首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A chromosomal virulence gene, acvB, of Agrobacterium tumefaciens [J. Bacteriol., 175, 3208–3212 (1993)] was over-expressed in Escherichia coil. A 47-kDa protein was produced and localized in the periplasmic space of E. coli. Amino acid sequence analysis of its N-terminal demonstrated that a signal peptide of 24 amino acids was cleaved from the pre AcvB protein to produce the mature 47-kDa protein. Western-blot analysis using the antiserum against the AcvB protein detected a 47-kDa protein in the periplasmic space only with strain A208 (acvB +). The amount of AcvB protein synthesized was not increased in strain A208 by induction with acetosyringone (100 μm). There was observed no significant difference in induction by acetosyringone of virB:: lacZ, virD:: lacZ, and virE:: lacZ fusion genes regardless of the presence or absence of the acvB gene. The T-strand (lower strand of T-DNA) was detected in strains A208 as well as B119 (acvB?) which were cultured in induction medium containing acetosyringone. AcvB protein bound to single-stranded DNAs with no apparent sequence specificity. The results suggest that AcvB protein binds to the T-strand in periplasm and mediates the transfer of the T-strand from A. tumefaciens to the host plant cell.  相似文献   

2.
3.
Agrobacterium tumefaciens cells carrying a tumour inducing plasmid (Ti‐plasmid) can transfer a defined region of transfer DNA (T‐DNA) to plant cells as well as to yeast. This process of Agrobacterium‐mediated transformation (AMT) eventually results in the incorporation of the T‐DNA in the genomic DNA of the recipient cells. All available evidence indicates that T‐strand transfer closely resembles conjugal DNA transfer as found between Gram‐negative bacteria. However, where conjugal plasmid DNA transfer starts via relaxase‐mediated processing of a single origin of transfer (oriT), the T‐DNA is flanked by two imperfect direct border repeats which are both substrates for the Ti‐plasmid encoded relaxase VirD2. Yeast was used as a model system to investigate the requirements of the recipient cell for the formation of T‐DNA circles after AMT. It was found that, despite the absence of self‐homology on the T‐DNA, the homologous repair proteins Rad52 and Rad51 are involved in T‐DNA circle formation. A model is presented involving the formation of T‐DNA concatemers derived from T‐strands by a process of strand‐transfer catalysed by VirD2. These concatemers are then resolved into T‐DNA circles by homologous recombination in the recipient cell.  相似文献   

4.
Agrobacterium tumefaciens is a plant pathogen that utilizes a type IV secretion system (T4SS) to transfer DNA and effector proteins into host cells. In this study we discovered that an α-crystallin type small heat-shock protein (α-Hsp), HspL, is a molecular chaperone for VirB8, a T4SS assembly factor. HspL is a typical α-Hsp capable of protecting the heat-labile model substrate citrate synthase from thermal aggregation. It forms oligomers in a concentration-dependent manner in vitro. Biochemical fractionation revealed that HspL is mainly localized in the inner membrane and formed large complexes with certain VirB protein subassemblies. Protein-protein interaction studies indicated that HspL interacts with VirB8, a bitopic integral inner membrane protein that is essential for T4SS assembly. Most importantly, HspL is able to prevent the aggregation of VirB8 fused with glutathione S-transferase in vitro, suggesting that it plays a role as VirB8 chaperone. The chaperone activity of two HspL variants with amino acid substitutions (F98A and G118A) for both citrate synthase and glutathione S-transferase-VirB8 was reduced and correlated with HspL functions in T4SS-mediated DNA transfer and virulence. This study directly links in vitro and in vivo functions of an α-Hsp and reveals a novel α-Hsp function in T4SS stability and bacterial virulence.  相似文献   

5.
6.
Maintenance of the lipid composition is important for proper function and homeostasis of the mitochondrion. In Trypanosoma brucei, the enzymes involved in the biosynthesis of the mitochondrial phospholipid, phosphatidylglycerol (PG), have not been studied experimentally. We now report the characterization of T. brucei phosphatidylglycerophosphate synthase (TbPgps), the rate‐limiting enzyme in PG formation, which was identified based on its homology to other eukaryotic Pgps. Lipid quantification and metabolic labelling experiments show that TbPgps gene knock‐down results in loss of PG and a reduction of another mitochondria‐specific phospholipid, cardiolipin. Using immunohistochemistry and immunoblotting of digitonin‐isolated mitochondria, we show that TbPgps localizes to the mitochondrion. Moreover, reduced TbPgps expression in T. brucei procyclic forms leads to alterations in mitochondrial morphology, reduction in the amounts of respiratory complexes III and IV and, ultimately, parasite death. Using native polyacrylamide gel electrophoresis we demonstrate for the first time in a eukaryotic organism that TbPgps is a component of a 720 kDa protein complex, co‐migrating with T. brucei cardiolipin synthase and cytochrome c1, a protein of respiratory complex III.  相似文献   

7.
Cystathionine γ‐synthase (CGS) catalyzes the condensation of O‐succinyl‐L ‐homoserine (L ‐OSHS) and L ‐cysteine (L ‐Cys), to produce L ‐cystathionine (L ‐Cth) and succinate, in the first step of the bacterial transsulfuration pathway. In the absence of L ‐Cys, the enzyme catalyzes the futile α,γ‐elimination of L ‐OSHS, yielding succinate, α‐ketobutyrate, and ammonia. A series of 16 site‐directed variants of Escherichia coli CGS (eCGS) was constructed to probe the roles of active‐site residues D45, Y46, R48, R49, Y101, R106, N227, E325, S326, and R361. The effects of these substitutions on the catalytic efficiency of the α,γ‐elimination reaction range from a reduction of only ~2‐fold for R49K and the E325A,Q variants to 310‐ and 760‐fold for R361K and R48K, respectively. A similar trend is observed for the kcat/K of the physiological, α,γ‐replacement reaction. The results of this study suggest that the arginine residues at positions 48, 106 and 361 of eCGS, conserved in bacterial CGS sequences, tether the distal and α‐carboxylate moieties, respectively, of the L ‐OSHS substrate. In contrast, with the exception of the 13‐fold increase observed for R106A, the K is not markedly affected by the site‐directed replacement of the residues investigated. The decrease in kcat observed for the S326A variant reflects the role of this residue in tethering the side chain of K198, the catalytic base. Although no structures exist of eCGS bound to active‐site ligands, the roles of individual residues is consistent with the structures inhibitor complexes of related enzymes. Substitution of D45, E325, or Y101 enables a minor transamination activity for the substrate L ‐Ala.  相似文献   

8.
Phomopsis longicolla (Hobbs) causes Phomopsis seed decay and stem lesions in soybean (Glycine max). In this study, a novel, high‐throughput adaptation of RAD‐seq termed MoNSTR‐seq (Mutation analysis via Next‐generation DNA Sequencing of T‐DNA Regions) was developed to determine the genomic location of T‐DNA insertions in P. longicolla mutants. Insertional mutants were created via Agrobacterium tumefaciens‐mediated transformation, and one mutant, strain PL343, was further investigated due to impaired stem lesion formation. Mutation analysis via Next‐generation DNA Sequencing of T‐DNA Regions, in which DNA libraries are created with two distinct restriction enzymes and customized adapters to simultaneously enrich both T‐DNA insertion borders, was developed to characterize the genomic lesion in strain PL343. MoNSTR‐seq successfully identified a T‐DNA insertion in the predicted promoter region of a gene encoding a cellobiose dehydrogenase (CDH1), and the position of the T‐DNA insertion in strain PL343 was confirmed by Sanger sequencing. Thus, MoNSTR‐seq represents an effective tool for molecular genetics in P. longicolla, and is readily adaptable for use in diverse fungal species.

Significance and Impact of the Study

This study describes MoNSTR‐seq (Mutation analysis via Next‐generation DNA Sequencing of T‐DNA Regions), an adaptation of restriction site‐associated DNA sequencing (RAD‐seq) to identify the position of transfer‐DNA (T‐DNA) insertions in the genome of Phomopsis longicolla, an important pathogen of soybean. The technique enables high‐throughput characterization of mutants generated via Agrobacterium tumefaciens‐mediated transformation (ATMT), thus accelerating gene discovery via forward genetics. This technique represents a significant advancement over existing approaches to characterize T‐DNA insertions in fungal genomes. With minor modifications, this technique could be easily adapted to taxonomically diverse fungal pathogens and additional mutagenesis cassettes.  相似文献   

9.
Agrobacterium tumefaciens is a natural genetic engineer widely used to deliver DNA into various recipients, including plant, yeast and fungal cells. The bacterium can transfer single‐stranded DNA molecules (T–DNAs) and bacterial virulence proteins, including VirE2. However, neither the DNA nor the protein molecules have ever been directly visualized after the delivery. In this report, we adopted a split‐GFP approach: the small GFP fragment (GFP11) was inserted into VirE2 at a permissive site to create the VirE2‐GFP11 fusion, which was expressed in A. tumefaciens; and the large fragment (GFP1–10) was expressed in recipient cells. Upon delivery of VirE2‐GFP11 into the recipient cells, GFP fluorescence signals were visualized. VirE2‐GFP11 was functional like VirE2; the GFP fusion movement could indicate the trafficking of Agrobacterium‐delivered VirE2. As the natural host, all plant cells seen under a microscope received the VirE2 protein in a leaf‐infiltration assay; most of VirE2 moved at a speed of 1.3–3.1 μm sec?1 in a nearly linear direction, suggesting an active trafficking process. Inside plant cells, VirE2‐GFP formed filamentous structures of different lengths, even in the absence of T‐DNA. As a non‐natural host recipient, 51% of yeast cells received VirE2, which did not move inside yeast. All plant cells seen under a microscope transiently expressed the Agrobacterium‐delivered transgene, but only 0.2% yeast cells expressed the transgene. This indicates that Agrobacterium is a more efficient vector for protein delivery than T‐DNA transformation for a non‐natural host recipient: VirE2 trafficking is a limiting factor for the genetic transformation of a non‐natural host recipient. The split‐GFP approach could enable the real‐time visualization of VirE2 trafficking inside recipient cells.  相似文献   

10.
11.
The soil bacterium Agrobacterium tumefaciens can transfer a part of its tumour-inducing (Ti) plasmid, the T-DNA, to plant cells. The virulence (vir) genes, also located on the Ti plasmid, encode proteins involved in the transport of T-DNA into the plant cell. Once in the plant nucleus, T-DNA is able to integrate into the plant genome by an illegitimate recombination mechanism. The host range of A. tumefaciens is not restricted to plant species. A. tumefaciens is also able to transfer T-DNA to the yeast Saccharomyces cerevisiae. In this paper we demonstrate transfer of T-DNA from A. tumefaciens to the yeast Kluyveromyces lactis. Furthermore, we found that T-DNA serves as an ideal substrate for gene targeting in K. lactis. We have studied the efficiency of gene targeting at the K. lactis TRP1 locus using either direct DNA transfer (electroporation) or T-DNA transfer from Agrobacterium. We found that gene targeting using T-DNA was at least ten times more efficient than using linear double-stranded DNA introduced by electroporation. Therefore, the outcome of gene targeting experiments in some organisms may depend strongly upon the DNA substrate used. Received: 11 May 1998 / Accepted: 16 October 1998  相似文献   

12.
Lycopersicon esculentum cv. Linia XXIV (L) and cv. Ostravské (O) was infected withAgrobacterium tumefaciens T37 (pTiT37). 37 L tumors and 33 O tumors were isolated. 13.5 % L tumors and 3.0 % O tumors regenerated shoots producing nopaline synthase. The shoots formed roots after transfer on R3B medium without phytohormones. From 10 primary shoots 35 plants cultivated in an unsterile soil were obtained by cutting. 6 selfpollinated plants did not produce any fruits. Fruits obtained through backcrossing had dramatically reduced seed numbers. The same is true of some other transformed plants with nearly normal pollen. Most transformed plants were susceptible to superinfection withA. tumefaciens T37 and B6-806. The incorporation of T-DNA into plant genome seems to cause not only male sterility, but also some kind of female sterility.  相似文献   

13.
Streptococcus pyogenes (group A streptococcus, GAS) secretes streptokinase, a potent plasminogen activating protein. Among GAS isolates, streptokinase gene sequences (ska) are polymorphic and can be grouped into two distinct sequence clusters (termed cluster type‐1 and cluster type‐2) with cluster type‐2 being further divided into sub‐clusters type‐2a and type‐2b. In this study, far‐UV circular dichroism spectroscopy indicated that purified streptokinase variants of each type displayed similar secondary structure. Type‐2b streptokinase variants could not generate an active site in Glu‐plasminogen through non‐proteolytic mechanisms while all other variants had this capability. Furthermore, when compared with other streptokinase variants, type‐2b variants displayed a 29‐ to 35‐fold reduction in affinity for Glu‐plasminogen. All SK variants could activate Glu‐plasminogen when an activator complex was preformed with plasmin; however, type‐2b and type‐1 complexes were inhibited by α2‐antiplasmin. Exchanging skatype‐2a in the M1T1 GAS strain 5448 with skatype‐2b caused a reduction in virulence while exchanging skatype‐2a with skatype‐1 into 5448 produced an increase in virulence when using a mouse model of invasive disease. These findings suggest that streptokinase variants produced by GAS isolates utilize distinct plasminogen activation pathways, which directly affects the pathogenesis of this organism.  相似文献   

14.
15.
Agrobacterium tumefaciens is a Gram‐negative bacterium and causative agent of Crown Gall disease that infects a variety of economically important plants. The annotated A. tumefaciens genome contains 10 putative dapA genes, which code for dihydrodipicolinate synthase (DHDPS). However, we have recently demonstrated that only one of these genes (dapA7) encodes a functional DHDPS. The function of the other nine putative dapA genes is yet to be determined. Here, we demonstrate using bioinformatics that the product of the dapA5 gene (DapA5) possesses all the catalytic residues canonical to 2‐keto‐3‐deoxygluconate (KDG) aldolase, which is a class I aldolase involved in glucose metabolism. We therefore expressed, purified, and characterized recombinant DapA5 using mass spectrometry, circular dichroism spectroscopy, analytical ultracentrifugation, and enzyme kinetics. The results show that DapA5 (1) adopts an α/β structure consistent with the TIM‐barrel fold of KDG aldolases, (2) possesses KDG aldolase enzyme activity, and (3) exists as a tight dimer in solution. This study shows for the first time that dapA5 from A. tumefaciens encodes a functional dimeric KDG aldolase.  相似文献   

16.
17.
The analysis of the interaction between Arabidopsis thaliana and adapted (PcBMM) and nonadapted (Pc2127) isolates of the necrotrophic fungus Plectosphaerella cucumerina has contributed to the identification of molecular mechanisms controlling plant resistance to necrotrophs. To characterize the pathogenicity bases of the virulence of necrotrophic fungi in Arabidopsis, we developed P. cucumerina functional genomics tools using Agrobacterium tumefaciens‐mediated transformation. We generated PcBMM‐GFP and Pc2127‐GFP transformants constitutively expressing the green fluorescence protein (GFP), and a collection of random T‐DNA insertional PcBMM transformants. Confocal microscopy analyses of the initial stages of PcBMM‐GFP infection revealed that this pathogen, like other necrotrophic fungi, does not form an appressorium or penetrate into plant cells, but causes successive degradation of leaf cell layers. By comparing the colonization of Arabidopsis wild‐type plants and hypersusceptible (agb1‐1 and cyp79B2cyp79B3) and resistant (irx1‐6) mutants by PcBMM‐GFP or Pc2127‐GFP, we found that the plant immune response was already mounted at 12–18 h post‐inoculation, and that Arabidopsis resistance to these fungi correlated with the time course of spore germination and hyphal growth on the leaf surface. The virulence of a subset of the PcBMM T‐DNA insertional transformants was determined in Arabidopsis wild‐type plants and agb1‐1 mutant, and several transformants were identified that showed altered virulence in these genotypes in comparison with that of untransformed PcBMM. The T‐DNA flanking regions in these fungal mutants were successfully sequenced, further supporting the utility of these functional genomics tools in the molecular characterization of the pathogenicity of necrotrophic fungi.  相似文献   

18.
19.
Agrobacterium tumefaciens is a plant pathogenic bacterium that causes neoplastic growths, called ‘crown gall’, via the transfer and integration of transferred DNA (T‐DNA) from the bacterium into the plant genome. We characterized an acetosyringone (AS)‐induced tumour‐inducing (Ti) plasmid gene, tzs (trans‐zeatin synthesizing), that is responsible for the synthesis of the plant hormone cytokinin in nopaline‐type A. tumefaciens strains. The loss of Tzs protein expression and trans‐zeatin secretions by the tzs frameshift (tzs‐fs) mutant is associated with reduced tumorigenesis efficiency on white radish stems and reduced transformation efficiencies on Arabidopsis roots. Complementation of the tzs‐fs mutant with a wild‐type tzs gene restored wild‐type levels of trans‐zeatin secretions and transformation efficiencies. Exogenous application of cytokinin during infection increased the transient transformation efficiency of Arabidopsis roots infected by strains lacking Tzs, which suggests that the lower transformation efficiency resulted from the lack of Agrobacterium‐produced cytokinin. Interestingly, although the tzs‐fs mutant displayed reduced tumorigenesis efficiency on several tested plants, the loss of Tzs enhanced tumorigenesis efficiencies on green pepper and cowpea. These data strongly suggest that Tzs, by synthesizing trans‐zeatin at early stage(s) of the infection process, modulates plant transformation efficiency by A. tumefaciens.  相似文献   

20.
The tyrosinase gene from Ralstonia solanacearum (GenBank NP518458) was subjected to random mutagenesis resulting in tyrosinase variants (RVC10 and RV145) with up to 3.2‐fold improvement in kcat, 5.2‐fold lower Km and 16‐fold improvement in catalytic efficiency for D ‐tyrosine. Based on RVC10 and RV145 mutated sequences, single mutation variants were generated with all variants showing increased kcat for D ‐tyrosine compared to the wild type (WT). All single mutation variants based on RV145 had a higher kcat and Km value compared to the RV145 and thus the combination of four mutations in RV145 was antagonistic for turnover, but synergistic for affinity of the enzyme for D ‐tyrosine. Single mutation variant 145_V153A exhibited the highest (6.9‐fold) improvement in kcat and a 2.4‐fold increase in Km compared to the WT. Two single mutation variants, C10_N322S and C10_T183I reduced the Km up to 2.6‐fold for D ‐tyrosine but one variant 145_V153A increased the Km 2.4‐fold compared to the WT. Homology based modeling of R. solanacearum tyrosinase showed that mutation V153A disrupts the van der Waals interactions with an α‐helix providing one of the conserved histidine residues of the active site. The kcat and Km values for L ‐tyrosine decreased for RV145 and RVC10 compared to the WT. RV145 exhibited a 2.1‐fold high catalytic efficiency compared to the WT which is a 7.6‐fold lower improvement compared to D ‐tyrosine. RV145 exhibited a threefold higher monophenolase:diphenolase activity ratio for D ‐tyrosine:D ‐DOPA and a 1.4‐fold higher L ‐tyrosine:L ‐DOPA activity ratio compared to the WT. Biotechnol. Bioeng. 2013; 110: 1849–1857. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号