首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SNAREs and the specificity of membrane fusion   总被引:10,自引:0,他引:10  
A major problem of intracellular membrane traffic concerns the way in which transport vesicles find and fuse with their target organelles. SNARE proteins are involved in fusion, and their mutual recognition could in principle provide the necessary specificity. Alternatively, the preliminary tethering of vesicles, mediated by peripheral membrane proteins, could hold the key. Previous studies of SNARE complex assembly in solution have suggested little specificity, but recent experiments with yeast SNAREs anchored in liposomes show that their interactions can be highly selective. It is likely that both tethering and SNARE engagement contribute to the accuracy of membrane transport.  相似文献   

2.
The intracellular bacterial pathogen Legionella pneumophila subverts host membrane transport pathways to promote fusion of vesicles exiting the endoplasmic reticulum (ER) with the pathogen-containing vacuole. During infection there is noncanonical pairing of the SNARE protein Sec22b on ER-derived vesicles with plasma membrane (PM)-localized syntaxin proteins on the vacuole. We show that the L.?pneumophila Rab1-targeting effector DrrA is sufficient to stimulate this noncanonical SNARE association and promote membrane fusion. DrrA activation of the Rab1 GTPase on PM-derived organelles stimulated the tethering of ER-derived vesicles with the PM-derived organelle, resulting in vesicle fusion through the pairing of Sec22b with the PM syntaxin proteins. Thus, the effector protein DrrA stimulates a host membrane transport pathway that enables ER-derived vesicles to remodel a PM-derived organelle, suggesting that Rab1 activation at the PM is sufficient to promote the recruitment and fusion of ER-derived vesicles.  相似文献   

3.
In mammals, coat complex II (COPII)-coated transport vesicles deliver secretory cargo to vesicular tubular clusters (VTCs) that facilitate cargo sorting and transport to the Golgi. We documented in vitro tethering and SNARE-dependent homotypic fusion of endoplasmic reticulum-derived COPII transport vesicles to form larger cargo containers characteristic of VTCs ( Xu, D., and Hay, J. C. (2004) J. Cell Biol. 167, 997-1003). COPII vesicles thus appear to contain all necessary components for homotypic tethering and fusion, providing a pathway for de novo VTC biogenesis. Here we demonstrate that antibodies against the endoplasmic reticulum/Golgi SNARE Syntaxin 5 inhibit COPII vesicle homotypic tethering as well as fusion, implying an unanticipated role for SNAREs upstream of fusion. Inhibition of SNARE complex access and/or disassembly with dominant-negative alpha-soluble NSF attachment protein (SNAP) also inhibited tethering, implicating SNARE status as a critical determinant in COPII vesicle tethering. The tethering-defective vesicles generated in the presence of dominant-negative alpha-SNAP specifically lacked the Rab1 effectors p115 and GM130 but not other peripheral membrane proteins. Furthermore, Rab effectors, including p115, were shown to be required for homotypic COPII vesicle tethering. Thus, our results demonstrate a requirement for SNARE-dependent tether recruitment and function in COPII vesicle fusion. We anticipate that recruitment of tether molecules by an upstream SNARE signal ensures that tethering events are initiated only at focal sites containing appropriately poised fusion machinery.  相似文献   

4.
Membrane trafficking involves the collection of cargo into nascent transport vesicles that bud off from a donor compartment, translocate along cytoskeletal tracks, and then dock and fuse with their target membranes. Docking and fusion involve initial interaction at a distance (tethering), followed by a closer interaction that leads to pairing of vesicle SNARE proteins (v-SNAREs) with target membrane SNAREs (t-SNAREs), thereby catalyzing vesicle fusion. When tethering cannot take place, transport vesicles accumulate in the cytoplasm. Tethering is generally carried out by two broad classes of molecules: extended, coiled-coil proteins such as the so-called Golgin proteins, or multi-subunit complexes such as the Exocyst, COG or Dsl complexes. This review will focus on the most recent advances in terms of our understanding of the mechanism by which tethers carry out their roles, and new structural insights into tethering complex transactions.  相似文献   

5.
囊泡运输是真核生物的一种重要的细胞学活动, 广泛参与多种生物学过程。该过程主要包括囊泡形成、转运、拴系及与目的膜融合4个环节。目前已知9种多蛋白亚基拴系复合体参与不同途径的胞内转运过程, 其中, 胞泌复合体(exocyst complex)介导了运输囊泡与质膜的拴系过程。对胞泌复合体调控机制的认识主要源于酵母(Saccharomyces cerevisiae)和动物细胞的研究。近年来, 植物胞泌复合体的研究也取得了较大进展, 初步结果显示复合体在功能方面具有一些植物特异的调控特点, 广泛参与植物生长发育和逆境响应。该文主要综述胞泌复合体在植物中的研究进展, 旨在为植物胞泌复合体功能研究提供参考。  相似文献   

6.
囊泡运输是真核生物的一种重要的细胞学活动, 广泛参与多种生物学过程。该过程主要包括囊泡形成、转运、拴系及与目的膜融合4个环节。目前已知9种多蛋白亚基拴系复合体参与不同途径的胞内转运过程, 其中, 胞泌复合体(exocyst complex)介导了运输囊泡与质膜的拴系过程。对胞泌复合体调控机制的认识主要源于酵母(Saccharomyces cerevisiae)和动物细胞的研究。近年来, 植物胞泌复合体的研究也取得了较大进展, 初步结果显示复合体在功能方面具有一些植物特异的调控特点, 广泛参与植物生长发育和逆境响应。该文主要综述胞泌复合体在植物中的研究进展, 旨在为植物胞泌复合体功能研究提供参考。  相似文献   

7.
Membrane recruitment of effector proteins by Arf and Rab GTPases   总被引:2,自引:0,他引:2  
In their GTP-bound form, Arf and Rab family GTPases associate with distinct organelle membranes, to which they recruit specific sets of effector proteins that regulate vesicular transport. The Arf GTPases are involved in the formation of coated carrier vesicles by recruiting coat proteins. On the other hand, the Rab GTPases are involved in the tethering, docking and fusion of transport vesicles with target organelles, acting in concert with the tethering and fusion machineries. Recent structural studies of the Arf1-GGA and Rab5-Rabaptin-5 complexes, as well as other effector structures in complex with the Arf and Rab GTPases, have shed light on the mechanisms underlying the GTP-dependent membrane recruitment of these effector proteins.  相似文献   

8.
Biochemical data have shown that COPI-coated vesicles are tethered to Golgi membranes by a complex of at least three proteins: p115, giantin, and GM130. p115 binds to giantin on the vesicles and to GM130 on the membrane. We now examine the function of this tethering complex in vivo. Microinjection of an N-terminal peptide of GM130 or overexpression of GM130 lacking this N-terminal peptide inhibits the binding of p115 to Golgi membranes. Electron microscopic analysis of single microinjected cells shows that the number of COP-sized transport vesicles in the Golgi region increases substantially, suggesting that transport vesicles continue to bud but are less able to fuse. This was corroborated by quantitative immunofluorescence analysis, which showed that the intracellular transport of the VSV-G protein was significantly inhibited. Together, these data suggest that this tethering complex increases the efficiency with which transport vesicles fuse with their target membrane. They also provide support for a model of mitotic Golgi fragmentation in which the tethering complex is disrupted by mitotic phosphorylation of GM130.  相似文献   

9.
Abstract

Membrane trafficking involves the collection of cargo into nascent transport vesicles that bud off from a donor compartment, translocate along cytoskeletal tracks, and then dock and fuse with their target membranes. Docking and fusion involve initial interaction at a distance (tethering), followed by a closer interaction that leads to pairing of vesicle SNARE proteins (v-SNAREs) with target membrane SNAREs (t-SNAREs), thereby catalyzing vesicle fusion. When tethering cannot take place, transport vesicles accumulate in the cytoplasm. Tethering is generally carried out by two broad classes of molecules: extended, coiled-coil proteins such as the so-called Golgin proteins, or multi-subunit complexes such as the Exocyst, COG or Dsl complexes. This review will focus on the most recent advances in terms of our understanding of the mechanism by which tethers carry out their roles, and new structural insights into tethering complex transactions.  相似文献   

10.
SNARE proteins (VAMP2, syntaxin4, and SNAP23) have been thought to play a key role in GLUT4 trafficking by mediating the tethering, docking and subsequent fusion of GLUT4-containing vesicles with the plasma membrane. The precise functions of these proteins have remained elusive, however. We have now shown that depletion of the vesicle SNARE (v-SNARE) VAMP2 by RNA interference in 3T3-L1 adipocytes inhibited the fusion of GLUT4 vesicles with the plasma membrane but did not affect tethering of the vesicles to the membrane. In contrast, depletion of the target SNAREs (t-SNAREs) syntaxin4 or SNAP23 resulted in impairment of GLUT4 vesicle tethering to the plasma membrane. Our results indicate that the t-SNAREs syntaxin4 and SNAP23 are indispensable for the tethering of GLUT4 vesicles to the plasma membrane, whereas the v-SNARE VAMP2 is not required for this step but is essential for the subsequent fusion event.  相似文献   

11.
Long coiled-coil proteins and membrane traffic   总被引:16,自引:0,他引:16  
Protein transport between organelles is mediated by vesicles which must accurately dock and fuse with appropriate compartments. Over the past several years a large number of long coiled-coil proteins have been identified on the Golgi and on endosomes, mostly as auto-antigens in autoimmune disorders. Based on their restricted intracellular distributions and their predicted rod-like structure, these proteins have been proposed to play a role in tethering vesicles to target organelles prior to fusion. However, such proteins may also play a structural role, for example as components of a Golgi matrix, or as scaffolds for the assembly of other factors important for fusion. This review will examine what is known about the function of these large coiled-coil proteins in membrane traffic.  相似文献   

12.
Post-Golgi transport of peptide hormone-containing vesicles from the site of genesis at the trans-Golgi network to the release site at the plasma membrane is essential for activity-dependent hormone secretion to mediate various endocrinological functions. It is known that these vesicles are transported on microtubules to the proximity of the release site, and they are then loaded onto an actin/myosin system for distal transport through the actin cortex to just below the plasma membrane. The vesicles are then tethered to the plasma membrane, and a subpopulation of them are docked and primed to become the readily releasable pool. Cytoplasmic tails of vesicular transmembrane proteins, as well as many cytosolic proteins including adaptor proteins, motor proteins, and guanosine triphosphatases, are involved in vesicle budding, the anchoring of the vesicles, and the facilitation of movement along the transport systems. In addition, a set of cytosolic proteins is also necessary for tethering/docking of the vesicles to the plasma membrane. Many of these proteins have been identified from different types of (neuro)endocrine cells. Here, we summarize the proteins known to be involved in the mechanisms of sorting various cargo proteins into regulated secretory pathway hormone-containing vesicles, movement of these vesicles along microtubules and actin filaments, and their eventual tethering/docking to the plasma membrane for hormone secretion.  相似文献   

13.
TC10, a Rho family GTPase, has been shown to play an important role in the exocytosis of GLUT4 and other proteins, primarily by tethering the vesicles at the plasma membrane. Using a newly developed probe based on fluorescence resonance energy transfer, we found that TC10 activity at tethered vesicles dropped immediately before vesicle fusion in HeLa cells stimulated with epidermal growth factor (EGF), suggesting that GTP hydrolysis by TC10 is a critical step in vesicle fusion. In support of this model, a GTPase-deficient TC10 mutant potently inhibited EGF-induced vesicular fusion in HeLa cells and depolarization-induced neuronal secretion. Furthermore, we found that GTP hydrolysis by TC10 in the vicinity of the plasma membrane was dependent on Rac and the redox-regulated Rho GAP, p190RhoGAP-A. We propose that an EGF-stimulated GAP accelerates GTP hydrolysis of TC10, thereby promoting vesicle fusion.  相似文献   

14.
Delivery of proteins or lipids to the plasma membrane or into the extracellular space occurs through exocytosis, a process that requires tethering, docking, priming and fusion of vesicles, as well as F-actin rearrangements in response to specific extracellular cues. GTPases of the Rho family have been implicated as important regulators of exocytosis, but how Rho proteins control this process is an open question. In this review, we focus on molecular connections that drive Rho-dependent exocytosis in polarized and regulated exocytosis. Specifically, we present data showing that Rho proteins interaction with the exocyst complex and IQGAP mediates polarized exocytosis, whereas interaction with actin-binding proteins like N-WASP mediates regulated exocytosis.  相似文献   

15.
膜泡运输是不同细胞器间进行物质传递的基本方式,分为4个重要步骤:囊泡的出芽、转运、拴系和融合。在此过程中,有许多相关因子参与调控,如包被蛋白、Rab蛋白、拴系因子、SM蛋白和SNARE等。拴系因子在运输囊泡和靶位膜发生接触的最初阶段起重要调控作用,多数拴系因子形成大的多亚基复合体发挥功能。目前,关于拴系因子的功能已经有了一定的了解,在此,我们对酵母、哺乳动物以及植物细胞中的已知拴系因子的特点和功能进行了概述。  相似文献   

16.
The specificity of intracellular vesicle transport is mediated in part by tethering factors that attach the vesicle to the destination organelle prior to fusion. We have identified a protein, Dor1p, that is involved in vesicle targeting to the yeast Golgi apparatus and found it to be associated with seven further proteins. Identification of these revealed that they include Sec34p and Sec35p, the two known components of the Sec34/35 complex previously proposed to tether vesicles to the Golgi. Of the six previously uncharacterized components, four have homologs in higher eukaryotes, including a subunit of a mammalian Golgi transport complex. Furthermore, several of the proteins show distant homology to components of two other putative tethering complexes, the exocyst and the Vps52/53/54 complex, revealing that tethering factors involved in different membrane traffic steps are structurally related.  相似文献   

17.
高等植物细胞含有复杂的内膜系统,通过其特有的膜泡运输机制来完成细胞内和细胞间的物质交流。膜泡运输主要包括运输囊泡的出芽、定向移动、拴留和膜融合4个过程。这4个过程受到许多因子的调控,如Coat、SM、Tether、SNARE和Rab蛋白等,其中SNARE因子在膜融合过程中发挥重要功能。SNARE因子是小分子跨膜蛋白,分为定位于运输囊泡上的v-SNARE和定位于靶位膜上的t-SNARE,两类SNARE结合形成SNARE复合体,促进膜融合的发生。SNARE蛋白在调控植物体生长发育以及对外界环境响应等生理过程中起重要作用。该文对模式植物拟南芥(Arabidopsis thaliana)SNARE因子的最新细胞内定位和功能分析等研究进展进行了概述。  相似文献   

18.
Tethering factors are organelle-specific multisubunit protein complexes that identify, along with Rab guanosine triphosphatases, transport vesicles and trigger their SNARE-mediated fusion of specific transport vesicles with the target membranes. Little is known about how tethering factors discriminate between different trafficking pathways, which may converge at the same organelle. In this paper, we describe a phosphorylation-based switch mechanism, which allows the homotypic vacuole fusion protein sorting effector subunit Vps41 to operate in two distinct fusion events, namely endosome-vacuole and AP-3 vesicle-vacuole fusion. Vps41 contains an amphipathic lipid-packing sensor (ALPS) motif, which recognizes highly curved membranes. At endosomes, this motif is inserted into the lipid bilayer and masks the binding motif for the δ subunit of the AP-3 complex, Apl5, without affecting the Vps41 function in endosome-vacuole fusion. At the much less curved vacuole, the ALPS motif becomes available for phosphorylation by the resident casein kinase Yck3. As a result, the Apl5-binding site is exposed and allows AP-3 vesicles to bind to Vps41, followed by specific fusion with the vacuolar membrane. This multifunctional tethering factor thus discriminates between trafficking routes by switching from a curvature-sensing to a coat recognition mode upon phosphorylation.  相似文献   

19.
Members of the Rab family of small molecular weight GTPases regulate the fusion of transport intermediates to target membranes along the biosynthetic and endocytic pathways. We recently demonstrated that Rab1 recruitment of the tethering factor p115 into a cis -SNARE complex programs coat protein II vesicles budding from the endoplasmic reticulum (donor compartment) for fusion with the Golgi apparatus (acceptor compartment) (Allan BB, Moyer BD, Balch WE. Science 2000; 289: 444–448). However, the molecular mechanism(s) of Rab regulation of Golgi acceptor compartment function in endoplasmic reticulum to Golgi transport are unknown. Here, we demonstrate that the cis -Golgi tethering protein GM130, complexed with GRASP65 and other proteins, forms a novel Rab1 effector complex that interacts with activated Rab1-GTP in a p115-independent manner and is required for coat protein II vesicle targeting/fusion with the cis -Golgi. We propose a 'homing hypothesis' in which the same Rab interacts with distinct tethering factors at donor and acceptor membranes to program heterotypic membrane fusion events between transport intermediates and their target compartments.  相似文献   

20.
The molecular mechanisms ensuring directionality of endocytic membrane trafficking between transport vesicles and target organelles still remain poorly characterized. We have been investigating the function of the small GTPase Rab5 in early endocytic transport. In vitro studies have demonstrated a role of Rab5 in two membrane fusion events: the heterotypic fusion between plasma membrane-derived clathrin-coated vesicles (CCVs) and early endosomes and in the homotypic fusion between early endosomes. Several Rab5 effectors are required in homotypic endosome fusion, including EEA1, which mediates endosome membrane docking, as well as Rabaptin-5 x Rabex-5 complex and phosphatidylinositol 3-kinase hVPS34. In this study we have examined the localization and function of Rab5 and its effectors in heterotypic fusion in vitro. We report that the presence of active Rab5 is necessary on both CCVs and early endosomes for a heterotypic fusion event to occur. This process requires EEA1 in addition to the Rabaptin-5 complex. However, whereas Rab5 and Rabaptin-5 are symmetrically distributed between CCVs and early endosomes, EEA1 is recruited selectively onto the membrane of early endosomes. Our results suggest that EEA1 is a tethering molecule that provides directionality to vesicular transport from the plasma membrane to the early endosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号