundance of mangrove forests relative to salt marshes; (2) How vulnerable are salt marshes to winter climate change‐induced mangrove forest range expansion; and (3) What is the potential future distribution and relative abundance of mangrove forests under alternative winter climate change scenarios? We developed simple winter climate‐based models to predict mangrove forest distribution and relative abundance using observed winter temperature data (1970–2000) and mangrove forest and salt marsh habitat data. Our results identify winter climate thresholds for salt marsh–mangrove forest interactions and highlight coastal areas in the southeastern United States (e.g., Texas, Louisiana, and parts of Florida) where relatively small changes in the intensity and frequency of extreme winter events could cause relatively dramatic landscape‐scale ecosystem structural and functional change in the form of poleward mangrove forest migration and salt marsh displacement. The ecological implications of these marsh‐to‐mangrove forest conversions are poorly understood, but would likely include changes for associated fish and wildlife populations and for the supply of some ecosystem goods and services.  相似文献   

4.
1. Increasing temperature and invading species may interact in their effects on communities. In this study, we investigated how rising temperatures alter larval interactions between a naturally range‐expanding dragonfly, Crocothemis erythraea, and a native northern European species, Leucorrhinia dubia. Initial studies revealed that C. erythraea grow up to 3.5 times faster than L. dubia at temperatures above 16 °C. As a result, we hypothesised that divergent temperature responses would lead to rapid size differences between coexisting larvae and, consequently, to asymmetric intraguild predation at higher ambient temperatures. 2. Mortality and growth rates were measured in interaction treatments (with both species present) and non‐interaction controls (one species present) at four different temperature regimes: at an ambient temperature representative of central Germany, where both species overlap in distribution, and at temperatures increased by 2, 4 and 6 °C. 3. The mortality of C. erythraea did not differ between treatment and control. In contrast, mortality of L. dubia remained similar over all temperatures in the controls, but increased with temperature in the presence of the other species and was significantly higher there than in the controls. We concluded that L. dubia suffered asymmetric intraguild predation, particularly at increased temperature. Reduced growth rate of L. dubia in the interaction treatment at higher temperatures also suggested asymmetric competition for prey in the first phase of the experiment. 4. The results imply that the range expansion of C. erythraea may cause reduction in population size of syntopic L. dubia when temperature rises by more than 2 °C. The consequences for future range patterns, as well as other factors that may influence the interaction in nature, are discussed.  相似文献   

5.

Aim

In marine ecosystems, habitat‐forming species (HFS) such as reef‐building corals and canopy‐forming macroalgae alter local environmental conditions and can promote biodiversity by providing biogenic living space for a vast array of associated organisms. We examined community‐level impacts of observed climate‐driven shifts in the relative abundances of two superficially similar HFS, the warm‐water kelp Laminaria ochroleuca and the cool‐water kelp Laminaria hyperborea.

Location

Western English Channel, north‐east Atlantic

Methods

We compared algal and invertebrate assemblages associated with kelp stipes and holdfasts, across multiple sites and sampling events. Significant differences were recorded in the structure of assemblages between the host kelp species at each site and event.

Results

Assemblages associated with stipes of the cool‐water HFS were, on average, >12 times more diverse and supported >3600 times more biomass compared with the warm‐water HFS. Holdfast assemblages also differed significantly between species, although to a lesser extent than those associated with stipes. Overall, assemblages associated with the warm‐water HFS were markedly impoverished and comprised far fewer rare or unique taxa.

Main conclusions

While previous research has shown how climate‐driven loss of HFS can cause biodiversity loss, our study demonstrates that climate‐driven substitutions of HFS can also lead to impoverished assemblages. The indirect effects of climate change remain poorly resolved, but shifts in the distributions and abundances of HFS may invoke widespread ecological change, especially in marine ecosystems where facilitative interactions are particularly strong.  相似文献   

6.
Despite centuries of interest in species range limits, few studies have taken a whole community into consideration. Actually, multiple species may simultaneously respond to environmental changes, for example, global warming, leading a series of dynamical communities toward the advancing front. We investigated multiple species range expansions through the analysis of a two‐species dispersion model and simulations of multiple species assemblages regulated by neutral and fecundity–survival trade‐offs (FSTs), respectively, and found that species assemblages regulated by different mechanisms would initiate different expanding patterns in geographic ranges in response to environmental changes. The neutral model generally predicts a higher biodiversity near the core of an expanding range, and a lower community similarity compared with a FST model. Without considering the evolution of life history traits, an assortment of the reproduction ability happens at the advancing front under FSTs at the expense of a higher death rate or lower competitive ability. These results emphasize the importance of community assembly rules to the biodiversity maintenance of range expanding communities.  相似文献   

7.
Experimental investigation of the intensity of potential competitive interactions among increasingly abundant tropically‐associated grey Lutjanus griseus and lane snapper Lutjanus synagris and resident northern Gulf of Mexico (nGOM) red snapper Lutjanus campechanus was undertaken in large outdoor mesocosms. In pair‐wise interaction trials, compared with L. synagris, L. campechanus demonstrated significantly increased roving behaviour and predatory activity. While no significant difference in these activities was observed between L. campechanus and L. griseus, when all three snappers (Lutjanidae) were grouped together L. campechanus swimming activity significantly decreased in the presence of both tropically‐associated species. Overall, L. campechanus were more active and aggressive predators and appear to be competitively resistant to L. griseus and L. synagris. As lower latitude species have continued to become increasingly prevalent in nGOM habitats and regional warming continues to affect resident reef‐associated fishes, these findings contribute to the assessment of the effects of warming‐related species shifts upon nGOM fishes and document current partial resilience of L. campechanus to climate‐related expansions of tropical confamilials.  相似文献   

8.
Due to their position at the land‐sea interface, coastal wetlands are vulnerable to many aspects of climate change. However, climate change vulnerability assessments for coastal wetlands generally focus solely on sea‐level rise without considering the effects of other facets of climate change. Across the globe and in all ecosystems, macroclimatic drivers (e.g., temperature and rainfall regimes) greatly influence ecosystem structure and function. Macroclimatic drivers have been the focus of climate change‐related threat evaluations for terrestrial ecosystems, but largely ignored for coastal wetlands. In some coastal wetlands, changing macroclimatic conditions are expected to result in foundation plant species replacement, which would affect the supply of certain ecosystem goods and services and could affect ecosystem resilience. As examples, we highlight several ecological transition zones where small changes in macroclimatic conditions would result in comparatively large changes in coastal wetland ecosystem structure and function. Our intent in this communication is not to minimize the importance of sea‐level rise. Rather, our overarching aim is to illustrate the need to also consider macroclimatic drivers within vulnerability assessments for coastal wetlands.  相似文献   

9.
10.
11.
1. Freshwater ecosystems will be profoundly affected by global climate change, especially those in mountainous areas, which are known to be particularly vulnerable to warming temperatures. We modelled impacts of climate change on the distribution ranges of 38 species of benthic stream macroinvertebrates from nine macroinvertebrate orders covering all river zones from the headwaters to large river reaches. 2. Species altitudinal shifts as well as range changes up to the year 2080 were simulated using the A2a and B2a Intergovernmental Panel on Climate Change climate‐warming scenarios. Presence‐only species distribution models were constructed for a stream network in Germany’s lower mountain ranges by means of consensus projections of four algorithms, as implemented in the BIOMOD package in R (GLM, GAM, GBM and ANN). 3. Species were predicted to shift an average of 122 and 83 m up in altitude along the river continuum by the year 2080 under the A2a and B2a climate‐warming scenarios, respectively. No correlation between altitudinal shifts and mean annual air temperature of species’ occurrence could be detected. 4. Depending on the climate‐warming scenario, most or all (97% for A2a and 100% for B2a) of the macroinvertebrate species investigated were predicted to survive under climate change in the study area. Ranges were predicted to contract for species that currently occur in streams with low annual mean air temperatures but expand for species that inhabit rivers where air temperatures are higher. 5. Our models predict that novel climate conditions will reorganise species composition and community structure along the river continuum. Possible effects are discussed, including significant reductions in population size of headwater species, eventually leading to a loss of genetic diversity. A shift in river species composition is likely to enhance the establishment of non‐native macroinvertebrates in the lower reaches of the river continuum.  相似文献   

12.
Populations occurring at species' range edges can be locally adapted to unique environmental conditions. From a species' perspective, range‐edge environments generally have higher severity and frequency of extreme climatic events relative to the range core. Under future climates, extreme climatic events are predicted to become increasingly important in defining species' distributions. Therefore, range‐edge genotypes that are better adapted to extreme climates relative to core populations may be essential to species' persistence during periods of rapid climate change. We use relatively simple conceptual models to highlight the importance of locally adapted range‐edge populations (leading and trailing edges) for determining the ability of species to persist under future climates. Using trees as an example, we show how locally adapted populations at species' range edges may expand under future climate change and become more common relative to range‐core populations. We also highlight how large‐scale habitat destruction occurring in some geographic areas where many species range edge converge, such as biome boundaries and ecotones (e.g., the arc of deforestation along the rainforest‐cerrado ecotone in the southern Amazonia), can have major implications for global biodiversity. As climate changes, range‐edge populations will play key roles in helping species to maintain or expand their geographic distributions. The loss of these locally adapted range‐edge populations through anthropogenic disturbance is therefore hypothesized to reduce the ability of species to persist in the face of rapid future climate change.  相似文献   

13.
Recent patterns of global change have highlighted the importance of understanding the dynamics and mechanisms of species range shifts and expansions. Unique demographic features, spatial processes, and selective pressures can result in the accumulation and evolution of distinctive phenotypic traits at the leading edges of expansions. We review the characteristics of expanding range margins and highlight possible mechanisms for the appearance of phenotypic differences between individuals at the leading edge and core of the range. The development of life history traits that increase dispersal or reproductive ability is predicted by theory and supported with extensive empirical evidence. Many examples of rapid phenotypic change are associated with trade‐offs that may influence the persistence of the trait once expansion ends. Accounting for the effects of edge phenotypes and related trade‐offs could be critical for predicting the spread of invasive species and population responses to climate change.  相似文献   

14.
15.
The Dartford Warbler Sylvia undata has recently expanded its range northwards and upwards in the UK, consistent with the hypothesis that this cold‐sensitive species has responded to a warming climate. We interrogated distribution data, collected during four national surveys of this species between 1974 and 2006, to assess whether this large‐scale range expansion has been accompanied by finer‐scale changes in topographic characteristics of breeding locations. Within sites occupied in successive surveys, there was some evidence of limited altitudinal expansion between surveys. Within wider landscapes occupied in successive surveys, the preceding winter climate tended to be harsher at newly colonized sites than at sites that had already been occupied in the previous survey, while territories in newly colonized sites also tended to be on steeper slopes, especially if at higher altitude, and (in 1994 only) to be more south‐facing. Territories in sites that had already been occupied in the previous survey tended to be lower altitude, less steep and more north‐facing than territories in newly colonized landscapes. In 2006 only, the winter climate was significantly milder in newly colonized landscapes than in already occupied sites. The combined effects of a changing climate and topography may have influenced the pattern of in‐filling in the existing range, while colonization of distant areas, especially more latterly, may have been facilitated by a combination of increased dispersal pressure from the existing range and warming of climate which made higher altitude habitat in the new areas more suitable for occupancy. Careful consideration needs to be given to the importance of fine‐scale topographical variation in determining species’ responses to climate change in order to underpin robust adaptation strategies.  相似文献   

16.
Shifts in ecosystem structure have been observed over recent decades as woody plants encroach upon grasslands and wetlands globally. The migration of mangrove forests into salt marsh ecosystems is one such shift which could have important implications for global ‘blue carbon’ stocks. To date, attempts to quantify changes in ecosystem function are essentially constrained to climate‐mediated pulses (30 years or less) of encroachment occurring at the thermal limits of mangroves. In this study, we track the continuous, lateral encroachment of mangroves into two south‐eastern Australian salt marshes over a period of 70 years and quantify corresponding changes in biomass and belowground C stores. Substantial increases in biomass and belowground C stores have resulted as mangroves replaced salt marsh at both marine and estuarine sites. After 30 years, aboveground biomass was significantly higher than salt marsh, with biomass continuing to increase with mangrove age. Biomass increased at the mesohaline river site by 130 ± 18 Mg biomass km?2 yr?1 (mean ± SE), a 2.5 times higher rate than the marine embayment site (52 ± 10 Mg biomass km?2 yr?1), suggesting local constraints on biomass production. At both sites, and across all vegetation categories, belowground C considerably outweighed aboveground biomass stocks, with belowground C stocks increasing at up to 230 ± 62 Mg C km?2 yr?1 (± SE) as mangrove forests developed. Over the past 70 years, we estimate mangrove encroachment may have already enhanced intertidal biomass by up to 283 097 Mg and belowground C stocks by over 500 000 Mg in the state of New South Wales alone. Under changing climatic conditions and rising sea levels, global blue carbon storage may be enhanced as mangrove encroachment becomes more widespread, thereby countering global warming.  相似文献   

17.
Insect distributions are shifting rapidly in response to climate change and are undergoing rapid evolutionary change. We investigate the molecular signatures underlying local adaptation in the range‐expanding damselfly, Ischnura elegans. Using a landscape genomic approach combined with generalized dissimilarity modelling (GDM), we detect selection signatures on loci via allelic frequency change along environmental gradients. We analyse 13,612 single nucleotide polymorphisms (SNPs), derived from restriction site‐associated DNA sequencing (RADseq), in 426 individuals from 25 sites spanning the I. elegans distribution in Sweden, including its expanding northern range edge. Environmental association analysis (EAA) and the magnitude of allele frequency change along the range expansion gradient revealed significant signatures of selection in relation to high maximum summer temperature, high mean annual precipitation and low wind speeds at the range edge. SNP annotations with significant signatures of selection revealed gene functions associated with ongoing range expansion, including heat shock proteins (HSP40 and HSP70), ion transport (V‐ATPase) and visual processes (long‐wavelength‐sensitive opsin), which have implications for thermal stress response, salinity tolerance and mate discrimination, respectively. We also identified environmental thresholds where climate‐mediated selection is likely to be strong, and indicate that I. elegans is rapidly adapting to the climatic environment during its ongoing range expansion. Our findings empirically validate an integrative approach for detecting spatially explicit signatures of local adaptation along environmental gradients.  相似文献   

18.
Estuaries and coastal wetlands are critical transition zones (CTZs) that link land, freshwater habitats, and the sea. CTZs provide essential ecological functions, including decomposition, nutrient cycling, and nutrient production, as well as regulation of fluxes of nutrients, water, particles, and organisms to and from land, rivers, and the ocean. Sediment-associated biota are integral to these functions. Functional groups considered essential to CTZ processes include heterotrophic bacteria and fungi, as well as many benthic invertebrates. Key invertebrate functions include shredding, which breaks down and recycles organic matter; suspension feeding, which collects and transports sediments across the sediment–water interface; and bioturbating, which moves sediment into or out of the seabed. In addition, macrophytes regulate many aspects of nutrient, particle, and organism dynamics above- and belowground. Animals moving within or through CTZs are vectors that transport nutrients and organic matter across terrestrial, freshwater, and marine interfaces. Significant threats to biodiversity within CTZs are posed by anthropogenic influences; eutrophication, nonnutrient pollutants, species invasions, overfishing, habitat alteration, and climate change affect species richness or composition in many coastal environments. Because biotic diversity in marine CTZ sediments is inherently low whereas their functional significance is great, shifts in diversity are likely to be particularly important. Species introductions (from invasion) or loss (from overfishing or habitat alteration) provide evidence that single-species changes can have overt, sweeping effects on CTZ structure and function. Certain species may be critically important to the maintenance of ecosystem functions in CTZs even though at present there is limited empirical evidence that the number of species in CTZ sediments is critical. We hypothesized that diversity is indeed important to ecosystem function in marine CTZs because high diversity maintains positive interactions among species (facilitation and mutualism), promoting stability and resistance to invasion or other forms of disturbance. The complexity of interactions among species and feedbacks with ecosystem functions suggests that comparative (mensurative) and manipulative approaches will be required to elucidate the role of diversity in sustaining CTZ functions. Received 25 February 2000; accepted 31 January 2001.  相似文献   

19.
Salt marsh and mangrove have been recognized as being among the most valuable ecosystem types globally in terms of their supply of ecosystem services and support for human livelihoods. These coastal ecosystems are also susceptible to the impacts of climate change and rising sea levels, with evidence of global shifts in the distribution of mangroves, including encroachment into salt marshes. The encroachment of woody mangrove shrubs and trees into herbaceous salt marshes may represent a substantial change in ecosystem structure, although resulting impacts on ecosystem functions and service provisions are largely unknown. In this review, we assess changes in ecosystem services associated with mangrove encroachment. While there is quantitative evidence to suggest that mangrove encroachment may enhance carbon storage and the capacity of a wetland to increase surface elevation in response to sea‐level rise, for most services there has been no direct assessment of encroachment impact. On the basis of current understanding of ecosystem structure and function, we theorize that mangrove encroachment may increase nutrient storage and improve storm protection, but cause declines in habitat availability for fauna requiring open vegetation structure (such as migratory birds and foraging bats) as well as the recreational and cultural activities associated with this fauna (e.g., birdwatching and/or hunting). Changes to provisional services such as fisheries productivity and cultural services are likely to be site specific and dependent on the species involved. We discuss the need for explicit experimental testing of the effects of encroachment on ecosystem services in order to address key knowledge gaps, and present an overview of the options available to coastal resource managers during a time of environmental change.  相似文献   

20.

Aim

Climate change affects forest functioning not only through direct physiological effects such as modifying photosynthesis and growing season lengths, but also through indirect effects on community composition related to species extinctions and colonizations. Such indirect effects remain poorly explored in comparison with the direct ones. Biodiversity–ecosystem functioning (BEF) studies commonly examine the effects of species loss by eliminating species randomly. However, species extinctions caused by climate change will depend on the species’ vulnerability to the new environmental conditions, thus occurring in a specific, non‐random order. Here, we evaluated whether successive tree species extinctions, according to their vulnerability to climate change, impact forest functions differently than random species losses.

Location

Eleven temperate forests across a gradient of climatic conditions in central Europe.

Methods

We simulated tree community dynamics with a forest succession model to study the impact of species loss on the communities’ aboveground biomass, productivity and temporal stability. Tree species were removed from the local pool (1) randomly, and according to (2) their inability to be recruited under a warmer climate or (3) their increased mortality under drier conditions.

Results

Results showed that non‐random species loss (i.e., based on their vulnerability to warmer or drier conditions) changed forest functioning at a different rate, and sometimes direction, than random species loss. Furthermore, directed extinctions, unlike random, triggered tipping points along the species loss process where forest functions were strongly impacted. These tipping points occurred after fewer extinctions in forests located in the coldest areas, where ecosystem functioning relies on fewer species.

Main conclusions

We showed that the extinction of species in a deterministic and mechanistically motivated order, in this case the species vulnerability to climate change, strengthens the selection effect of diversity on ecosystem functioning. BEF studies exploring the impact of species loss on ecosystem functioning using random extinctions thus possibly underestimate the potential effect of biodiversity loss when driven by a directional force, such as climate change.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号