共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Wenwei Xiong Hugo K. Dooner Chunguang Du 《The Plant journal : for cell and molecular biology》2016,88(6):1038-1045
The unusual eukaryotic Helitron transposons can readily capture host sequences and are, thus, evolutionarily important. They are presumed to amplify by rolling‐circle replication (RCR) because some elements encode predicted proteins homologous to RCR prokaryotic transposases. In support of this replication mechanism, it was recently shown that transposition of a bat Helitron generates covalently closed circular intermediates. Another strong prediction is that RCR should generate tandem Helitron concatemers, yet almost all Helitrons identified to date occur as solo elements in the genome. To investigate alternative modes of Helitron organization in present‐day genomes, we have applied the novel computational tool HelitronScanner to 27 plant genomes and have uncovered numerous tandem arrays of partially decayed, truncated Helitrons in all of them. Strikingly, most of these Helitron tandem arrays are interspersed with other repeats in centromeres. Many of these arrays have multiple Helitron 5′ ends, but a single 3′ end. The number of repeats in any one array can range from a handful to several hundreds. We propose here an RCR model that conforms to the present Helitron landscape of plant genomes. Our study provides strong evidence that plant Helitrons amplify by RCR and that the tandemly arrayed replication products accumulate mostly in centromeres. 相似文献
6.
Feng Xiong Jing‐Jing Ren Qin Yu Yu‐Yi Wang Lan‐Jing Kong Marisa S. Otegui Xiu‐Ling Wang 《The Plant journal : for cell and molecular biology》2019,98(4):714-726
Pre‐mRNA splicing is an important step for gene expression regulation. Yeast Bud13p (bud‐site selection protein 13) regulates the budding pattern and pre‐mRNA splicing in yeast cells; however, no Bud13p homologs have been identified in plants. Here, we isolated two mutants that carry T‐DNA insertions at the At1g31870 locus and shows early embryo lethality and seed abortion. At1g31870 encodes an Arabidopsis homolog of yeast Bud13p, AtBUD13. Although AtBUD13 homologs are widely distributed in eukaryotic organisms, phylogenetic analysis revealed that their protein domain organization is more complex in multicellular species. AtBUD13 is expressed throughout plant development including embryogenesis and AtBUD13 proteins is localized in the nucleus in Arabidopsis. RNA‐seq analysis revealed that AtBUD13 mutation predominantly results in the intron retention, especially for shorter introns (≤100 bases). Within this group of genes, we identified 52 genes involved in embryogenesis, out of which 22 are involved in nucleic acid metabolism. Our results demonstrate that AtBUD13 plays critical roles in early embryo development by effecting pre‐mRNA splicing. 相似文献
7.
8.
9.
The Restorer‐of‐fertility‐like 2 pentatricopeptide repeat protein and RNase P are required for the processing of mitochondrial orf291 RNA in Arabidopsis 下载免费PDF全文
Sota Fujii Takamasa Suzuki Philippe Giegé Tetsuya Higashiyama Nobuya Koizuka Toshiharu Shikanai 《The Plant journal : for cell and molecular biology》2016,86(6):504-513
10.
11.
12.
Julie Thomas Saiprasad G. Palusa Giridara‐Kumar Surabhi Asa Ben‐Hur Salah E. Abdel‐Ghany Anireddy S.N. Reddy 《The Plant journal : for cell and molecular biology》2012,72(6):935-946
In Arabidopsis, pre‐mRNAs of serine/arginine‐rich (SR) proteins undergo extensive alternative splicing (AS). However, little is known about the cis‐elements and trans‐acting proteins involved in regulating AS. Using a splicing reporter (GFP–intron–GFP), consisting of the GFP coding sequence interrupted by an alternatively spliced intron of SCL33, we investigated whether cis‐elements within this intron are sufficient for AS, and which SR proteins are necessary for regulated AS. Expression of the splicing reporter in protoplasts faithfully produced all splice variants from the intron, suggesting that cis‐elements required for AS reside within the intron. To determine which SR proteins are responsible for AS, the splicing pattern of the GFP–intron–GFP reporter was investigated in protoplasts of three single and three double mutants of SR genes. These analyses revealed that SCL33 and a closely related paralog, SCL30a, are functionally redundant in generating specific splice variants from this intron. Furthermore, SCL33 protein bound to a conserved sequence in this intron, indicating auto‐regulation of AS. Mutations in four GAAG repeats within the conserved region impaired generation of the same splice variants that are affected in the scl33 scl30a double mutant. In conclusion, we have identified the first intronic cis‐element involved in AS of a plant SR gene, and elucidated a mechanism for auto‐regulation of AS of this intron. 相似文献
13.
AEF1/MPR25 is implicated in RNA editing of plastid atpF and mitochondrial nad5, and also promotes atpF splicing in Arabidopsis and rice 下载免费PDF全文
Aaron Yap Peter Kindgren Catherine Colas des Francs‐Small Tomohiko Kazama Sandra K. Tanz Kinya Toriyama Ian Small 《The Plant journal : for cell and molecular biology》2015,81(5):661-669
14.
Heiko Tobias Schumacher Evgenia Vamvaka Kriton Kalantidis 《The Plant journal : for cell and molecular biology》2016,88(5):839-853
Proteins belonging to the enhancer of RNA interference‐1 subfamily of 3′–5′ exoribonucleases participate in divergent RNA pathways. They degrade small interfering RNAs (siRNAs), thus suppressing RNA interference, and are involved in the maturation of ribosomal RNAs and the degradation of histone messenger RNAs (mRNAs). Here, we report evidence for the role of the plant homologue of these proteins, which we termed ENHANCED RNA INTERFERENCE‐1‐LIKE‐1 (ERIL1), in chloroplast function. In vitro assays with AtERIL1 proved that the conserved 3′–5′ exonuclease activity is shared among all homologues studied. Confocal microscopy revealed that ERL1, a nucleus‐encoded protein, is targeted to the chloroplast. To gain insight into its role in plants, we used Nicotiana benthamiana and Arabidopsis thaliana plants that constitutively overexpress or suppress ERIL1. In the mutant lines of both species we observed malfunctions in photosynthetic ability. Molecular analysis showed that ERIL1 participates in the processing of chloroplastic ribosomal RNAs (rRNAs). Lastly, our results suggest that the missexpression of ERIL1 may have an indirect effect on the microRNA (miRNA) pathway. Altogether our data point to an additional piece of the puzzle in the complex RNA metabolism of chloroplasts. 相似文献
15.
16.
Wenjuan Wu Sheng Liu Hannes Ruwe Delin Zhang Joanna Melonek Yajuan Zhu Xupeng Hu Sandra Gusewski Ping Yin Ian D. Small Katharine A. Howell Jirong Huang 《The Plant journal : for cell and molecular biology》2016,85(5):607-621
Ribosomal RNA processing is essential for plastid ribosome biogenesis, but is still poorly understood in higher plants. Here, we show that SUPPRESSOR OF THYLAKOID FORMATION1 (SOT1), a plastid‐localized pentatricopeptide repeat (PPR) protein with a small MutS‐related domain, is required for maturation of the 23S–4.5S rRNA dicistron. Loss of SOT1 function leads to slower chloroplast development, suppression of leaf variegation, and abnormal 23S and 4.5S processing. Predictions based on the PPR motif sequences identified the 5′ end of the 23S–4.5S rRNA dicistronic precursor as a putative SOT1 binding site. This was confirmed by electrophoretic mobility shift assay, and by loss of the abundant small RNA ‘footprint’ associated with this site in sot1 mutants. We found that more than half of the 23S–4.5S rRNA dicistrons in sot1 mutants contain eroded and/or unprocessed 5′ and 3′ ends, and that the endonucleolytic cleavage product normally released from the 5′ end of the precursor is absent in a sot1 null mutant. We postulate that SOT1 binding protects the 5′ extremity of the 23S–4.5S rRNA dicistron from exonucleolytic attack, and favours formation of the RNA structure that allows endonucleolytic processing of its 5′ and 3′ ends. 相似文献
17.
Cadmium‐induced and trans‐generational changes in the cultivable and total seed endophytic community of Arabidopsis thaliana 下载免费PDF全文
S. Truyens B. Beckers S. Thijs N. Weyens A. Cuypers J. Vangronsveld 《Plant biology (Stuttgart, Germany)》2016,18(3):376-381
Trans‐generational adaptation is important to respond rapidly to environmental challenges and increase overall plant fitness. Besides well‐known mechanisms such as epigenetic modifications, vertically transmitted endophytic bacteria might contribute to this process. The cultivable and total endophytic communities of several generations of Arabidopsis thaliana seeds harvested from plants exposed to cadmium (Cd) or not exposed were investigated. The diversity and richness of the seed endophytic community decreased with an increasing number of generations. Aeromicrobium and Pseudonocardia were identified as indicator species in seeds from Cd‐exposed plants, while Rhizobium was abundantly present in both seed types. Remarkably, Rhizobium was the only genus that was consistently detected in seeds of all generations, which suggests that the phenotypic characteristics were more important as selection criteria for which bacteria are transferred to the next plant generation than the actual genera. Production of IAA was an important trait for endophytes from both seed types, while ACC deaminase activity and Cd tolerance were mainly associated with seed endophytes from Cd‐exposed plants. Understanding how different factors influence the seed endophytic community can help us to improve seed quality and plant growth through different biotechnological applications. 相似文献
18.
19.
20.
The diversion of 2‐C‐methyl‐d‐erythritol‐2,4‐cyclodiphosphate from the 2‐C‐methyl‐d‐erythritol 4‐phosphate pathway to hemiterpene glycosides mediates stress responses in Arabidopsis thaliana 下载免费PDF全文
Christian Paetz Nawaporn Onkokesung Jonathan Gershenzon Manuel Rodríguez‐Concepción Michael A. Phillips 《The Plant journal : for cell and molecular biology》2015,82(1):122-137
2‐C‐Methyl‐d ‐erythritol‐2,4‐cyclodiphosphate (MEcDP) is an intermediate of the plastid‐localized 2‐C‐methyl‐d ‐erythritol‐4‐phosphate (MEP) pathway which supplies isoprenoid precursors for photosynthetic pigments, redox co‐factor side chains, plant volatiles, and phytohormones. The Arabidopsis hds‐3 mutant, defective in the 1‐hydroxy‐2‐methyl‐2‐(E)‐butenyl‐4‐diphosphate synthase step of the MEP pathway, accumulates its substrate MEcDP as well as the free tetraol 2‐C‐methyl‐d ‐erythritol (ME) and glucosylated ME metabolites, a metabolic diversion also occurring in wild type plants. MEcDP dephosphorylation to the free tetraol precedes glucosylation, a process which likely takes place in the cytosol. Other MEP pathway intermediates were not affected in hds‐3. Isotopic labeling, dark treatment, and inhibitor studies indicate that a second pool of MEcDP metabolically isolated from the main pathway is the source of a signal which activates salicylic acid induced defense responses before its conversion to hemiterpene glycosides. The hds‐3 mutant also showed enhanced resistance to the phloem‐feeding aphid Brevicoryne brassicae due to its constitutively activated defense response. However, this MEcDP‐mediated defense response is developmentally dependent and is repressed in emerging seedlings. MEcDP and ME exogenously applied to adult leaves mimics many of the gene induction effects seen in the hds‐3 mutant. In conclusion, we have identified a metabolic shunt from the central MEP pathway that diverts MEcDP to hemiterpene glycosides via ME, a process linked to balancing plant responses to biotic stress. 相似文献