首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wood betony, Orobanchaceae (Pedicularis canadensis) and bastard toadflax, Santalaceae (Comandra umbellata) are two root‐hemiparasitic plant species found in tallgrass prairie communities. Natural resource managers are interested in utilizing these species as “pseudograzers” in grasslands to reduce competitively dominant grasses and thereby increase ecological diversity and quality in prairie restorations and urban plantings. We performed an observational field study at 5 tallgrass prairie sites to investigate the association of hemiparasite abundance with metrics of phylogenetic and ecological diversity, as well as floristic quality. Although no reduction in C4 grasses was detected, there was a significant association between hemiparasite abundance and increased floristic quality at all 5 sites. Hemiparasite abundance and species richness were positively correlated at one restoration site. In a greenhouse mesocosm experiment, we investigated response to parasitism by P. canadensis in 6 species representing different plant functional groups of the tallgrass prairie. The annual legume partridge pea, Fabaceae (Chamaecrista fasciculata) had the greatest significant dry biomass reduction among 6 host species, but the C4 grass big bluestem, Poaceae (Andropogon gerardii) had significantly greater aboveground biomass when grown with the hemiparasite. Overall, host species biomass as a total community was significantly reduced in mesocosms, consistent with other investigations that demonstrate influence on community structure by hemiparasitic plant species. Although hemiparasites were not acting as pseudograzers, they have the potential to influence community structure in grassland restorations and remnants.  相似文献   

2.
Site preparation designed to exhaust the soil seedbank of adventive species can improve the success of tallgrass prairie restoration. Despite these efforts, increased rates of atmospheric nitrogen (N) deposition over the next century could potentially promote the growth of nitrophilic, adventive species in tallgrass restoration projects. We used a field experiment to examine how N addition affected species composition and plant productivity over the first 3 years of a tallgrass prairie restoration that was preceded by the planting of glyphosate‐resistant crops and multiple applications of glyphosate to exhaust the pre‐existing seedbank. We predicted that N addition would increase the percent cover of adventive plant species not included in the original seeding. Contrary to our prediction, only the cover of native species increased with N addition; native non‐leguminous forbs increased substantially, with Conyza canadensis (a weedy native species not part of the restoration seed mix) exploiting the combination of high N and bare ground in the first year, and non‐leguminous forbs (in particular Monarda fistulosa) and native C3 grasses, all of which were seeded, increasing with N addition by the third year. Native legumes was the only functional group that exhibited lower cover in N addition plots than in control plots. There was no significant response by native C4 grasses to N addition, and adventive grasses remained mostly absent from the plots. Overall, our results suggest that site pre‐treatment with herbicide may continue to be effective in minimizing adventive grasses in restored tallgrass prairie, despite future increases in atmospheric N deposition.  相似文献   

3.
Restored grasslands comprise an ever‐increasing proportion of grasslands in North America and elsewhere. However, floristic studies of restored grasslands indicate that our ability to restore plant communities is limited. Our goal was to assess the effectiveness of restoration seeding for recovery of key plant community components on former exotic, cool‐season pastures using a chronosequence of six restoration sites and three nearby remnant tallgrass prairie sites in West‐Central Iowa. We assessed trends in Simpson's diversity and evenness, richness and abundance of selected native and exotic plant guilds, and mean coefficient of conservatism (mean C). Simpson's diversity and evenness and perennial invasive species abundance all declined with restoration site age. As a group, restoration sites had greater richness of native C3 species with late phenology, but lower richness and abundance of species with early phenology relative to remnant sites. Total native richness, total native abundance (cover), mean C, and abundance of late phenology C3 plants were similar between restoration and remnant sites. Observed declines in diversity and evenness with restoration age reflect increases in C4 grass abundance rather than absolute decreases in the abundance of perennial C3 species. In contrast to other studies, restoration seeding appears to have led to successful establishment of tallgrass prairie species that were likely to be included in seeding mixtures. While several floristic measures indicate convergence of restoration and remnant sites, biodiversity may be further enhanced by including early phenology species in seeding mixes in proportion to their abundance on remnant prairies.  相似文献   

4.
Colonial, burrowing herbivores can be engineers of grassland and shrubland ecosystems worldwide. Spatial variation in landscapes suggests caution when extrapolating single‐place studies of single species, but lack of data and the need to generalize often leads to ‘model system’ thinking and application of results beyond appropriate statistical inference. Generalizations about the engineering effects of prairie dogs (Cynomys sp.) developed largely from intensive study at a single complex of black‐tailed prairie dogs C. ludovicianus in northern mixed prairie, but have been extrapolated to other ecoregions and prairie dog species in North America, and other colonial, burrowing herbivores. We tested the paradigm that prairie dogs decrease vegetation volume and the cover of grasses and tall shrubs, and increase bare ground and forb cover. We sampled vegetation on and off 279 colonies at 13 complexes of 3 prairie dog species widely distributed across 5 ecoregions in North America. The paradigm was generally supported at 7 black‐tailed prairie dog complexes in northern mixed prairie, where vegetation volume, grass cover, and tall shrub cover were lower, and bare ground and forb cover were higher, on colonies than at paired off‐colony sites. Outside the northern mixed prairie, all 3 prairie dog species consistently reduced vegetation volume, but their effects on cover of plant functional groups varied with prairie dog species and the grazing tolerance of dominant perennial grasses. White‐tailed prairie dogs C. leucurus in sagebrush steppe did not reduce shrub cover, whereas black‐tailed prairie dogs suppressed shrub cover at all complexes with tall shrubs in the surrounding habitat matrix. Black‐tailed prairie dogs in shortgrass steppe and Gunnison's prairie dogs C. gunnisoni in Colorado Plateau grassland both had relatively minor effects on grass cover, which may reflect the dominance of grazing‐tolerant shortgrasses at both complexes. Variation in modification of vegetation structure may be understood in terms of the responses of different dominant perennial grasses to intense defoliation and differences in foraging behavior among prairie dog species. Spatial variation in the engineering role of prairie dogs suggests spatial variation in their keystone role, and spatial variation in the roles of other ecosystem engineers. Thus, ecosystem engineering can have a spatial component not evident from single‐place studies.  相似文献   

5.
Dominant Grasses Suppress Local Diversity in Restored Tallgrass Prairie   总被引:1,自引:0,他引:1  
Warm‐season (C4) grasses commonly dominate tallgrass prairie restorations, often at the expense of subordinate grasses and forbs that contribute most to diversity in this ecosystem. To assess whether the cover and abundance of dominant grass species constrain plant diversity, we removed 0, 50, or 100% of tillers of two dominant species (Andropogon gerardii or Panicum virgatum) in a 7‐year‐old prairie restoration. Removing 100% of the most abundant species, A. gerardii, significantly increased light availability, forb productivity, forb cover, species richness, species evenness, and species diversity. Removal of a less abundant but very common species, P. virgatum, did not significantly affect resource availability or the local plant community. We observed no effect of removal treatments on critical belowground resources, including inorganic soil N or soil moisture. Species richness was inversely correlated with total grass productivity and percent grass cover and positively correlated with light availability at the soil surface. These relationships suggest that differential species richness among removal treatments resulted from treatment induced differences in aboveground resources rather than the belowground resources. Selective removal of the dominant species A. gerardii provided an opportunity for seeded forb species to become established leading to an increase in species richness and diversity. Therefore, management practices that target reductions in cover or biomass of the dominant species may enhance diversity in established and grass‐dominated mesic grassland restorations.  相似文献   

6.
Dominance of warm‐season grasses modulates tallgrass prairie ecosystem structure and function. Reintroduction of these grasses is a widespread practice to conserve soil and restore prairie ecosystems degraded from human land use changes. Seed sources for reintroduction of dominant prairie grass species include local (non‐cultivar) and selected (cultivar) populations. The primary objective of this study was to quantify whether intraspecific variation in developing root systems exists between population sources (non‐cultivar and cultivar) of two dominant grasses (Sorghastrum nutans and Schizachyrium scoparium) widely used in restoration. Non‐cultivar and cultivar grass seedlings of both species were isolated in an experimental prairie restoration at the Konza Prairie Biological Station. We measured above‐ and belowground net primary production (ANPP and BNPP, respectively), root architecture, and root tissue quality, as well as soil moisture and plant available inorganic nitrogen (N) in soil associated with each species and source at the end of the first growing season. Cultivars had greater root length, surface area, and volume than non‐cultivars. Available inorganic N and soil moisture were present in lower amounts in soil proximal to roots of cultivars than non‐cultivars. Additionally, soil NO3–N was negatively correlated with root volume in S. nutans cultivars. While cultivars had greater BNPP than non‐cultivars, this was not reflected aboveground root structure, as ANPP was similar between cultivars and non‐cultivars. Intraspecific variation in belowground root structure and function exists between cultivar and non‐cultivar sources of the dominant prairie grasses during initial reestablishment of tallgrass prairie. Population source selection should be considered in setting restoration goals and objectives.  相似文献   

7.
A fundamental goal of restoration is the re-establishment of plant diversity representative of native vegetation. However, many prairie restorations or Conservation Reserve Program sites have been seeded with warm-season grasses, leading to grass-dominated, low-diversity restorations not representative of native grasslands. These dominant grasses are strongly mycotrophic, while many subordinate forb species appear to be less dependent on mycorrhizal symbiosis. Therefore, manipulating arbuscular mycorrhizal fungi (AMF) may be useful in promoting establishment and growth of forb species in grass-dominated prairie restorations. To assess the potential role of mycorrhizae in affecting the productivity and community composition of restored tallgrass prairie, we conducted a 4-year field experiment on an 8-year-old grassland restoration at the Konza Prairie in northeastern Kansas, USA. At the initiation of our study, seeds of 12 forb species varying in degree of mycorrhizal dependence were added to established grass-dominated plots. Replicate plots were treated bi-weekly with a soil drench of fungicide (Topsin-M®) over four growing seasons and compared to non-treated control plots to assess the role of AMF in affecting plant species composition, productivity, leaf tissue quality, and diversity in restored tallgrass prairie. Topsin applications successfully reduced mycorrhizal colonization of grass roots to approximately 60–80% relative to roots in control plots. Four years of mycorrhizal suppression reduced productivity of the dominant grasses and increased plant species richness and diversity. These results highlight the importance of mycorrhizae as mediators of plant productivity and community dynamics in restored tallgrass prairie and indicate that temporarily suppressing AMF decreases productivity of the dominant C4 grasses and allows for establishment of seeded forb species.  相似文献   

8.
Disturbances such as burning or grazing maintain the herbaceous nature of eastern tallgrass prairie. These disturbances are also known to affect the relative abundance of warm-season (C4) and cool-season (C3) grasses in native prairie. Although burning is a commonly used tool, the utility of livestock grazing to manage restored prairie is less understood. We established five monocultures and one mixture of C4 grass species of the eastern tallgrass prairie in southern Wisconsin. To examine their persistence under high-intensity, short-duration summer grazing, we estimated cover of several functional groups and C4 species over a 6-year period (2000 through 2006) in a randomized complete block design. After a 2-year establishment phase (1998–1999), bison were rotated through paddocks two or three times annually during late June, July, or early August. All C4 grasses declined over time but at different rates depending on the species. Switchgrass ( Panicum virgatum ) decreased at the lowest rate, whereas Little bluestem ( Schizachyrium scoparium ) cover declined faster than Big bluestem ( Andropogon gerardii ), Indiangrass ( Sorghastrum nutans ), and Sideoats grama ( Bouteloua curtipendula ), whose rates of decline were not significantly different from each other. Succession followed a predictable trajectory with annual grasses initially colonizing interstitial space among C4 grasses, followed by legumes, which ultimately gave way to exotic C3 forage grasses. The focal C4 grasses remained the dominant functional group 8 years postseeding, but recolonization by non-native C3 grasses increased over the study period.  相似文献   

9.
Historic losses and fragmentation of tallgrass prairie habitat to agriculture and urban development have led to declines in diversity and abundance of plants and birds associated with such habitat. Prescribed burning is a management strategy that has potential for restoring and rejuvenating prairies in fragmented landscapes, and through such restoration, might create habitat for birds dependent upon prairies. To provide improved data for management decision-making regarding the use of prescribed fire in tallgrass prairies, we compared responses of plant and bird communities on five burned and five unburned tallgrass prairie fragments at the DeSoto National Wildlife Refuge, Iowa, USA, from 1995 to 1997. Overall species richness and diversity were unaffected by burning, but individual species of plants and birds were affected by year-treatment interactions, including northern bobwhite (Colinus virginianus) and ring-necked pheasant (Phasianus colchicus), which showed time-delayed increases in density on burned sites. Analyses of species/area relationships indicated that, collectively, many small sites did make significant contributions to plant biodiversity at landscape levels, supporting the overall conservation value of prairie fragments. In contrast, most birds species were present on larger sites. Thus, higher biodiversity in bird communities which contain area-sensitive species might require larger sites able to support larger, more stable populations, greater habitat heterogeneity, and greater opportunity for niche separation.  相似文献   

10.
Both bison and prairie dogs have multiple and dramatic effects on grassland landscapes and both are considered by many to be keystone herbivores. Numerous studies have documented their independent or combined impact on grassland ecosystem processes, but there have been few attempts to simultaneously assess the individual and interactive effects of bison and prairie dogs where they co-occur. We began a long-term study in late 1994 in Badlands National Park, South Dakota, USA, to evaluate the ecological consequences of the presence or exclusion of prairie dogs, bison, or both, upon various aspects of plant community dynamics and N cycling. Five different treatments were established at three separate mixed-grass prairie sites in the park: (1) off the prairie dog colony with bison excluded, (2) off colony with continued bison utilization, (3) on colony with bison excluded but continued prairie dog use, (4) on colony with utilization by prairie dogs and bison, and (5) on colony with both excluded. There were few differences in aboveground biomass or plant species composition between the two off-colony treatments or among the three on-colony treatments, even after 3 years of treatment imposition. However, aboveground biomass was >2 times greater in off-colony sites than on-colony sites, primarily due to the near elimination of grasses on prairie dog colonies. Off-colony sites were dominated by a few grass species, resulting in lower plant species diversity, while on-colony sites were dominated by several forb species. Net N mineralization early in the growing season was 4 times greater on prairie dog colonies than at off-colony sites, but all sites exhibited net immobilization by the latter half of the growing season. The results of this study indicate distinct differences in several ecosystem properties between on- and off-colony treatments. Whether these patterns represent relatively stable alternate states or whether distinct changes will emerge in the different herbivore treatments after several additional years is of considerable interest.  相似文献   

11.
In tallgrass prairie, plant species interactions regulated by their associated mycorrhizal fungi may be important forces that influence species coexistence and community structure; however, the mechanisms and magnitude of these interactions remain unknown. The objective of this study was to determine how interspecific competition, mycorrhizal symbiosis, and their interactions influence plant community structure. We conducted a factorial experiment, which incorporated manipulations of abundance of dominant competitors, Andropogon gerardii and Sorghastrum nutans, and suppression of mycorrhizal symbiosis using the fungicide benomyl under two fire regimes (annual and 4-year burn intervals). Removal of the two dominant C4 grass species altered the community structure, increased plant species richness, diversity, and evenness, and increased abundance of subdominant graminoid and forb species. Suppression of mycorrhizal fungi resulted in smaller shifts in community structure, although plant species richness and diversity increased. Responses of individual plant species were associated with their degree of mycorrhizal responsiveness: highly mycorrhizal responsive species decreased in abundance and less mycorrhizal responsive species increased in abundance. The combination of dominant-grass removal and mycorrhizal suppression treatments interacted to increase synergistically the abundance of several species, indicating that both processes influence species interactions and community organization in tallgrass prairie. These results provide evidence that mycorrhizal fungi affect plant communities indirectly by influencing the pattern and strength of plant competitive interactions. Burning strongly influenced the outcome of these interactions, which suggests that plant species diversity in tallgrass prairie is influenced by a complex array of interacting processes, including both competition and mycorrhizal symbiosis. Received: 7 April 1999 / Accepted: 30 July 1999  相似文献   

12.
Restoration efforts often focus on plants, but additionally require the establishment and long‐term persistence of diverse groups of nontarget organisms, such as bees, for important ecosystem functions and meeting restoration goals. We investigated long‐term patterns in the response of bees to habitat restoration by sampling bee communities along a 26‐year chronosequence of restored tallgrass prairie in north‐central Illinois, U.S.A. Specifically, we examined how bee communities changed over time since restoration in terms of (1) abundance and richness, (2) community composition, and (3) the two components of beta diversity, one‐to‐one species replacement, and changes in species richness. Bee abundance and raw richness increased with restoration age from the low level of the pre‐restoration (agricultural) sites to the target level of the remnant prairie within the first 2–3 years after restoration, and these high levels were maintained throughout the entire restoration chronosequence. Bee community composition of the youngest restored sites differed from that of prairie remnants, but 5–7 years post‐restoration the community composition of restored prairie converged with that of remnants. Landscape context, particularly nearby wooded land, was found to affect abundance, rarefied richness, and community composition. Partitioning overall beta diversity between sites into species replacement and richness effects revealed that the main driver of community change over time was the gradual accumulation of species, rather than one‐to‐one species replacement. At the spatial and temporal scales we studied, we conclude that prairie restoration efforts targeting plants also successfully restore bee communities.  相似文献   

13.
We surveyed the prevalence and amount of leaf damage related to herbivory and pathogens on 12 pairs of exotic (invasive and noninvasive) and ecologically similar native plant species in tallgrass prairie to examine whether patterns of damage match predictions from the enemy release hypothesis. We also assessed whether natural enemy impacts differed in response to key environmental factors in tallgrass prairie by surveying the prevalence of rust on the dominant C4 grass, Andropogon gerardii, and its congeneric invasive exotic C4 grass, A. bladhii, in response to fire and nitrogen fertilization treatments. Overall, we found that the native species sustain 56.4% more overall leaf damage and 83.6% more herbivore-related leaf damage when compared to the exotic species. Moreover, we found that the invasive exotic species sustained less damage from enemies relative to their corresponding native species than the noninvasive exotic species. Finally, we found that burning and nitrogen fertilization both significantly increased the prevalence of rust fungi in the native grass, while rust fungi rarely occurred on the exotic grass. These results indicate that reduced damage from enemies may in part explain the successful naturalization of exotic species and the spread of invasive exotic species in tallgrass prairie.  相似文献   

14.
Ants are highly influential organisms in terrestrial ecosystems, including the tallgrass prairie, one of the most endangered ecosystems in North America. Through their tunneling, ants affect soil properties and resource availability for animals and plants. Ants also have important ecological roles as consumers of plant tissue and seeds. In the last several decades, various organizations, agencies, and agricultural producers have attempted to create wildlife habitat or reduce soil erosion by seeding thousands of hectares of bare cropland in the central United States with tallgrass prairie seed mixes. Although initially, monitoring of these restorations and of unplowed prairie remnants focused on plants and birds, in recent years the response of invertebrates such as ants has increasingly been the subject of research. An understanding of tallgrass prairie ant communities can help land managers and scientists better monitor the ecological condition of tallgrass prairie and guide management and restoration efforts. Here I review our current knowledge of ant species found within tallgrass prairie, their ecological roles, and their response to management.  相似文献   

15.
Little of the historical extent of tallgrass prairie ecosystems remains in North America, and therefore there is strong interest in restoring prairies. However, slow‐growing prairie plants are initially weak competitors with the fast‐growing yet short‐lived weedy plant species that are typically abundant in recently established prairie restorations. One way to aid establishment of slow‐growing plant species is through adding soil amendments to prairie restorations before planting. Arbuscular mycorrhizal (AM) fungi form mutualisms with the roots of most terrestrial plants and are particularly important for the growth of slow‐growing prairie plant species. As prairie ecosystems are adapted to fires that leave biochar (charred organic material) in the soil, adding biochar as well as AM fungal strains from undisturbed remnant prairies into the soil of prairie restorations may improve restoration outcomes. Here, we test this prediction during the first four growing seasons of a prairie restoration. When prairie plant seedlings were inoculated prior to planting into the field with AM fungi derived from remnant prairies, that one‐time inoculation significantly increased growth of five of the nine tested plant species through at least two growing seasons. This long‐term benefit of AM fungal inoculation was unaffected by biochar addition to the soil. Biochar application rates of at least 10 tons/ha significantly decreased Coreopsis tripteris growth but acted synergistically with AM fungal inoculation to significantly improve survival of Schizachyrium scoparium. Overall, inoculation with native AM fungi can help promote prairie plant establishment, but concomitant use of biochar soil amendments had relatively little effect.  相似文献   

16.
In grasslands worldwide, grazing by ungulates and periodic fires are important forces affecting resource availability and plant community structure. It is not clear, however, whether changes in community structure are the direct effects of the disturbance (i.e. fire and grazing) or are mediated indirectly through changes in resource abundance and availability. In North American tallgrass prairies, fire and grazing often have disparate effects on plant resources and plant diversity, yet, little is known about the individual and interactive effects of fire and grazing on resource variability and how that variability relates to heterogeneity in plant community structure, particularly at small scales. We conducted a field study to determine the interactive effects of different long-term fire regimes (annual vs four-year fire frequency) and grazing by native ungulates ( Bos bison ) on small-scale plant community structure and resource variability (N and light) in native tallgrass prairie. Grazing enhanced light and nitrogen availability, but did not affect small-scale resource variability. In addition, grazing reduced the dominance of C4 grasses which enhanced species richness, diversity and community heterogeneity. In contrast, annual fire increased community dominance and reduced species richness and diversity, particularly in the absence of grazing, but had no effect on community heterogeneity, resource availability and resource variability. Variability in the abundance of resources showed no relationship with community heterogeneity at the scale measured in this study, however we found a relationship between community dominance and heterogeneity. Therefore, we conclude that grazing generated small-scale community heterogeneity in this mesic grassland by directly affecting plant community dominance, rather than indirectly through changes in resource variability.  相似文献   

17.
Fire is an important tool in the conservation and restoration of tallgrass prairie ecosystems. We investigated how both the vegetation composition and butterfly community of tallgrass prairie remnants changed in relation to the elapsed time (in months) since prescribed fire. Butterfly richness and butterfly abundance were positively correlated with the time since burn. Habitat-specialist butterfly richness recovery time was greater than 70 months post-fire and habitat-specialist butterfly abundance recovery time was approximately 50 months post-fire. Thus, recovery times for butterfly populations after prescribed fires in our study were potentially longer than those previously reported. We used Path Analysis to evaluate the relative contributions of the direct effect of time since fire and the indirect effects of time since fire through changes in vegetation composition on butterfly abundance. Path models highlighted the importance of the indirect effects of fire on habitat features, such as increases in the cover of bare ground. Because fire return intervals on managed prairie remnants are often less than 5 years, information on recovery times for habitat-specialist insect species are of great importance.  相似文献   

18.
Bakker C  Blair JM  Knapp AK 《Oecologia》2003,137(3):385-391
Grazing by large ungulates often increases plant species richness in grasslands of moderate to high productivity. In a mesic North American grassland with and without the presence of bison (Bos bison), a native ungulate grazer, three non-exclusive hypotheses for increased plant species richness in grazed grasslands were evaluated: (1) bison grazing enhances levels of resource (light and N) availability, enabling species that depend on higher resource availability to co-occur; (2) spatial heterogeneity in resource availability is enhanced by bison, enabling coexistence of a greater number of plant species; (3) increased species turnover (i.e. increased species colonization and establishment) in grazed grassland is associated with enhanced plant species richness. We measured availability and spatial heterogeneity in light, water and N, and calculated species turnover from long-term data in grazed and ungrazed sites in a North American tallgrass prairie. Both regression and path analyses were performed to evaluate the potential of the three hypothesized mechanisms to explain observed patterns of plant species richness under field conditions. Experimental grazing by bison increased plant species richness by 25% over an 8-year period. Neither heterogeneity nor absolute levels of soil water or available N were related to patterns of species richness in grazed and ungrazed sites. However, high spatial heterogeneity in light and higher rates of species turnover were both strongly related to increases in plant species richness in grazed areas. This suggests that creation of a mosaic of patches with high and low biomass (the primary determinant of light availability in mesic grasslands) and promotion of a dynamic species pool are the most important mechanisms by which grazers affect species richness in high productivity grasslands.  相似文献   

19.
Cover and richness of a 5‐year revegetation effort were studied with ,respect to small‐scale disturbance and nutrient manipulations. The site, originally a relict tallgrass prairie mined for gravel, was replanted to native grasses using a seed mixture of tall‐, mixed‐, and short‐grass species. Following one wet and three relatively dry years, a community emerged, dominated by species common in saline soils not found along the Colorado Front Range. A single species, Alkali sacaton (Sporobolus airoides), composed nearly 50% of relative vegetation cover in control plots exhibiting a negative relationship between cover and richness. Seeded species composed approximately 92% of vegetation cover. The remaining 8% was composed of weeds from nearby areas, seed bank survivors, or mix contaminants. Three years of soil nutrient amendments, which lowered plant‐available nitrogen and phosphorus, significantly increased relative cover of seeded species to 97.5%. Fertilizer additions of phosphate enhanced abundance of introduced annual grasses (Bromus spp.) but did not significantly alter cover in control plots. Unmanipulated 4‐m2 plots contained an average of 4.7 planted species and 3.9 nonplanted species during the 5‐year period, whereas plots that received grass herbicide averaged 5.4 nonplanted species. Species richness ranged from an average 6.9 species in low‐nutrient, undisturbed plots to 10.9 species in the relatively high‐nutrient, disturbed plots. The use of stockpiled soils, applied sparingly, in conjunction with a native seed mix containing species uncommon to the preexisting community generated a species‐depauperate, novel plant community that appears resistant to invasion by ruderal species.  相似文献   

20.
Two abundant tallgrass prairie forb species, Ambrosia psilostachya and Vernonia baldwinii, are commonly found intact in patches where the grasses have been selectively grazed by bison. Microclimatic patterns and physiological responses of these forbs were measured in grazed and ungrazed patches. These experiments demonstrated that bison herbivory indirectly enhanced water availability and productivity of forbs growing in grazed patches. This was due primarily to the reduction in transpiring grass leaf area in grazed patches and an increase in light availability. In grazed patches, incident light at forb mid-canopy height was 53% greater than ungrazed sites at midseason and soil temperatures were always warmer (e.g., 10°C at 5 cm), perhaps enabling forbs to initiate growth earlier in the spring. Enhanced leaf xylem pressure potential and stomatal conductance in plants in grazed areas were most evident when water availability was low (i.e., late in the growing season and over short-term dry periods characteristic of the tallgrass prairie environment). Relative to individuals in ungrazed areas, end-of-season biomass of A. psilostachya was 40% greater and reproductive biomass and head number of V. baldwinii was 45% and 40% greater, respectively, in plants in grazed patches. A favorable growing environment maintained in grazed patches during periods of water limitation enhances carbon gain in forbs leading to increased biomass and potential fitness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号