首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The voltage-sensitive sodium channel is generally regarded as the primary target site of dichlorodiphenyl-trichloro-ethane (DDT) and pyrethroid insecticides, and has been implicated in the widely reported mechanism of nerve insensitivity to these compounds. This phenomenon is expressed as knockdown resistance (kdr) and has been best characterised in the housefly where several putative alleles, including the more potent super-kdr factor, have been identified. We report the isolation of cDNA clones containing part of a housefly sodium channel gene, designated Msc, which show close homology to the para sodium channel of Drosophila (99% amino acid identity within the region of overlap). Using Southern blots of insect DNA, restriction fragment length polymorphisms (RFLPs) at the Msc locus were identified in susceptible, kdr and super-kdr housefly strains. These RFLPs showed tight linkage to resistance in controlled crosses involving these strains, thus providing clear genetic evidence that kdr, and hence pyrethroid mode of action, is closely associated with the voltage-sensitive sodium channel.  相似文献   

2.
Pyrethroid insecticides have been extensively used in China and worldwide for public health pest control. Accurate resistance monitoring is essential to guide the rational use of insecticides and resistance management. Here we examined the nucleotide diversity of the para-sodium channel gene, which confers knockdown resistance (kdr) in Culex pipiens pallens mosquitoes in China. The sequence analysis of the para-sodium channel gene identified L1014F and L1014S mutations. We developed and validated allele-specific PCR and the real-time TaqMan methods for resistance diagnosis. The real-time TaqMan method is more superior to the allele-specific PCR method as evidenced by higher amplification rate and better sensitivity and specificity. Significant positive correlation between kdr allele frequency and bioassay-based resistance phenotype demonstrates that the frequency of L1014F and L1014S mutations in the kdr gene can be used as a molecular marker for deltamethrin resistance monitoring in natural Cx. pipiens pallens populations in the East China region. The laboratory selection experiment found that L1014F mutation frequency, but not L1014S mutation, responded to deltamethrin selection, suggesting that the L1014F mutation is the key mutation conferring resistance to deltamethrin. High L1014F mutation frequency detected in six populations of Cx. pipens pallens suggests high prevalence of pyrethroid resistance in Eastern China, calling for further surveys to map the resistance in China and for investigating alternative mosquito control strategies.  相似文献   

3.
4.
Culex quinquefasciatus is one of the most important mosquito vectors of arboviruses. Currently, the fastest approach to control disease transmission is the application of synthetic adulticide insecticides. However, in highly populated urban centers the development of insecticide resistance in mosquito populations could impair insecticide efficacy and therefore, disease control. To assess the effect of resistance on vector control, females of Cx. quinquefasciatus collected from six mosquito control operational areas in Harris County, Texas, were treated in field cage tests at three different distances with the pyrethroid Permanone® 31–66 applied at the operational rate. Females were analyzed by sequencing and/or diagnostic PCR using de novo designed primers for detecting the kdr-like mutation in the voltage-gated sodium channel (L982F; TTA to TTT) (house fly kdr canonical mutation L1014F). Females from the Cx. quinquefasciatus susceptible Sebring strain and those from the six operational areas placed at 30.4 m from the treatment source were killed in the tests, while 14% of field-collected mosquitoes survived at 60.8 m, and 35% at 91.2 m from the source. The diagnostic PCR had a with 97.5% accuracy to detect the kdr-like mutation. Pyrethroid resistant mosquitoes carrying the L982F mutation were broadly distributed in Harris County at high frequency. Among mosquitoes analyzed (n = 1,028), the kdr-kdr genotype was prevalent (81.2%), the kdr-s genotype was 18%, and s-s mosquitoes were less than 1% (n = 8). A logistic regression model estimated an equal probability of survival for the genotypes kdr-kdr and kdr-s in all areas analyzed. Altogether, our results point to a high-risk situation for the pyrethroid-based arboviral disease control in Harris County.  相似文献   

5.
The toxicity of cypermethrin to the horn fly Haematobia irritans (L.) (Diptera: Muscidae) was determined for samples collected from untreated herds at a farm in central Argentina from October 1997 to May 2001. Field tests of the efficacy of cypermethrin against horn flies were first carried out at this farm in 1993, when the fly was shown to be susceptible to pyrethroids. Subsequently the horn fly populations on this farm were shown to have become resistant and, since 1997, the use of cypermethrin has been restricted to experimental purposes. In this study, fly samples collected in 1999, 2000 and 2001 were subjected to a polymerase chain reaction (PCR) to detect the presence of a specific nucleotide substitution in the sodium channel gene sequence, which has been associated with target site insensitivity to pyrethroids. This analysis showed that the level of cypermethrin resistance had diminished between 1997 and 2001. However, this was not sufficient to restore the efficacy of this pyrethroid to the level found prior to the onset of resistance. Heterozygous and homozygous resistant flies were detected in all samples of flies subjected to PCR diagnosis of alleles conferring target site resistance.  相似文献   

6.
7.
The tomato leafminer, Tuta absoluta (Meyrich) (Lepidoptera: Gelechiidae), is a serious pest of tomato crops worldwide. The intensive use of chemical pesticides to control it has led to the selection of resistant populations. This study investigated the resistance of T. absoluta populations to pyrethroid and the organophosphate insecticides from ten regions of Iran. The resistance ratios at LC50 for chlorpyrifos and diazinon varied among populations from 4.3 to 12 and from 1.4 to 9.0, respectively. The resistance ratios of the pyrethroids cypermethrin, deltamethrin and permethrin varied from 1.3 to 3.7, 2.7 to 13 and 1.2 to 4.3, respectively. Inclusion of synergists in toxicological bioassays and the variation observed in the activity of esterases, glutathione Stransferase and cytochrome P450‐dependent monooxygenase suggest the existence of metabolically based resistance. Esterase and P450 biochemical assays were positively correlated with deltamethrin, and cypermethrin tolerance and diazinon tolerance correlated with esterase activity. The genes encoding the organophosphate and pyrethroid target sites acetylcholinesterase (ace1) and sodium channel (kdr) were partly sequenced. The genotyping revealed mutations in high frequencies in all populations leading to an A201S substitution in ace1 and three substitutions in the sodium channel gene L1014F, M918T, T929I. In summary, our results indicate the presence of organophosphate and pyrethroid resistance in Iranian T. absoluta populations with involvement of both detoxification enzymes and target site alterations. Most likely the populations of T. absoluta imported to Iran were resistant upon arrival.  相似文献   

8.
《Journal of Asia》2020,23(2):277-284
The house fly, Musca domestica (Linnaeus) (Diptera: Muscidae), is a major pest for human and livestock health and is also resistant to different insecticides. Herein, six M. domestica populations were collected, five of them from industrial cattle farms and the Koohrang population from a remote area as a susceptible population. The resistance/susceptibility of populations to three pyrethroids was evaluated. High levels of permethrin resistance were observed in all field populations and the resistance ratios (RRs) were estimated to vary from 52- to 129-fold. Resistant populations also exhibited resistance to other pyrethroids (cypermethrin and deltamethrin), with RRs ranging between 45- and 180-fold. According to synergistic (piperonyl butoxide, diethyl maleate and triphenyl phosphate) and enzymatic assays, resistant populations exhibited multiple resistance phenotypes. Cytochrome P450 monooxygenases (P450s), glutathione S-transferases (GSTs), and carboxylesterases (CarEs) were found to be involved in pyrethroid resistance in Isfahan population, P450s and GSTs in Mobarake population and CarEs detoxified pyrethroids in Natanz and Alavijeh populations. As substitution of Leucine (CTT) with Phenylalanine (TTT) at position 1014 of the voltage sensitive sodium channel (VSSC) gene is the most common mutation conferring resistance to pyrethroids in M. domestica, we sequenced a partial fragment of IIS6 and L1014F mutation was detected in all resistant populations. The present study provides valuable information for early detection of pyrethroid resistance and developing resistance management strategies in the house fly populations.  相似文献   

9.
The horn fly, Haematobia irritans, is a serious pest of cattle in North America. The control of horn flies has primarily relied on insecticides. However, the heavy use of insecticides has led to the development of insecticide resistance in horn flies. Novel methods to control horn flies are greatly needed. Transgenic technology is an effective tool to genetically modify insects and may lead to novel methods of pest control based on genomic approaches. Here we report a piggyBac‐mediated transformation of the horn fly via electroporation. Transformation with a DsRed fluorescent marker protein coding region was verified by PCR analysis of individual fly bodies and pupal cases and sequencing of PCR products. However, Southern blot analysis failed to indicate the DsRed gene was integrated into the horn fly genome. Thus, the electroporation protocol may have caused the DsRed gene to be integrated into bacterial symbionts of the horn fly.  相似文献   

10.
Pyrethroid insecticides have been effective and powerful for controlling mosquitoes. However, abuse of these insecticides increases the number of resistant mosquitoes. In this study, Culex pipiens pallens and Aedes koreicus were collected from an artificial reservoir in the vicinity of a populated area in Korea, which is also a migratory bird catchment area. To monitor resistance to pyrethroid insecticides in mosquitoes, genomic DNA from the collected mosquitoes was sequenced for the kdr mutation in the voltage‐gated sodium channel (VGSC) gene. As a result, three samples with homozygous resistance (17.6%) and one with heterozygous resistance (5.9%) were found among 17 Cx. pipiens pallens specimens. One of the samples had a unique sequence at the amplified VGSC region. Of the 15 Ae. koreicus, no insecticide resistant individuals were found. In Korea, this is the first report of kdr genetic traits in Ae. koreicus and Cx. pipiens pallens and of a unique VGSC allele in Cx. pipiens pallens. Further investigation is needed to monitor the kdr resistance of these species in Korea and to determine how the unique sequence found in Cx. pipiens pallens is related to insecticide resistance.  相似文献   

11.
Human head lice are blood-sucking insects causing an infestation in humans called pediculosis capitis. The infestation is more prevalent in the school-aged population. Scalp itching, a common presenting symptom, results in scratching and sleep disturbance. The condition can lead to social stigmatization which can lead to loss of self-esteem. Currently, the mainstay of treatment for pediculosis is chemical insecticides such as permethrin. The extended use of permethrin worldwide leads to growing pediculicide resistance. The aim of this study is to demonstrate the presence of the knockdown resistance (kdr) mutation in head lice populations from six different localities of Thailand. A total of 260 head lice samples in this study were collected from 15 provinces in the 6 regions of Thailand. Polymerase chain reaction (PCR) was used to amplify the α subunit of voltage-sensitive sodium channel (VSSC) gene, kdr mutation (C→T substitution). Restriction fragment length polymorphism (RFLP) patterns and sequencing were used to identify the kdr T917I mutation and demonstrated three genotypic forms including homozygous susceptible (SS), heterozygous genotype (RS), and homozygous resistant (RR). Of 260 samples from this study, 156 (60.00%) were SS, 58 (22.31%) were RS, and 46 (17.69%) were RR. The overall frequency of the kdr T917I mutation was 0.31. Genotypes frequencies determination using the exact test of Hardy-Weinberg equilibrium found that northern, central, northeastern, southern, and western region of Thailand differed from expectation. The five aforementioned localities had positive inbreeding coefficient value (Fis > 0) which indicated an excess of homozygotes. The nucleotide and amino acid sequences of RS and RR showed T917I and L920F point mutations. In conclusion, this is the first study detecting permethrin resistance among human head lice from Thailand. PCR-RFLP is an easy technique to demonstrate the kdr mutation in head louse. The data obtained from this study would increase awareness of increasing of the kdr mutation in head louse in Thailand.  相似文献   

12.
The voltage-sensitive sodium channel is generally regarded as the primary target site of dichlorodiphenyl-trichloro-ethane (DDT) and pyrethroid insecticides, and has been implicated in the widely reported mechanism of nerve insensitivity to these compounds. This phenomenon is expressed as knockdown resistance (kdr) and has been best characterised in the housefly where several putative alleles, including the more potent super-kdr factor, have been identified. We report the isolation of cDNA clones containing part of a housefly sodium channel gene, designated Msc, which show close homology to the para sodium channel of Drosophila (99% amino acid identity within the region of overlap). Using Southern blots of insect DNA, restriction fragment length polymorphisms (RFLPs) at the Msc locus were identified in susceptible, kdr and super-kdr housefly strains. These RFLPs showed tight linkage to resistance in controlled crosses involving these strains, thus providing clear genetic evidence that kdr, and hence pyrethroid mode of action, is closely associated with the voltage-sensitive sodium channel.  相似文献   

13.
14.
The emergence of insecticide resistance in Anopheles (Diptera: Culicidae) mosquitoes has great implications for malaria control in Nigeria. This study aimed to determine the dynamics of insecticide susceptibility levels and the frequency of knock‐down resistance (kdr) mutations (L1014F) in wild Anopheles coluzzii Coetzee & Wilkerson sp. n. and Anopheles gambiae Giles from the Ojoo and Bodija areas of Ibadan, in southwest Nigeria. Insecticide susceptibility to pyrethroids, organophosphates, carbamates and organochlorines was assessed using World Health Organization (WHO) bioassays. A subset of the mosquitoes exposed to pyrethroids and DDT was used for species and molecular form identification; kdr genotyping was determined using the TaqMan real‐time polymerase chain reaction assay. The mosquitoes were resistant to pyrethroids and DDT but completely susceptible to organophosphates and carbamates. Bodija samples (n = 186) consisted of An. gambiae (91.4%) and An. coluzzii (8.1%) and included one An. coluzzii/An. gambiae hybrid specimen. All mosquitoes screened in Ojoo (n = 26) were An. gambiae. The 1014F kdr mutation was detected at frequencies of 24.5 and 5.8% in Bodija and Ojoo, respectively. No correlation was observed between kdr genotypes and resistance phenotypes. The results indicate that metabolic resistance probably plays an important role in the development of resistance and highlight the need to implement insecticide resistance management strategies.  相似文献   

15.
The horn fly Haematobia irritans (Diptera: Muscidae) is a blood obligate ectoparasite of bovids that causes annual losses to the U.S. beef cattle industry of over US$1.75 billion. Climate warming, the anthropogenic dispersion of bovids and the cross‐breeding of beef cattle with other bovid species may facilitate novel horn fly–host interactions. In particular, hybridizing yaks [Bos grunniens (Artiodactyla: Bovidae)] with beef cows (Bos taurus) for heterosis and carcass improvements may increase the exposure of yak × beef hybrids to horn flies. The present paper reports on the collection of digital images of commingled beef heifers (n = 12) and F1 yak × beef hybrid bovids (heifers, n = 7; steers, n = 5) near Laramie, Wyoming (~ 2200 m a.s.l.) in 2018. The total numbers of horn flies on beef heifers and F1 yak × beef heifers [mean ± standard error (SE): 88 ± 13 and 70 ± 17, respectively] did not differ significantly; however, F1 yak × beef steers had greater total horn fly abundance (mean ± SE: 159 ± 39) than female bovids. The present report of this experiment is the first such report in the literature and suggests that F1 yak × beef bovids are as susceptible as cattle to horn fly parasitism. Therefore, similar monitoring and treatment practices should be adopted by veterinarians, entomologists and producers.  相似文献   

16.
Effective vector control is currently challenged worldwide by the evolution of resistance to all classes of chemical insecticides in mosquitoes. In Martinique, populations of the dengue vector Aedes aegypti have been intensively treated with temephos and deltamethrin insecticides over the last fifty years, resulting in heterogeneous levels of resistance across the island. Resistance spreading depends on standing genetic variation, selection intensity and gene flow among populations. To determine gene flow intensity, we first investigated neutral patterns of genetic variability in sixteen populations representative of the many environments found in Martinique and experiencing various levels of insecticide pressure, using 6 microsatellites. Allelic richness was lower in populations resistant to deltamethrin, and consanguinity was higher in populations resistant to temephos, consistent with a negative effect of insecticide pressure on neutral genetic diversity. The global genetic differentiation was low, suggesting high gene flow among populations, but significant structure was found, with a pattern of isolation-by-distance at the global scale. Then, we investigated adaptive patterns of divergence in six out of the 16 populations using 319 single nucleotide polymorphisms (SNPs). Five SNP outliers displaying levels of genetic differentiation out of neutral expectations were detected, including the kdr-V1016I mutation in the voltage-gated sodium channel gene. Association tests revealed a total of seven SNPs associated with deltamethrin resistance. Six other SNPs were associated with temephos resistance, including two non-synonymous substitutions in an alkaline phosphatase and in a sulfotransferase respectively. Altogether, both neutral and adaptive patterns of genetic variation in mosquito populations appear to be largely driven by insecticide pressure in Martinique.  相似文献   

17.
Selection pressure caused by long‐term intensive use of insecticides is the key driving force in resistance development. Additional parameters such as environmental conditions may affect both the mosquito response to insecticides and the selection of resistance mechanisms. In this context, we analyzed the environmental determinants of kdr prevalence in Anopheles sinensis across China. We collected kdr frequency from 48 sites across central and southern China, together with key environmental factors including long‐term climatic data, topographic features, main crops, and land cover types. Trend surface analysis found that the distribution of kdr frequency can be partitioned into three regions, namely central China (kdr frequency >80%), western China (kdr frequency varies from 0% to 60%), and southern China (kdr frequency <10%). Seven predictor variables were selected based on a radial basis function neural network model. A multilayer perceptron (MLP) network model revealed that the number of crops in a year was the most important predictor for the kdr mutation rate. Topography, long‐term mean climate and land cover all contributed to the kdr mutation rate. The observed mean kdr frequency was 53.0% and the MLP network model‐predicted mean was 52.6%, a 0.1% relative error. Predicted kdr frequencies closely matched the observed values. The model explained 92% of the total variance in kdr frequency. The results indicated that kdr was associated with the intensity of pesticide usage. Crop cultivation information, together with environmental factors, may well predict the spatial heterogeneity of kdr mutations in An. sinensis in China.  相似文献   

18.
The gene para in Drosophila melanogaster encodes an α subunit of voltage-activated sodium channels, the presumed site of action of DDT and pyrethroid insecticides. We used an existing collection of Drosophila para mutants to examine the molecular basis of target-site resistance to pyrethroids and DDT. Six out of thirteen mutants tested were associated with a largely dominant, 10- to 30-fold increase in DDT resistance. The amino acid lesions associated with these alleles defined four sites in the sodium channel polypeptide where a mutational change can cause resistance: within the intracellular loop between S4 and S5 in homology domains I and III, within the pore region of homology domain III, and within S6 in homology domain III. Some of these sites are analogous with those defined by knockdown resistance (kdr) and super-kdr resistance-associated mutations in houseflies and other insects, but are located in different homologous units of the channel polypeptide. We find a striking synergism in resistance levels with particular heterozygous combinations of para alleles that appears to mimic the super-kdr double mutant housefly phenotype. Our results indicate that the alleles analyzed from natural populations represent only a subset of mutations that can confer resistance. The implications for the binding site of pyrethroids and mechanisms of target-site insensitivity are discussed. Received: 9 May 1997 / Accepted: 21 July 1997  相似文献   

19.
Although having five different ways of transmission the vector-borne is the principal way of transmission of Chagas disease, which involves insects of the subfamily Triatominae (Hemiptera: Reduviidae). Nineteen of the 31 species that occur in Mexico are associated with humans, and all are capable of transmitting the disease. Pyrethroids are the insecticides recommended for the control of these vectors in Mexico. We determined the susceptibility to the pyrethroids dcltamethrin and permethrin of peridomestic populations of Triatoma mazzottii Usinger and two populations of Triatoma longipetmis Usinger in comparison with a reference strain for each species. Bioassays were performed for the determination of the LD50 for both field populations and reference strains. A maximum of 27 fold resistance to deltamethrin was observed in T. mazzottii, meanwhile, for permethrin, T. longipennis from Jalisco show the highest value of 3.19 fold. There was significantly increased activity of esterases in field populations in comparison with their corresponding reference strain. The results of the search of kdr mutations related to the resistance to deltamethrin and permethrin in the evaluated species show the presence of mutations in the field populations, as is the case with individuals of T. mazzottii, for which the mutation was found A943V, and for the two populations of T. longipennis included in this study, we report the presence of the kdr mutation K964R. Evaluation of the various mechanisms involved in resistance to pyrethroids in triatomines from Mexico could guide us to the real justification for insecticide resistance monitoring.  相似文献   

20.
The L1014F mutation in the voltage‐sodium channel gene has been associated with resistance to DDT and pyrethroids in various arthropod species including mosquitoes. We determined the frequency of the L1014F kdr mutation in 16 field populations of Culex quinquefasciatus from Northeastern Mexico collected between 2008 and 2013. The L1014F was present in all populations analyzed with the lowest frequency (3.33%) corresponding to the population from Monclova collected in 2012, and the highest frequency (63.63%) from the Monterrey population collected in 2012. The presence of a kdr mutation in populations of Cx. quinquefasciatus from northeastern Mexico provides evidence of pyrethroid resistance. This requires a special attention, considering that pyrethroid‐based insecticides are commonly used in vector‐control campaigns, especially against Aedes aegypti (L.).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号