首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parasites and hosts interact across both micro‐ and macroevolutionary scales where congruence among their phylogeographic and phylogenetic structures may be observed. Within southern Africa, the four‐striped mouse genus, Rhabdomys, is parasitized by the ectoparasitic sucking louse, Polyplax arvicanthis. Molecular data recently suggested the presence of two cryptic species within P. arvicanthis that are sympatrically distributed across the distributions of four putative Rhabdomys species. We tested the hypotheses of phylogeographic congruence and cophylogeny among the two parasite lineages and the four host taxa, utilizing mitochondrial and nuclear sequence data. Despite the documented host‐specificity of P. arvicanthis, limited phylogeographic correspondence and nonsignificant cophylogeny was observed. Instead, the parasite–host evolutionary history is characterized by limited codivergence and several duplication, sorting and host‐switching events. Despite the elevated mutational rates found for P. arvicanthis, the spatial genetic structure was not more pronounced in the parasite lineages compared with the hosts. These findings may be partly attributed to larger effective population sizes of the parasite lineages, the vagility and social behaviour of Rhabdomys, and the lack of host‐specificity observed in areas of host sympatry. Further, the patterns of genetic divergence within parasite and host lineages may also be largely attributed to historical biogeographic changes (expansion‐contraction cycles). It is thus evident that the association between P. arvicanthis and Rhabdomys has been shaped by the synergistic effects of parasite traits, host‐related factors and biogeography over evolutionary time.  相似文献   

2.
Patagonia was shaped by a complex geological history, including the Miocene uplift of the Andes, followed by volcanism, marine introgressions, and extreme climatic oscillations during Pliocene–Pleistocene glaciation–deglaciation cycles. The distributional patterns and phylogenetic relationships of southern patagonian animals and plants were affected in different ways, and those imprints are reflected in the seven phylogeographic breaks and eight refugia that have been previously proposed. In this study, we estimated time‐calibrated phylogenetic/phylogeographic patterns in lizards of the Liolaemus lineomaculatus group and relate them to historical Miocene‐to‐Pleistocene events of Patagonia and the previously proposed phylogeographic patterns. Individuals from 51 localities were sequenced for the mitochondrial marker (cyt‐b) and a subsample of individuals from each mitochondrial lineage was sequenced for one nuclear (LDA12D) and one slow evolving mitochondrial gene (12S). Our analyses revealed strong phylogeographic structure among lineages and, in most cases, no signal of demographic changes through time. The lineomaculatus group is composed of three strongly supported clades (lineomaculatus, hatcheri and kolengh + silvanae), and divergence estimates suggested their origins associated with the oldest known Patagonian glaciation (7–5 Ma); subsequent diversification within the lineomaculatus clade coincided with the large Pliocene glaciations (~3.5 Ma). The lineomaculatus clade includes nine strongly genetically and geographically structured lineages, five of which are interpreted as candidate species. Our findings suggest that some Liolaemus lineages have persisted in situ, each of them in a different refugium, through several glaciation–deglaciation cycles without demographic fluctuations. We also summarize and update qualitative evidence of some shared phylogeographic breaks and refugia among plants, rodents and lizards.  相似文献   

3.
Phylogeographic studies frequently reveal multiple morphologically cryptic lineages within species. What is not yet clear is whether such lineages represent nascent species or evolutionary ephemera. To address this question, we compare five contact zones, each of which occurs between ecomorphologically cryptic lineages of skinks from the rainforests of the Australian Wet Tropics. Although the contacts probably formed concurrently in response to Holocene expansion from glacial refugia, we estimate that the divergence times (τ) of the lineage pairs range from 3.1 to 11.5 Ma. Multi-locus analyses of the contact zones yielded estimates of reproductive isolation that are tightly correlated with divergence time and, for lineages with older divergence times (τ > 5 Myr), substantial. These results show that phylogeographic splits of increasing depth represent stages along the speciation continuum, even in the absence of overt change in ecologically relevant morphology.  相似文献   

4.
A major goal of phylogeographic analysis using molecular markers is to understand the ecological and historical variables that influence genetic diversity within a species. Here, we used sequences of the mitochondrial Cox1 gene and nuclear internal transcribed spacer to reconstruct its phylogeography and demographic history of the intertidal red seaweed Chondrus ocellatus over most of its geographical range in the Northwest Pacific. We found three deeply separated lineages A, B and C, which diverged from one another in the early Pliocene–late Miocene (c. 4.5–7.7 Ma). The remarkably deep divergences, both within and between lineages, appear to have resulted from ancient isolations, accelerated by random drift and limited genetic exchange between regions. The disjunct distributions of lineages A and C along the coasts of Japan may reflect divergence during isolation in scattered refugia. The distribution of lineage B, from the South China Sea to the Korean Peninsula, appears to reflect postglacial recolonizations of coastal habitats. These three lineages do not coincide with the three documented morphological formae in C. ocellatus, suggesting that additional cryptic species may exist in this taxon. Our study illustrates the interaction of environmental variability and demographic processes in producing lineage diversification in an intertidal seaweed and highlights the importance of phylogeographic approaches for discovering cryptic marine biodiversity.  相似文献   

5.
Gammarus fossarum is a diverse species complex of epigean freshwater amphipods throughout Europe. Due to their poor dispersal capabilities and ubiquity, these crustaceans may serve as a model for investigating the influence of historical factors on the contemporary distribution and diversity patterns of freshwater macrozoobenthos. Here, we investigate the fine‐scale phylogeographic structure of this complex across its range in the southwestern Carpathian Mountains, which comprises two areas that are geographically isolated from its main European distribution area as well as from each other. Given the Tertiary age of many freshwater Gammarus species, we hypothesize that the southwestern Carpathian populations reflect a relict distribution pattern. We used two mitochondrial and three nuclear markers from 32 localities to reconstruct phylogenetic relationships and estimate the timings of divergence among southwestern Carpathian and non‐Carpathian lineages. Cryptic diversity was evaluated from mitochondrial markers by employing phylogenetic and distance‐based methods. We distinguished at least 16 cryptic microendemic taxa, some of them coexisting, distributed in the southwestern Carpathians in a mosaic‐like pattern. These lineages form a monophyletic group together with several lineages from southeastern Europe. Estimated divergence times indicate a Middle Miocene origin of this clade, with many deep splits dating back to more than 10 Ma. This time frame corresponds with a period of intense geological subsidence in the region that gave birth to the Pannonian Basin. We conclude that subsidence could have been an important driver of diversification in freshwater Gammarus and that the southwestern Carpathians represent an ancient centre of diversity for these crustaceans.  相似文献   

6.
To investigate the presence of cryptic diversity in the African longfin-tetra Bryconalestes longipinnis, we employed DNA barcoding in a phylogeographic context, as well as geometric morphometrics, documenting for the first time genetic and body shape variation in the species. Analysis of cytochrome oxidase I gene (coI) sequence variation exposed extremely high levels of genetic differentiation among samples from across the geographic range of the species (up to 18%), certainly much greater than the traditionally employed c. 3% sequence divergence heuristic threshold for conspecifics. Phylogeographic analyses of coI data revealed eight clusters/clades that diverge by >4% and up to 18% (p-distance), potentially representing cryptic members of a species complex. A clear biogeographic pattern was also uncovered, in which the two main coI lineages corresponded geographically with the upper Guinea (UG) and lower Guinea (LG) ichthyofaunal provinces of continental Africa, respectively. Within each of these main lineages, however, no apparent phylogeographic structuring was found. Despite strong genetic differentiation, there is considerable overlap in body shape variation between UG and LG populations. For the most part, morphological variation does not match the strength of the molecular phylogeographic signal. Therefore, the ability to reliably utilise external body shape for regional delimitation remains elusive. Further anatomical investigation appears necessary to establish whether compelling diagnostic morphological features do exist between the divergent lineages of the B. longipinnis complex uncovered in this study.  相似文献   

7.
Sympatric cryptic lineages are a challenge for the understanding of species coexistence and lineage diversification as well as for management, conservation, and utilization of plant genetic resources. In higher plants studies providing insights into the mechanisms creating and maintaining sympatric cryptic lineages are rare. Here, using microsatellites and chloroplast sequence data, morphometric analyses, and phenological observations, we ask whether sympatrically coexisting lineages in the common wetland plant Juncus effusus are ecologically differentiated and reproductively isolated. Our results show two genetically highly differentiated, homoploid lineages within Jeffusus that are morphologically cryptic and have similar preference for soil moisture content. However, flowering time differed significantly between the lineages contributing to reproductive isolation and the maintenance of these lineages. Furthermore, the later flowering lineage suffered less from predispersal seed predation by a Coleophora moth species. Still, we detected viable and reproducing hybrids between both lineages and the earlier flowering lineage and Jconglomeratus, a coexisting close relative. Flowering time differentiation between the lineages can be explained by neutral divergence alone and together with a lack of postzygotic isolation mechanisms; the sympatric coexistence of these lineages is most likely the result of an allopatric origin with secondary contact.  相似文献   

8.
Excirolana braziliensis is a coastal intertidal isopod with a broad distribution spanning the Atlantic and Pacific tropical and temperate coasts of the American continent. Two separate regional studies (one in Panama and one in Chile) revealed the presence of highly genetically divergent lineages, implying that this taxon constitutes a cryptic species complex. The relationships among the lineages found in these two different regions and in the rest of the distribution, however, remain unknown. To better understand the phylogeographic patterns of E. braziliensis, we conducted phylogenetic analyses of specimens from much of its entire range. We obtained DNA sequences for fragments of four mitochondrial genes (16S rDNA, 12S rDNA, COI, and Cytb) and also used publicly available sequences. We conducted maximum likelihood and Bayesian phylogenetic reconstruction methods. Phylogeographic patterns revealed the following: (1) new highly divergent lineages of E. braziliensis; (2) three instances of Atlantic–Pacific divergences, some of which appear to predate the closure of the Isthmus of Panama; (3) the distributional limit of highly divergent lineages found in Brazil coincides with the boundary between two major marine coastal provinces; (4) evidence of recent long‐distance dispersal in the Caribbean; and (5) populations in the Gulf of California have closer affinities with lineages further south in the Pacific, which contrasts with the closer affinity with the Caribbean reported for other intertidal organisms. The high levels of cryptic diversity detected also bring about challenges for the conservation of this isopod and its fragile environment, the sandy shores. Our findings underscore the importance of comprehensive geographic sampling for phylogeographic and taxonomical studies of broadly distributed putative species harboring extensive cryptic diversity.  相似文献   

9.
The processes responsible for cytonuclear discordance frequently remain unclear. Here, we employed an exon capture data set and demographic methods to test hypotheses generated by species distribution models to examine how contrasting histories of range stability vs. fluctuation have caused cytonuclear concordance and discordance in ground squirrel lineages from the Otospermophilus beecheyi species complex. Previous studies in O. beecheyi revealed three morphologically cryptic and highly divergent mitochondrial DNA lineages (named the Northern, Central and Southern lineages based on geography) with only the Northern lineage exhibiting concordant divergence for nuclear genes. Here, we showed that these mtDNA lineages likely formed in allopatry during the Pleistocene, but responded differentially to climatic changes that occurred since the last interglacial (~120,000 years ago). We find that the Northern lineage maintained a stable range throughout this period, correlating with genetic distinctiveness among all genetic markers and low migration rates with the other lineages. In contrast, our results suggested that the Southern lineage expanded from Baja California Sur during the Late Pleistocene to overlap and potentially swamp a contracting Central lineage. High rates of intraspecific gene flow between Southern lineage individuals among expansion origin and expansion edge populations largely eroded Central ancestry from autosomal markers. However, male‐biased dispersal in this system preserved signals of this past hybridization and introgression event in matrilineal‐biased X‐chromosome and mtDNA markers. Our results highlight the importance of range stability in maintaining the persistence of phylogeographic lineages, whereas unstable range dynamics can increase the tendency for lineages to merge upon secondary contact.  相似文献   

10.
The hermaphroditic nematode Pristionchus pacificus is a model organism with a range of fully developed genetic tools. The species is globally widespread and highly diverse genetically, consisting of four major independent lineages (lineages A, B, C, and D). Despite its young age (~2.1 Ma), volcanic La Réunion Island harbors all four lineages. Ecological and population genetic research studies suggest that this diversity is due to repeated independent island colonizations by P. pacificus. Here, we use model‐based statistical methods to rigorously test hypotheses regarding the evolutionary history of P. pacificus. First, we employ divergence analyses to date diversification events among the four “world” lineages. Next, we examine demographic properties of a subset of four populations (“a”, “b”, “c”, and “d”), present on La Réunion Island. Finally, we use the results of the divergence and demographic analyses to inform a modeling‐based approximate Bayesian computation (ABC) approach, where we test hypotheses about the order and timing of establishment of the Réunion populations. Our dating estimates place the recent common ancestor of P. pacificus lineages at nearly 500,000 generations past. Our demographic analysis supports recent (<150,000 generations) spatial expansion for the island populations, and our ABC approach supports c>a>b>d as the most likely colonization order of the island populations. Collectively, our study comprehensively improves previous inferences about the evolutionary history of P. pacificus.  相似文献   

11.
The relationship between lineage formation and variation in the ecological niche is a fundamental evolutionary question. Two prevailing hypotheses reflect this relationship: niche conservatism and niche divergence. Niche conservatism predicts a pattern where sister taxa will occupy similar niche spaces; whereas niche divergence predicts that sister taxa will occupy different niche spaces. Widely distributed species often show distinct phylogeographic structure, but little research has been conducted on how the environment may be related to these phylogenetic patterns. We investigated the relationship between lineage divergence and environmental space for the closely related species Peromyscus maniculatus and P. polionotus utilizing phylogenetic techniques and ecological niche modeling (ENM). We estimated the phylogenetic relationship among individuals based on complete cytochrome b sequences that represent individuals from a majority of the species ranges. Niche spaces that lineages occupy were estimated by using 12 environmental layers. Differences in niche space were tested using multivariate statistics based on location data, and ENMs were employed using maximum entropy algorithms. Two similarity indices estimated significant divergence in environmental space based on the ENM. Six geographically structured lineages were identified within P. maniculatus. Nested within P. maniculatus we found that P. polionotus recently diverged from a clade occupying central and western United States. We estimated that the majority of the genetic lineages occupy distinct environmental niches, which supports a pattern of niche divergence. Two sister taxa showed niche divergence and represent different ecomorphs, suggesting morphological, genetic and ecological divergence between the two lineages. Two other sister taxa were observed in the same environmental space based on multivariate statistics, suggesting niche conservatism. Overall our results indicate that a widely distributed species may exhibit both niche conservatism and niche divergence, and that most lineages seem to occupy distinct environmental niches.  相似文献   

12.
Mountainous areas are characterized by substantial biodiversity and endemicity due to their complex geological history and habitat fragmentation. Hence, it can be assumed that particularly high species richness can be found in organisms with limited dispersal capabilities that inhabit mountain streams. A number of scientific papers focus on molecular phylogeography or traditional taxonomy of species or species groups inhabiting such habitats. However, there is a lack of studies that integrate morphological and molecular data to identify and delineate cryptic species. For practical reasons, uncovering cryptic diversity is crucial in taxa used in biomonitoring. Distinct species, hard to separate based on morphology only, may have different tolerance ranges towards a variety of factors. Thus, our goal is to combine the two approaches to reveal potential patterns of diversification within a species widely distributed across European mountains: the amphipod crustacean Gammarus balcanicus. The data were obtained from 13 populations spread across the range of the species. Individuals were initially ascribed to G. balcanicus based on conventional fauna key morpho‐anatomical diagnostic features and were further analysed for 23 additional features to explore any putative diversification. Morphometric data were analysed with use of the multiple correspondence analysis and anova . Molecular distances were calculated for 551‐bp‐long COI sequences. Test for isolation by distance was performed for both morphological and molecular data. The morphometric studies showed that some of the analysed features differed significantly between populations, although there was only a weak correlation between the morphological divergence and the between‐population geographical distances. Moreover, high morphological diversity was present within sites. A set of 42 COI haplotypes was identified among the 135 individuals sequenced. No haplotype was shared among populations. The molecular p‐distances within the nine localities presenting more than one haplotype were either almost null (ca. <0.003 for 7 localities) or relatively low (ca. 0.01–0.02 for 2 localities). In opposite, the molecular p‐distances between localities were mostly at a high level (94% of pairwise comparisons being >0.14), similar as between other well‐defined species of the genus Gammarus. Surprisingly, G. balcanicus appears to be polyphyletic based on topology of the neighbour‐joining tree. The level of genetic distance between localities was not correlated with their geographical proximity. Globally, combining spatial patterns of morphological versus molecular divergence indicates a high level of cryptic diversity within a species conventionally defined based upon fauna key morphological features. In this context, the name G. balcanicus should be applied only to the population from locus typicus, while the other populations represent a number of putative distinct species. We may expect that such phenomenon would apply also to other animal taxa with conserved morphology, which are widespread over different mountain ranges in Europe.  相似文献   

13.
Recent phylogeographic studies of animal taxa in California have revealed common geographic patterns of evolutionary divergence and genetic diversity that are generally attributable to landscape influences. However, there remains a paucity of knowledge on the evolution of freshwater taxa in southern California. Here, we investigate phylogeographic patterns in a stream-dwelling frog (Pseudacris cadaverina). Two hundred and twenty-one individuals were collected from 46 populations across the species’ range in southern California. Using 1100 bp of sequence data from cytochrome b and tRNA-Glu, we conducted phylogenetic analyses, analysis of molecular variance, and nested clade phylogeographic analysis to gain insight into the factors contributing to the distribution of genetic diversity in P. cadaverina. We tested for evidence of two putative phylogeographic breaks and tested hypotheses that genetic diversity in this species is partitioned into (1) major watersheds, (2) mountain ranges, and (3) coastal and desert regions. Our results suggest that the eastern Transverse Ranges are the center of origin for extant P. cadaverina lineages and that the observed genetic structure in this species was established during the Pleistocene Epoch. There is strong support for three major haplotype groups and a Transverse Range break in P. cadaverina that is concordant with breaks found in numerous other taxa. The distribution of genetic diversity in P. cadaverina is due in large part to the separation of populations into different major watersheds and mountain ranges. Gene flow appears to be generally limited among disjunct populations throughout the region and some desert populations have been isolated by historical habitat fragmentation.  相似文献   

14.
Gammarus leopoliensis (Crustacea: Amphipoda) is considered a north‐eastern Carpathian endemic species and therefore can be regarded as an appropriate model for testing the hypothesis of Quaternary glacial survival in northern microrefugia. However, 250 km south, the south‐western Carpathians harbour populations that resemble phenotypically both G. leopoliensis and Gammarus kischineffensis, a similar species distributed east of the Carpathians. We used maximum‐likelihood and Bayesian methods to evaluate the phylogenetic relationships of these three taxa based on mitochondrial and nuclear markers, and quantitatively compared diversity patterns, phylogeography and divergence times among north‐eastern and south‐western Carpathian taxa. Results indicate that G. leopoliensis and the south‐western populations form together a strongly supported group (G. leopoliensis s.l.) which, along with G. kischineffensis, belongs to the Gammarus balcanicus clade. This group contains 12 lineages mainly of Pliocene age. G. leopoliensis consists of two widely distributed and recently expanded allopatric sister lineages that diverged from the southern ones ca. 4 Ma, indicating long‐term survival in northern microrefugia. The southern lineages are micro‐endemic and display a scattered distribution, suggesting a more ancient, relict pattern. We conclude that the contrasting diversity patterns between the disjunct distributional areas of G. leopoliensis s.l. reflect differential survival of lineages across the latitudinal gradient, offering a promising system for comparing the evolutionary ecology of lineages persisting in latitudinally disconnected microrefugia. These results fill an important gap in the knowledge of European gammarid biogeography and reveal that all Carpathian Gammarus taxa are ancient and diverse species complexes.  相似文献   

15.
Astatotilapia burtoni is a member of the “modern haplochromines,” the most species‐rich lineage within the family of cichlid fishes. Although the species has been in use as research model in various fields of research since almost seven decades, including developmental biology, neurobiology, genetics and genomics, and behavioral biology, little is known about its spatial distribution and phylogeography. Here, we examine the population structure and phylogeographic history of A. burtoni throughout its entire distribution range in the Lake Tanganyika basin. In addition, we include several A. burtoni laboratory strains to trace back their origin from wild populations. To this end, we reconstruct phylogenetic relationships based on sequences of the mitochondrial DNA (mtDNA) control region (d‐loop) as well as thousands of genomewide single nucleotide polymorphisms (SNPs) derived from restriction‐associated DNA sequencing. Our analyses reveal high population structure and deep divergence among several lineages, however, with discordant nuclear and mtDNA phylogenetic inferences. Whereas the SNP‐based phylogenetic hypothesis uncovers an unexpectedly deep split in A. burtoni, separating the populations in the southern part of the Lake Tanganyika basin from those in the northern part, analyses of the mtDNA control region suggest deep divergence between populations from the southwestern shoreline and populations from the northern and southeastern shorelines of Lake Tanganyika. This phylogeographic pattern and mitochondrial haplotype sharing between populations from the very North and the very South of Lake Tanganyika can only partly be explained by introgression linked to lake‐level fluctuations leading to past contact zones between otherwise isolated populations and large‐scale migration events.  相似文献   

16.
High‐throughput sequencing approaches offer opportunities to better understand the evolutionary processes driving diversification, particularly in nonmodel organisms. In particular, the 100–1000's of loci that can now be sequenced are providing unprecedented power in population, speciation and phylogenetic studies. Here, we apply an exon capture approach to generate >99% complete sequence and SNP data across >2000 loci from a tropical skink, Carlia amax, and exploit these data to identify divergent lineages and infer their relationships and demographic histories. This is especially relevant to low‐dispersal tropical taxa that often have cryptic diversity and spatially dynamic histories. For C. amax, clustering of nuclear SNPs and coalescent‐based species delimitation analyses identify four divergent lineages, one fewer than predicted based on geographically coherent mtDNA clades (>9.4% sequence divergence). Three of these lineages are widespread and parapatric on the mainland, whereas the most divergent is restricted to islands off the northeast Northern Territory. Tests for population expansion reject an equilibrium isolation‐by‐distance model for two of the three widespread lineages and infer refugial expansion sources in the relatively mesic northeast Top End and northwest Kimberley. The latter is already recognized as a hotspot of endemism, but our results also suggest that a stronger focus on the northeast Top End, and adjacent islands is warranted. More generally, our results show how genome‐reduction methods such as exon capture can yield insights into the pattern and dynamics of biodiversity across complex landscapes with as yet poorly understood biogeographic history and how exon data can link between population and phylogenetic questions.  相似文献   

17.
To elucidate the genetic population structure of Pseudogobio esocinus (Cyprinidae) in central Honshu, Japan, we performed phylogeographic analysis based on partial mitochondrial cytochrome b gene sequences. We found not only differentiation of mtDNA lineages between basins (uncorrected p ≈ 2%), presumably associated with uplifting of the Suzuka Mountains in the early Pleistocene, but also more diverged two mtDNA lineages within basins (p ≈ 8%). No evidence of mtDNA introgression from related sympatric species was found. The phylogeographic history of these two lineages should be elucidated by further analysis based on the specimens of P. esocinus from the entire distribution range.  相似文献   

18.
Populations of the European Spadefoot toad (Pelobates fuscus) have experienced recent declines all over Europe, but these appear to be more intense in north and western Europe. Due to the toad’s fossorial nature and specific habitat requirements, environmental conditions have played a major role in structuring current populations. We examined the phylogeographic structure in P. fuscus from 16 localities throughout Europe using mitochondrial cytochrome b gene sequence analysis. Sequence divergence among haplotypes was low (0.54±0.15%). Three very closely related haplotypes occupy northern and western parts of Europe whereas 12 others were observed among samples from south-eastern Europe, including the Balkans. Our results suggest that toads only recently colonized the northern and western parts of Europe following glacial retreat. This expansion probably took place in steppic-like areas during the younger Dryas cold interval, about 12,900–11,500 years ago. Restricted gene flow with an isolation-by-distance population structure characterises a major part of its distribution range. Based on our results we suggest that the northern and western lineages should be considered as distinct conservation units, while the south-eastern populations from the refugial areas, where nearly all genetic polymorphism occurs and populations appear less vulnerable, should receive special attention.  相似文献   

19.
Climate changes can have fundamental impacts on the distributional patterns of montane species, and range shifts frequently lead to allopatric divergence followed by the establishment of secondary contact zones. Many European and North American organisms have retreated to southern refugia during glacial periods and colonized northward during postglacial periods, but little is known about the evolutionary response of cold‐adapted insects to Pleistocene climate changes in eastern Asia. The scorpionfly Dicerapanorpa magna (Chou), with cold temperate habitat preference and weak dispersal ability, provides a good model system to explore how climate changes have influenced the distribution and divergence of cold‐adapted insects in eastern Asia. This study reconstructed the demographic dynamics and evolutionary history of D. magna with phylogeographic approaches, and predicted the species’ suitable areas under the Last Glacial Maximum (LGM) and current scenarios with the ecological niche modelling analysis. The mitochondrial cytochrome c oxidase subunit I resolved three phylogenetic lineages in D. magna dating back to Pleistocene, corresponding well with the geographically isolated Qinling, Bashan and Minshan Mountains. The ecological niche modelling recovered the suitable habitats for D. magna were the Qinling and Bashan Mountains under LGM and current conditions. The three lineages of D. magna might be in a process of incipient speciation, and likely derived their current distribution from separate glacial origins, followed by vicariance and divergence.  相似文献   

20.
L. Ming  L. Yi  R. Sa  Z. X. Wang  Z. Wang  R. Ji 《Animal genetics》2017,48(2):217-220
The Bactrian camel includes various domestic (Camelus bactrianus) and wild (Camelus ferus) breeds that are important for transportation and for their nutritional value. However, there is a lack of extensive information on their genetic diversity and phylogeographic structure. Here, we studied these parameters by examining an 809‐bp mtDNA fragment from 113 individuals, representing 11 domestic breeds, one wild breed and two hybrid individuals. We found 15 different haplotypes, and the phylogenetic analysis suggests that domestic and wild Bactrian camels have two distinct lineages. The analysis of molecular variance placed most of the genetic variance (90.14%, < 0.01) between wild and domestic camel lineages, suggesting that domestic and wild Bactrian camel do not have the same maternal origin. The analysis of domestic Bactrian camels from different geographical locations found there was no significant genetic divergence in China, Russia and Mongolia. This suggests a strong gene flow due to wide movement of domestic Bactrian camels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号