首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Owing to the potential health benefits, anthocyanin-rich teas (Camellia sinensis) have attracted interest over the past decade. Previously, we developed the cultivar ‘Ziyan,’ which has dark-purple leaves because of the accumulation of a high amount of anthocyanins. In this study, we performed a genetic analysis of this anthocyanin-rich tea cultivar and 176 of its naturally pollinated offspring. For two consecutive years, we quantified the anthocyanins and catechins of ‘Ziyan’ and the offspring population. While >60% of the offspring accumulated less than half of the amount of anthocyanins of ‘Ziyan,’ 17 (2018) and 15 (2019) individuals exceeded ‘Ziyan’ in anthocyanin content. A negative correlation between anthocyanin and total catechin content (r = −0.59, P < 0.001) was observed. The population was genotyped with 131 SSR markers spanning all linkage groups of the C. sinensis genome. Kruskal-Wallis tests identified 10 markers significantly associated with anthocyanins, catechins and their ratios in both years. Quantitative trait locus (QTL) analyses using the interval mapping method detected 13 QTLs, suggesting the dark-purple trait of ‘Ziyan’ is because of the pyramiding of anthocyanin-promoting alleles on at least five linkage groups. Two genetic loci reversely related to anthocyanin and total catechin contents were identified. This study provides valuable information for genetic improvement of purple tea cultivars and for fine-mapping related genes.  相似文献   

2.
3.
4.
Purple carrots, the original domesticated carrots, accumulate highly glycosylated and acylated anthocyanins in root and/or petiole. Previously, a quantitative trait locus (QTL) for root‐specific anthocyanin pigmentation was genetically mapped to chromosome 3 of carrot. In this study, an R2R3‐MYB gene, namely DcMYB113, was identified within this QTL region. DcMYB113 expressed in the root of ‘Purple haze’, a carrot cultivar with purple root and nonpurple petiole, but not in the roots of two carrot cultivars with a purple root and petiole (Deep purple and Cosmic purple) and orange carrot ‘Kurodagosun’, which appeared to be caused by variation in the promoter region. The function of DcMYB113 from ‘Purple haze’ was verified by transformation in ‘Cosmic purple’ and ‘Kurodagosun’, resulting in anthocyanin biosynthesis. Transgenic ‘Kurodagosun’ carrying DcMYB113 driven by the CaMV 35S promoter had a purple root and petiole, while transgenic ‘Kurodagosun’ expressing DcMYB113 driven by its own promoter had a purple root and nonpurple petiole, suggesting that root‐specific expression of DcMYB113 was determined by its promoter. DcMYB113 could activate the expression of DcbHLH3 and structural genes related to anthocyanin biosynthesis. DcUCGXT1 and DcSAT1, which were confirmed to be responsible for anthocyanins glycosylation and acylation, respectively, were also activated by DcMYB113. The WGCNA identified several genes co‐expressed with anthocyanin biosynthesis and the results indicated that DcMYB113 may regulate anthocyanin transport. Our findings provide insight into the molecular mechanism underlying root‐specific anthocyanin biosynthesis and further modification in carrot and even other root crops.  相似文献   

5.
6.
7.
8.
9.
10.
Ten anthocyanin components have been detected in roots of purple sweet potato (Ipomoea batatas Lam.) by high‐performance liquid chromatography coupled to diode array detection and electrospray ionization tandem mass spectrometry. All the anthocyanins were exclusively cyanidins or peonidin 3‐sophoroside‐5‐glucosides and their acylated derivatives. The total anthocyanin content in purple sweet potato powder obtained by solid‐phase extraction was 66 mg g?1. A strong capacity of purple sweet potato anthocyanins (PSPA) to scavenge reactive oxygen species (superoxide, hydroxyl radical) and the stable 1,1‐diphenyl‐2‐picrylhydrazyl organic free radical was found in vitro using the electron spin resonance technique. To determine the functional roles of anthocyanins in leaves in vivo, for the first time, supplemental anthocyanins were infiltrated into leaves of Arabidopsis thaliana double mutant of the ecotype Landsberg erecta (tt3tt4) deficient in anthocyanin biosynthesis. Chlorophyll fluorescence imaging showed that anthocyanins significantly ameliorated the inactivation of photosystems II during prolonged high‐light (1300 µmol m?2 s?1) exposure. Comet assay of DNA revealed an obvious role of supplemental PSPA in alleviating DNA damage by high light in leaves. Our results suggest that anthocyanins could function in vitro and in vivo to alleviate the direct or indirect oxidative damage of the photosynthetic apparatus and DNA in plants caused by high‐light stress.  相似文献   

11.
12.
Objective: The body fat reducing effect and reduction of risks for cardiovascular disease by a green tea extract (GTE) high in catechins was investigated in humans with typical lifestyles. Research Methods and Procedures: Japanese women and men with visceral fat‐type obesity were recruited for the trial. After a 2‐week diet run‐in period, a 12‐week double‐blind parallel multicenter trial was performed, in which the subjects ingested green tea containing 583 mg of catechins (catechin group) or 96 mg of catechins (control group) per day. Randomization was stratified by gender and body mass index at each medical institution. The subjects were instructed to maintain their usual dietary intake and normal physical activity. Results: Data were analyzed using per‐protocol samples of 240 subjects (catechin group; n = 123, control group; n = 117). Decreases in body weight, body mass index, body fat ratio, body fat mass, waist circumference, hip circumference, visceral fat area, and subcutaneous fat area were found to be greater in the catechin group than in the control group. A greater decrease in systolic blood pressure (SBP) was found in the catechin group compared with the control group for subjects whose initial SBP was 130 mm Hg or higher. Low‐density lipoprotein (LDL) cholesterol was also decreased to a greater extent in the catechin group. No adverse effect was found. Discussion: The continuous ingestion of a GTE high in catechins led to a reduction in body fat, SBP, and LDL cholesterol, suggesting that the ingestion of such an extract contributes to a decrease in obesity and cardiovascular disease risks.  相似文献   

13.
14.
Gynura bicolor DC., a traditional vegetable in Japan, is cultivated as Kinjisou and Suizenjina in Ishikawa and Kumamoto prefectures, respectively. The adaxial side of the leaves of G. bicolor grown in a field is green, and the abaxial side is reddish purple. It has been reported that these reddish purple pigments are anthocyanins. Although we established a culture system of G. bicolor, the leaves of G. bicolor plants grown under our culture conditions showed green color on both sides of all leaves. We investigated the effects of phytohormones and chemical treatments on anthocyanin accumulation in cultured plants. Although anthocyanin accumulation in the leaves was slightly stimulated, anthocyanins accumulation in the roots of the cultured plant was induced remarkably by 25–50 μM methyl jasmonate (MJ) treatment. This induction was affected by light irradiation and sucrose concentration in the culture medium. However, salicylic acid (SA) and 1-aminocyclopropane-1-carboxylic acid did not induce anthocyanin accumulation in roots. And then, combinations of MJ and SA or MJ and AgNO3 did not stimulate the anthocyanin accumulation in the root as found in the case of treatment by MJ solely.  相似文献   

15.
苯丙氨酸解氨酶(phenylalanine ammonia-lyase,PAL)由多基因家族编码,是花青素等多酚物质合成途径的起始酶,对其合成具有调控作用。以紫化茶树武夷奇种C18为材料,采用Gateway技术体系分别构建了茶树的CsPAL3过表达载体pGWB502:CsPAL3和pGWB505:CsPAL3:GFP,并成功将其转入根癌农杆菌GV3101。注射烟草瞬时表达激光共聚焦扫描显微镜可观察到GFP绿色荧光,结果表明CsPAL3主要集中在细胞核和细胞膜中。通过侵染拟南芥,筛选纯合子,获得稳定表达的转CsPAL3基因拟南芥。实时荧光定量PCR(qPCR)检测发现,CsPAL3在转CsPAL3基因拟南芥中的根部表达量显著高于叶片,且CsPAL3基因受光照调控。该结果为进一步研究茶树CsPAL3基因功能以及促进茶树花青素合成与积累的分子调控机理提供科学依据。  相似文献   

16.
陈俊洁  梅松  胡彦如 《广西植物》2020,40(8):1169-1180
脱落酸(abscisic acid,ABA)激素是一类重要的生长调节物质,参与调控植物的多种生理过程。花青素(anthocyanins)是植物次生代谢产生的类黄酮化合物,对植物的生长发育和逆境胁迫响应有重要作用。该文以拟南芥(Arabidopsis thaliana)为研究对象,探讨ABA信号对花青素生物合成的调控功能和作用机制。结果表明:外源施加ABA显著提高野生型幼苗茎尖中花青素的积累。相一致的是,ABA能诱导某些与花青素合成相关的转录因子及合成酶基因的表达。遗传学分析发现,ABA诱导花青素合成部分依赖于MBW复合体中的核心转录因子,如TTG1、TT8及MYB75等。初步机制研究揭示,ABA信号途径中的bZIP类转录因子ABI5能与TTG1、TT8及MYB75等相互作用形成蛋白复合物。综上结果认为,ABA信号诱导拟南芥幼苗中花青素的积累,并可能通过ABI5与MBW复合体协同作用调控花青素的合成。  相似文献   

17.
Objective: The purpose of this study was to evaluate the effects of a catechin‐rich beverage on body fat and cardiovascular disease risk factors in obese children and to verify the safety of its use. Methods and Procedures: Obese or near‐obese Japanese children were recruited for this study. A double‐blind, randomized, controlled study was performed with a 4‐week lead‐in, a 24‐week beverage ingestion period and a 12‐week follow‐up. Subjects ingested green tea containing 576 mg catechins (catechin group) or 75 mg catechins (control group) once per day for 24 weeks. Randomization was stratified by gender, age, and BMI. Subjects were instructed to maintain their usual lifestyles during the study period. Results: Data were analyzed using samples from 40 subjects (catechin group; n = 21, control group; n = 19). There were no significant differences in major outcome variables, such as body fat mass, between the catechin and the control groups. When, however, the analysis was stratified using the median of the week‐0 values, the decrease at week 24 in waist circumference, systolic blood pressure, and low‐density lipoprotein cholesterol in the catechin group was significantly greater than that in the control group for the above‐median category. Ingestion of the catechin‐rich beverage was not associated with any adverse effects. Discussion: These findings suggest that ingestion of a catechin‐rich beverage ameliorates serious obesity and cardiovascular disease risk factors without raising any safety concerns in Japanese children.  相似文献   

18.
19.
20.
Obesity is a major health problem in the developed and developing world. Many “functional” foods and ingredients are advocated for their effects on body composition but few have consistent scientific support for their efficacy. However, an increasing amount of mechanistic and clinical evidence is building for green tea (GT). This experiment was therefore undertaken to study the effects of a high‐catechin GT on body composition in a moderately overweight Chinese population. In a randomized placebo‐controlled trial, 182 moderately overweight Chinese subjects, consumed either two servings of a control drink (C; 30 mg catechins, 10 mg caffeine/day), one serving of the control drink and one serving of an extra high‐catechin GT1 (458 mg catechins, 104 mg caffeine/day), two servings of a high‐catechin GT2 (468 mg catechins, 126 mg caffeine/day) or two servings of the extra high‐catechin GT3 (886 mg catechins, 198 mg caffeine/day) for 90 days. Data were collected at 0, 30, 60, and 90 days. We observed a decrease in estimated intra‐abdominal fat (IAF) area of 5.6 cm2 in the GT3 group. In addition, we found decreases of 1.9 cm in waist circumference and 1.2 kg body weight in the GT3 group vs. C (P < 0.05). We also observed reductions in total body fat (GT2, 0.7 kg, P < 0.05) and body fat % (GT1, 0.6%, P < 0.05). We conclude that consumption of two servings of an extra high‐catechin GT leads to improvements in body composition and reduces abdominal fatness in moderately overweight Chinese subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号