首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A backup DNA repair pathway moves to the forefront   总被引:3,自引:0,他引:3  
Nussenzweig A  Nussenzweig MC 《Cell》2007,131(2):223-225
Chromosomal translocations between antigen receptor loci and oncogenes are a hallmark of lymphoid cancers. Several new studies now reveal that programmed DNA breaks created during assembly of antigen receptor genes can be channeled into an alternative DNA end-joining pathway that is implicated in the chromosomal translocations of lymphoid cancers (Corneo et al., 2007; Soulas-Sprauel et al., 2007; Yan et al., 2007).  相似文献   

2.
In order to help further define DNA post-replication repair (PRR), a conditional synthetic lethal screen was employed to identify new genes involved in the PRR pathway. A synthetic lethal screen with the mms2 mutation resulted in the recovery of two suppressor mutations responsible for regulating PRR. The recovered suppressors are the mating type genes and SIR3. Indeed, controlled expression of both mating type genes or deletion of SIR3 rescued the conditional synthetic lethal mutant phenotypes. Furthermore, comprehensive analyses suggest that mating type heterozygosity confers tolerance to a broad range of DNA damage, and that this effect is limited to all PRR pathway mutations, but does not apply to base excision repair, nucleotide excision repair or recombination repair mutants. In addition, the tolerance conferred to PRR mutants as a result of mating type heterozygosity is dependent on a functional homologous recombination but not the non-homologous end-joining pathway. Thus, mating type status appears to be responsible for signalling DNA content and possibly cell cycle stage, allowing the cell to select the most efficient means to repair the DNA damage.  相似文献   

3.
The global emergence of antibiotic resistance is one of the most serious challenges facing modern medicine. There is an urgent need for validation of new drug targets and the development of small molecules with novel mechanisms of action. We therefore sought to inhibit bacterial DNA repair mediated by the AddAB/RecBCD protein complexes as a means to sensitize bacteria to DNA damage caused by the host immune system or quinolone antibiotics. A rational, hypothesis-driven compound optimization identified IMP-1700 as a cell-active, nanomolar potency compound. IMP-1700 sensitized multidrug-resistant Staphylococcus aureus to the fluoroquinolone antibiotic ciprofloxacin, where resistance results from a point mutation in the fluoroquinolone target, DNA gyrase. Cellular reporter assays indicated IMP-1700 inhibited the bacterial SOS-response to DNA damage, and compound-functionalized Sepharose successfully pulled-down the AddAB repair complex. This work provides validation of bacterial DNA repair as a novel therapeutic target and delivers IMP-1700 as a tool molecule and starting point for therapeutic development to address the pressing challenge of antibiotic resistance.  相似文献   

4.
Penicillins are widespread in nature and lethal to growing bacteria. Because of the severe threat posed by these antibiotics, bacteria have evolved a wide variety of strategies for combating them. Here, we describe one unusual strategy that involves the activity of a catalytic carbohydrate. We show that the cyclic oligosaccharide, β-cyclodextrin (βCD), can hydrolyze, and thereby inactivate, penicillin in vivo. Moreover, we demonstrate that this catalytic activity contributes to the antibiotic resistance of a bacterium that synthesizes this oligosaccharide in the laboratory. Taken together, these data not only expand our understanding of the biochemistry of penicillin resistance, but also provide the first demonstration of natural carbohydrate-mediated catalysis in a living system. Paul de Figueiredo, Becky Terra and Jasbir Kaur Anand have contributed equally to this work.  相似文献   

5.
Long non‐coding RNAs (lncRNAs) have emerged as regulators of various biological processes, but to which extent lncRNAs play a role in genome integrity maintenance is not well understood. In this issue of EMBO Reports, Sharma et al 1 identify the DNA damage‐induced lncRNA DDSR1 as an integral player of the DNA damage response (DDR). DDSR1 has both an early role by modulating repair pathway choices, and a later function when it regulates gene expression. Sharma et al 1 thus uncover a dual role for a hitherto uncharacterized lncRNA during the cellular response to DNA damage.  相似文献   

6.
7.
Despite constant threat of oxidative damage, sequence drift in mitochondrial and chloroplast DNA usually remains very low in plant species, indicating efficient defense and repair. Whereas the antioxidative defense in the different subcellular compartments is known, the information on DNA repair in plant organelles is still scarce. Focusing on the occurrence of uracil in the DNA, the present work demonstrates that plant mitochondria possess a base excision repair (BER) pathway. In vitro and in organello incision assays of double-stranded oligodeoxyribonucleotides showed that mitochondria isolated from plant cells contain DNA glycosylase activity specific for uracil cleavage. A major proportion of the uracil–DNA glycosylase (UDG) was associated with the membranes, in agreement with the current hypothesis that the DNA is replicated, proofread and repaired in inner membrane-bound nucleoids. Full repair, from uracil excision to thymidine insertion and religation, was obtained in organello following import of a uracil-containing DNA fragment into isolated plant mitochondria. Repair occurred through single nucleotide insertion, which points to short-patch BER. In vivo targeting and in vitro import of GFP fusions showed that the putative UDG encoded by the At3g18 630 locus might be the first enzyme of this mitochondrial pathway in Arabidopsis thaliana.  相似文献   

8.
9.

Objective

DNA repair pathway genes have been implicated to play an important role in the development of lung cancer. However, contradictory results are often reported by various studies, making it difficult to interpret them. So in this meta-analysis, we have assessed the association between lung cancer risk and two DNA repair pathway genes. XRCC1 and ERCC2, by analyzing 67 published case–control studies.

Research design and methods

We searched PubMed, Embase and Web of Science using terms “XRCC1” or “XPD” or “ERCC2” and “lung cancer” on August 1, 2012. Three criteria were applied to select included studies for resulting studies. Information was carefully extracted by two investigators independently. We used pooled odds ratio (OR) to assess the effect of a polymorphism, and a dominant model was applied where genotypes that contain the non-reference allele were combined together. All the calculations were performed using STATA version 11.0.

Main outcome measures and results

Three common nonsynonymous polymorphisms in XRCC1, codon 194, codon 280 and codon 399, and two common nonsynonymous polymorphisms in ERCC2, codon 312 and codon 751, were analyzed. The result showed in total population, Lys751Gln in ERCC2 is associated with an increase of lung cancer risk, with a summary OR as 1.15. No association was found for any other polymorphisms. When studies were stratified by ethnicity, the risk effect of Lys751Gln in ERCC2 was found only in Caucasians, not in Asians.

Conclusions

In conclusion, Lys751Gln in ERCC2 is associated with lung cancer, and the risk effect probably exists in Caucasians. By contrast, polymorphisms in XRCC1 are less likely to be susceptible to lung cancer risks.  相似文献   

10.
We describe a three-protein signal-transduction pathway that governs immunity to a protein toxin involved in cannibalism by the spore-forming bacterium Bacillus subtilis. Cells of B. subtilis enter the pathway to sporulate under conditions of nutrient limitation but delay becoming committed to spore formation by killing nonsporulating siblings and feeding on the dead cells. Killing is mediated by the exported toxic protein SdpC. We report that extracellular SdpC induces the synthesis of an immunity protein, SdpI, that protects toxin-producing cells from being killed. SdpI, a polytopic membrane protein, is encoded by a two-gene operon under sporulation control that contains the gene for an autorepressor, SdpR. The autorepressor binds to and blocks the promoter for the operon. Evidence indicates that SdpI is also a signal-transduction protein that responds to the SdpC toxin by sequestering the SdpR autorepressor at the membrane. Sequestration relieves repression and stimulates synthesis of immunity protein.  相似文献   

11.
12.
In the June issue of Cell, Nussenzweig and colleagues identify PTIP/PAXIP as a 53BP1 effector protein in the regulatory network that controls DSB repair pathway choice.Cell (2013) 153 6, 1266–1280 doi: 10.1016/j.cell.2013.05.023DNA double-stranded breaks (DSBs) are highly cytotoxic lesions that can induce genome rearrangements if not accurately repaired. DSBs can be repaired either through homologous recombination (HR) or non-homologous end-joining (NHEJ). HR is the preferred repair pathway during the S and G2 cell cycle phases because a sister chromatid provides a perfect template for ‘error-free'' repair. During G1, when HR is suppressed to prevent recombination with homologues, repair is achieved primarily by NHEJ. Molecularly, DSB repair pathway choice is largely regulated at the level of 5′ to 3′ DNA end resection, that is, the formation of the 3′ end single-stranded DNA overhangs that are used to initiate HR. End resection inhibits NHEJ and promotes HR.In the June issue of Cell, Nussenzweig and colleagues identified the protein PTIP (also known as PAXIP) as a new component of the regulatory network that controls DSB repair pathway choice [1]. This work has important implications for our understanding of the mechanisms by which genomic integrity is underpinned, and is especially germane to those interested in the genesis of breast and ovarian cancer caused by a defective BRCA1 protein, which is crucial for DSB repair by HR.53BP1 (also known as TP53BP1) is a key determinant of DSB repair pathway choice [2]. In response to DSBs, 53BP1 binds to chromatin at damaged sites, where it promotes NHEJ by blocking end resection. 53BP1 has a crucial role during class switch recombination (CSR) in B cells and the fusion of dysfunctional telomeres. An even more striking phenotype was observed in mice in which loss of 53BP1 reversed most of the phenotypes associated with BRCA1 deficiency, including cell and embryonic lethality as well as tumorigenesis [2]. These findings suggest that 53BP1 and BRCA1 battle each other to influence DSB repair pathway choice.Molecularly, 53BP1 is responsible for the defective HR seen in BRCA1-deficient cells. Furthermore, in those cells, 53BP1 promotes the formation of characteristic radial chromosomes that are caused by toxic NHEJ events, presumably during S phase. Understanding exactly how 53BP1 carries out its many functions has been a major challenge to the field as 53BP1 does not harbour any enzymatic activity. However, it has been shown that 53BP1 must accumulate on chromatin to be functional. In addition, a mutant 53BP1 allele in which all 28 ataxia telangiectasia-mutated (ATM) phosphorylation sites were changed to alanine (53BP128A) failed to rescue 53BP1 deficiency, suggesting that 53BP1 acts through phosphorylation-dependent protein interactions to promote NHEJ [2].RIF1 was identified as the first effector of 53BP1 in DSB repair [3,4,5,6,7]. RIF1 accumulates at DSB sites by binding to phosphorylated 53BP1 but, intriguingly, the loss of RIF1 has a milder effect than the loss of 53BP1 with respect to the fusion of dysfunctional telomeres [3], and RIF1 deficiency does not fully restore HR in BRCA1-deficient cells [7]. As the 53BP128A mutant is nearly as defective as the complete loss of 53BP1 for these activities, these observations indicate that additional 53BP1 effector proteins contribute to some of the 53BP1 functions.Nussenzweig and colleagues provide compelling evidence that the BRCT domain-containing protein PTIP is the missing 53BP1 effector protein [1]. The authors identified a separation-of-function mutation in 53BP1 that disrupted the first eight amino-terminal ATM sites (53BP18A). The 53BP18A mutant behaved the same as the wild-type protein with respect to CSR—a physiological process dependent on NHEJ—but failed to promote genome instability (radial chromosome formation) in BRCA1-deficient cells after treatment with a PARP inhibitor. Since RIF1-deficient cells have impaired CSR and RIF1 can localize to break sites in cells expressing the 53BP18A mutant, this suggests that a protein other than RIF1 binds to the N-terminal region of 53BP1 to inhibit HR.The newly identified 53BP1 effector protein PTIP is a multifunctional DNA repair factor that interacts with phosphorylated Ser 25 of 53BP1 through its tandem BRCT domains [8]—a site that was mutated in the 53BP18A allele. PTIP is also part of the MLL3/MLL4 histone H3 Lys 4 methyltransferase complexes but this function seems to be unrelated to its role as a 53BP1 co-factor.Nussenzweig and co-workers found that PTIP-deficient cells are sensitive to ionizing radiation but tolerant of DNA damaging agents that are toxic to HR-deficient cells, which suggests a role for PTIP in NHEJ. In agreement with this, the fusion frequency of uncapped telomeres was reduced in PTIP-deficient cells. Interestingly, as in the case of the 53BP18A allele, PTIP-deficient B cells were proficient in switching their immunoglobulin locus, although this switching event is impaired in RIF1−/− B cells. This suggests that PTIP might participate selectively in pathological NHEJ.Nussenzweig and colleagues next generated a conditional BRCA1−/− PTIP−/− mouse to investigate the contribution of PTIP to the genome instability of BRCA1-deficient B cells. Loss of PTIP restored normal growth kinetics and genome stability to BRCA1-deficient cells treated with a PARP inhibitor. In addition, RAD51 IR-induced focus formation was restored in BRCA1−/− PTIP−/− cells. As the primary defect of BRCA1-deficient cells with respect to HR seems to be at the level of resection, the accumulation of the single-stranded DNA-binding protein RPA into IR-induced foci was then analysed. The finding that PTIP-deficient cells have an increased number of RPA foci per cell supports a role for PTIP in blocking resection. Together, this suggests that PTIP opposes DNA end resection and mutagenic DSB repair in BRCA1-deficient cells.These results were surprising as they revealed that the 53BP1 activities relating to physiological NHEJ (during CSR) and mutagenic NHEJ (after PARP inhibition) can be separated, and that they are carried out by two distinct proteins that ‘read'' ATM-dependent 53BP1 phosphorylation. The relationship between 53BP1, RIF1 and PTIP is probably complex, as suggested by the possible competition between RIF1 and PTIP, and the observation that both proteins contribute in an additive manner to the fusion of dysfunctional telomeres, downstream from 53BP1.According to these findings, multiple phosphorylation events in 53BP1 seem to integrate ATM activity to control distinct aspects of DSB repair pathway choice (Fig 1). Establishing exactly how an increase of ATM activity at break sites is translated into the coordination of 53BP1 phosphorylation, with RIF1 and PTIP binding, will be an important milestone towards understanding 53BP1 function. Indeed, multi-site phosphorylation and its recognition by binding proteins can be used to develop switch-like responses that might be important for organizing the chromatin at DSB sites.Open in a separate windowFigure 153BP1 phospho-dependent interactions involved in DSB repair. PTIP and RIF1 interact with chromatin-bound and ATM-phosphorylated 53BP1 at DSB sites. PTIP binds directly to 53BP1 phosphorylated on Ser 14;25 (within the first eight Ser/Thr-Q sites). RIF1 binds to phosphorylated 53BP1 either directly or through an intermediate factor (X). The carboxy-terminal seven Ser/Thr-Q sites (9–15 Ser/Thr-Q sites) are involved in the interaction of RIF1–53BP1, although the amino-terminal eight Ser/Thr-Q sites might stabilize the binding. It is unknown whether PTIP and RIF1 can associate simultaneously with 53BP1 (left side of the figure), or if the binding is exclusive, due to either differential phosphorylation of the Ser/Thr-Q sites or steric hindrance (right side of the figure). 53BP1, PTIP and RIF1 block DNA end-resection and promote NHEJ repair. Although both PTIP and RIF1 contribute to dysfunctional telomere fusions, they also have distinct functions downstream from 53BP1. While RIF1 is essential for CSR and has a milder effect on toxic NHEJ events, PTIP is dispensable for CSR and has a more prominent role in toxic NHEJ events that lead to genome instability in BRCA1-deficient cells. ATM, ataxia telangiectasia-mutated; CSR, class switch recombination; DSB, double-stranded break; NHEJ, non-homologous end-joining.The identification of PTIP as a new 53BP1 effector also deepens the mystery of DSB repair pathway choice regulation by 53BP1. Future studies are needed to elucidate how 53BP1 and its effector proteins block resection. Are PTIP and RIF1 blocking specific nucleases? Do they act in a temporally distinct fashion or are they distributed in distinct subdomains of the chromatin flanking DSB sites? What is the function of PTIP in relation to the cell cycle? Testing whether RIF1 binds directly to 53BP1, and if so to which phosphorylated site, might answer some of the above questions. The identification of a RIF1 mutation that selectively disrupts 53BP1 binding would enable surgical manipulation of the 53BP1–RIF1–PTIP circuit at DSB sites.Another unresolved issue is whether 53BP1 acts solely by recruiting RIF1 and PTIP, or whether 53BP1 has a more active role in blocking resection. We have shown that 53BP1 localizes to the chromatin flanking the DSBs by binding to methylated and ubiquitinated nucleosomes, in a wheel clamp-like manner [9]. This suggests that 53BP1 might modify the nucleosomal array structure in a way that makes it refractory to the resection machinery. Recognizing how nucleosomes modified by 53BP1 cooperate with RIF1 and PTIP might provide clues to the role of these two proteins in end protection.It is important to note that in human cells, PTIP might not be recruited to DSB sites in a 53BP1- and ATM-dependent manner [8]. Furthermore, in the avian B-cell line DT40, PTIP promotes HR instead of inhibiting it [10]. It will be important to revisit these studies to tease out whether these differences are due to context-, experiment- or species-specific effects.The identification of PTIP as a candidate genetic modifier of BRCA1-deficient tumours is an important finding. As noted by the authors, disabling the PTIP–53BP1 interaction pharmacologically might selectively restore HR in BRCA1-deficient cells, which might be useful in certain contexts, for example as a chemopreventive strategy.  相似文献   

13.
Regulation of DNA double-strand break repair pathway choice   总被引:31,自引:0,他引:31  
DNA double-strand breaks (DSBs) are critical lesions that can result in cell death or a wide variety of genetic alterations including largeor small-scale deletions, loss of heterozygosity, translocations, and chromosome loss. DSBs are repaired by non-homologous end-joining (NHEJ) and homologous recombination (HR), and defects in these pathways cause genome instability and promote tumorigenesis. DSBs arise from endogenous sources including reactive oxygen species generated during cellular metabolism, collapsed replication forks, and nucleases, and from exogenous sources including ionizing radiation and chemicals that directly or indirectly damage DNA and are commonly used in cancer therapy. The DSB repair pathways appear to compete for DSBs, but the balance between them differs widely among species, between different cell types of a single species, and during different cell cycle phases of a single cell type. Here we review the regulatory factors that regulate DSB repair by NHEJ and HR in yeast and higher eukaryotes. These factors include regulated expression and phosphorylation of repair proteins, chromatin modulation of repair factor accessibility, and the availability of homologous repair templates. While most DSB repair proteins appear to function exclusively in NHEJ or HR, a number of proteins influence both pathways, including the MRE11/RAD50/NBS1(XRS2) complex, BRCA1, histone H2AX, PARP-1, RAD18, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and ATM. DNA-PKcs plays a role in mammalian NHEJ, but it also influences HR through a complex regulatory network that may involve crosstalk with ATM, and the regulation of at least 12 proteins involved in HR that are phosphorylated by DNA-PKcs and/or ATM.  相似文献   

14.
The degradation of many proteins involves the sequential ligation of ubiquitin molecules to the substrate to form a multiubiquitin chain linked through Lys-48 of ubiquitin. To test for the existence of alternate forms of multiubiquitin chains, we examined the effects of individually substituting each of six other Lys residues in ubiquitin with Arg. Substitution of Lys-63 resulted in the disappearance of a family of abundant multiubiquitin-protein conjugates. The UbK63R mutants were not generally impaired in ubiquitination, because they grew at a wild-type rate, were fully proficient in the turnover of a variety of short-lived proteins, and exhibited normal levels of many ubiquitin-protein conjugates. The UbK63R mutation also conferred sensitivity to the DNA-damaging agents methyl methanesulfonate and UV as well as a deficiency in DNA damage-induced mutagenesis. Induced mutagenesis is mediated by a repair pathway that requires Rad6 (Ubc2), a ubiquitin-conjugating enzyme. Thus, the UbK63R mutant appears to be deficient in the Rad6 pathway of DNA repair. However, the UbK63R mutation behaves as a partial suppressor of a rad6 deletion mutation, indicating that an effect of UbK63R on repair can be manifest in the absence of the Rad6 gene product. The UbK63R mutation may therefore define a new role of ubiquitin in DNA repair. The results of this study suggest that Lys-63 is used as a linkage site in the formation of novel multiubiquitin chain structures that play an important role in DNA repair.  相似文献   

15.
Since DNA double-strand breaks (DSBs) contribute to the genomic instability that drives cancer development, DSB repair pathways serve as important mechanisms for tumor suppression. Thus, genetic lesions, such as BRCA1 and BRCA2 mutations, that disrupt DSB repair are often associated with cancer susceptibility. In addition, recent evidence suggests that DSB “mis-repair”, in which DSBs are resolved by an inappropriate repair pathway, can also promote genomic instability and presumably tumorigenesis. This notion has gained currency from recent cancer genome sequencing studies which have uncovered numerous chromosomal rearrangements harboring pathological DNA repair signatures. In this perspective, we discuss the factors that regulate DSB repair pathway choice and their consequences for genome stability and cancer.  相似文献   

16.
An alternative eukaryotic DNA excision repair pathway.   总被引:7,自引:2,他引:5       下载免费PDF全文
DNA lesions induced by UV light, cyclobutane pyrimidine dimers, and (6-4)pyrimidine pyrimidones are known to be repaired by the process of nucleotide excision repair (NER). However, in the fission yeast Schizosaccharomyces pombe, studies have demonstrated that at least two mechanisms for excising UV photo-products exist; NER and a second, previously unidentified process. Recently we reported that S. pombe contains a DNA endonuclease, SPDE, which recognizes and cleaves at a position immediately adjacent to cyclobutane pyrimidine dimers and (6-4)pyrimidine pyrimidones. Here we report that the UV-sensitive S. pombe rad12-502 mutant lacks SPDE activity. In addition, extracts prepared from the rad12-502 mutant are deficient in DNA excision repair, as demonstrated in an in vitro excision repair assay. DNA repair activity was restored to wild-type levels in extracts prepared from rad12-502 cells by the addition of partially purified SPDE to in vitro repair reaction mixtures. When the rad12-502 mutant was crossed with the NER rad13-A mutant, the resulting double mutant was much more sensitive to UV radiation than either single mutant, demonstrating that the rad12 gene product functions in a DNA repair pathway distinct from NER. These data directly link SPDE to this alternative excision repair process. We propose that the SPDE-dependent DNA repair pathway is the second DNA excision repair process present in S. pombe.  相似文献   

17.
18.
19.
Wang Q  Gao F  May WS  Zhang Y  Flagg T  Deng X 《Molecular cell》2008,29(4):488-498
Bcl2 can enhance susceptibility to carcinogenesis, but the mechanism(s) remains fragmentary. Here we discovered that Bcl2 suppresses DNA double-strand-break (DSB) repair and V(D)J recombination by downregulating Ku DNA binding activity, which is associated with increased genetic instability. Exposure of cells to ionizing radiation enhances Bcl2 expression in the nucleus, which interacts with both Ku70 and Ku86 via its BH1 and BH4 domains. Removal of the BH1 or BH4 domain abrogates the inhibitory effect of Bcl2 on Ku DNA binding, DNA-PK, and DNA end-joining activities, which results in the failure of Bcl2 to block DSB repair as well as V(D)J recombination. Intriguingly, Bcl2 directly disrupts the Ku/DNA-PKcs complex in vivo and in vitro. Thus, Bcl2 suppression of the general DSB repair and V(D)J recombination may occur in a mechanism by inhibiting the nonhomologous end-joining pathway, which may lead to an accumulation of DNA damage and genetic instability.  相似文献   

20.
DNA lesion recognition by the bacterial repair enzyme MutM   总被引:4,自引:0,他引:4  
MutM is a bacterial DNA glycosylase that removes the mutagenic lesion 8-oxoguanine (oxoG) from duplex DNA. The means of oxoG recognition by MutM (also known as Fpg) is of fundamental interest, in light of the vast excess of normal guanine bases present in genomic DNA. The crystal structure of a recognition-competent but catalytically inactive version of MutM in complex with oxoG-containing DNA reveals the structural basis for recognition. MutM binds the oxoG nucleoside in the syn glycosidic configuration and distinguishes oxoG from guanine by reading out the protonation state of the N7 atom. The segment of MutM principally responsible for oxoG recognition is a flexible loop, suggesting that conformational mobility influences lesion recognition and catalysis. Furthermore, the structure of MutM in complex with DNA containing an alternative substrate, dihydrouracil, demonstrates how MutM is able to recognize lesions other than oxoG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号