首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dinoflagellate genus Coolia, which contains potentially toxic species, is an important component of epiphytic assemblages in marine ecosystems. The morphology of C. malayensis has been illustrated from strains isolated in Asia and Oceania. In this study, strains of C. malayensis isolated from the Caribbean Sea in Puerto Rico, and for the first time from the South Atlantic Ocean in Brazil, were investigated by light, epifluorescence and scanning electron microscopies. No significant morphological differences between these new strains and other geographically distant strains of C. malayensis were observed. In the LSU rDNA phylogeny, the C. malayensis sequences from Brazil and Puerto Rico branched within the clade of strains from Oceania and Asia. The recently described species C. santacroce branched as a sister group of C. monotis, and C. palmyrensis was basal to the combined group of C. monotis/C. malayensis/C. santacroce. A tentative undescribed species from Florida and New Zealand branched as a sister group of C. malayensis. Our results confirm that C. malayensis showed a cosmopolitan distribution in tropical to subtropical waters, while the type species C. monotis remains endemic for the Mediterranean Sea and the temperate North Atlantic.  相似文献   

2.
Coolia species are epiphytic and benthic dinoflagellates with a cosmopolitan distribution in tropical and subtropical areas. In the austral summer of 2016, during a survey in Bahía Calderilla, a dinoflagellate of the genus Coolia was detected in macroalgae samples, and a clonal culture was established. Subsequently, the cultured cells were observed by scanning electron microscopy (SEM) and identified as C. malayensis based on their morphological characteristics. Phylogenetic analyses based on the LSU rDNA D1/D2 regions confirmed that strain D005-1 corresponded to C. malayensis and clustered with strains isolated from New Zealand, Mexico, and Asia Pacific countries. Although the strain D005-1 culture did not contain yessotoxin (YTX), cooliatoxin, 44-methyl gambierone, or its analogs in detectable amounts by LC–MS/MS, more research is needed to evaluate its toxicity and to determine the possible impact of C. malayensis in northern Chilean waters.  相似文献   

3.
In this study, inter- and intraspecific genetic diversity within the marine harmful dinoflagellate genus Coolia Meunier was evaluated using isolates obtained from the tropics to subtropics in both Pacific and Atlantic Ocean basins. The aim was to assess the phylogeographic history of the genus and to clarify the validity of established species including Coolia malayensis. Phylogenetic analysis of the D1-D2 LSU rDNA sequences identified six major lineages (L1–L6) corresponding to the morphospecies Coolia malayensis (L1), C. monotis (L2), C. santacroce (L3), C. palmyrensis (L4), C. tropicalis (L5), and C. canariensis (L6). A median joining network (MJN) of C. malayensis ITS2 rDNA sequences revealed a total of 16 haplotypes; however, no spatial genetic differentiation among populations was observed. These MJN results in conjunction with CBC analysis, rDNA phylogenies and geographical distribution analyses confirm C. malayensis as a distinct species which is globally distributed in the tropical to warm-temperate regions. A molecular clock analysis using ITS2 rDNA revealed the evolutionary history of Coolia dated back to the Mesozoic, and supports the hypothesis that historical vicariant events in the early Cenozoic drove the allopatric differentiation of C. malayensis and C. monotis.  相似文献   

4.
5.
We have developed 11 microsatellite markers that are specific to Chattonella antiqua, C. marina, and C. ovata, the red tide‐forming harmful phytoplanktons. The 11 loci were amplified in the three species. The number of alleles per locus ranged from 5 to 16. The three species shared most microsatellite regions, although the genetic differences in specific loci were detected among them. These markers of the Chattonella species will be beneficial for biogeographical, detailed taxonomic, studies.  相似文献   

6.
The dinoflagellate genus Coolia Meunier is an important epi-benthic organism that is commonly found in association with other dinoflagellates known to cause ciguatera. Two closely related taxa, Coolia monotis and Coolia malayensis, make up the C. monotis species complex. In this study we introduce two new toxic species that should be included in that complex, Coolia palmyrensis Karafas, Tomas, York sp. nov. and Coolia santacroce Karafas, Tomas, York sp. nov., collected from the Palmyra Atoll in the Pacific Ocean and Saint Croix, US Virgin Islands, respectively. These two species can be distinguished morphologically by size, pore shape, pore density, and the relative size of the apical pore complex. The ITS1/5.8S/ITS2 and the D1/D2 regions of the LSU rDNA were used to provide molecular support of morphological observations using maximum likelihood and Bayesian analyses. Furthermore, C. palmyrensis and C. santacroce both showed cytotoxic effects on human derived cells in vitro.  相似文献   

7.
Recent molecular phylogenetic studies of Gambierdiscus species flagged several new species and genotypes, thus leading to revitalizing its systematics. The inter-relationships of clades revealed by the primary sequence information of nuclear ribosomal genes (rDNA), however, can sometimes be equivocal, and therefore, in this study, the taxonomic status of a ribotype, Gambierdiscus sp. type 6, was evaluated using specimens collected from the original locality, Marakei Island, Republic of Kiribati; and specimens found in Rawa Island, Peninsular Malaysia, were further used for comparison. Morphologically, the ribotype cells resembled G. scabrosus, G. belizeanus, G. balechii, G. cheloniae and G. lapillus in thecal ornamentation, where the thecal surfaces are reticulate-foveated, but differed from G. scabrosus by its hatchet-shaped Plate 2′, and G. belizeanus by the asymmetrical Plate 3′. To identify the phylogenetic relationship of this ribotype, a large dataset of the large subunit (LSU) and small subunit (SSU) rDNAs were compiled, and performed comprehensive analyses, using Bayesian-inference, maximum-parsimony, and maximum-likelihood, for the latter two incorporating the sequence-structure information of the SSU rDNA. Both the LSU and SSU rDNA phylogenetic trees displayed an identical topology and supported the hypothesis that the relationship between Gambierdiscus sp. type 6 and G. balechii was monophyletic. As a result, the taxonomic status of Gambierdiscus sp. type 6 was revised, and assigned as Gambierdiscus balechii. Toxicity analysis using neuroblastoma N2A assay confirmed that the Central Pacific strains were toxic, ranging from 1.1 to 19.9 fg P-CTX-1 eq cell−1, but no toxicity was detected in a Western Pacific strain. This suggested that the species might be one of the species contributing to the high incidence rate of ciguatera fish poisoning in Marakei Island.  相似文献   

8.
Spiny-surfaced species of Prorocentrum form harmful algal blooms, and its taxonomic identity is obscure due to the size and shape variability. Molecular phylogenies reveal two major clades: one for P. cordatum with sequences mainly retrieved as P. minimum, and the other for P. shikokuense with sequences also retrieved as P. dentatum and P. donghaiense. Several closely related clades still need to be characterized. Here, we provide nuclear SSU and LSU rRNA genes, and nuclear ITS region (ITS1-5.8S gene-ITS2) sequences of the strain CCMP3122 isolated from Florida (initially named P. donghaiense) and strains Prorocentrum sp. RCC6871–2 from the Ross Sea, Antarctica. We describe Prorocentrum thermophilum sp. nov. based on the strain CCMP3122, a species also distributed in the open waters of the Gulf of Mexico, New Zealand, and the Arabian Gulf; and Prorocentrum criophilum sp. nov. based on the strain RCC6872, which is distributed in the Antarctic Ocean and Arctic Sea. Prorocentrum thermophilum is roundish (~14 μm long, ~12 μm wide), with an inconspicuous anterior spine-like prolongation under light microscopy, valves with tiny, short knobs (5–7 per μm2), and several (<7) large trichocyst pores (~0.3 μm) in the right valve, as well as smaller pores (~0.15 μm). Prorocentrum criophilum is round in valve view (~11 μm long, 10 μm wide) and asymmetrically roundish in lateral view, the periflagellar area was not discernible under light microscopy, valves with very tiny, short knobs (6–10 per μm2), and at least 12 large pores in the right valve. Other potentially undescribed species of spiny-surfaced Prorocentrum are discussed.  相似文献   

9.
Due to the increasing prevalence of Dinophysis spp. and their toxins on every US coast in recent years, the need to identify and monitor for problematic Dinophysis populations has become apparent. Here, we present morphological analyses, using light and scanning electron microscopy, and rDNA sequence analysis, using a ~2-kb sequence of ribosomal ITS1, 5.8S, ITS2, and LSU DNA, of Dinophysis collected in mid-Atlantic estuarine and coastal waters from Virginia to New Jersey to better characterize local populations. In addition, we analyzed for diarrhetic shellfish poisoning (DSP) toxins in water and shellfish samples collected during blooms using liquid-chromatography tandem mass spectrometry and an in vitro protein phosphatase inhibition assay and compared this data to a toxin profile generated from a mid-Atlantic Dinophysis culture. Three distinct morphospecies were documented in mid-Atlantic surface waters: D. acuminata, D. norvegica, and a “small Dinophysis sp.” that was morphologically distinct based on multivariate analysis of morphometric data but was genetically consistent with D. acuminata. While mid-Atlantic D. acuminata could not be distinguished from the other species in the D. acuminata-complex (D. ovum from the Gulf of Mexico and D. sacculus from the western Mediterranean Sea) using the molecular markers chosen, it could be distinguished based on morphometrics. Okadaic acid, dinophysistoxin 1, and pectenotoxin 2 were found in filtered water and shellfish samples during Dinophysis blooms in the mid-Atlantic region, as well as in a locally isolated D. acuminata culture. However, DSP toxins exceeded regulatory guidance concentrations only a few times during the study period and only in noncommercial shellfish samples.  相似文献   

10.
Dinoflagellates of the genus Gambierdiscus are known to produce neurotoxins that cause the human illness ciguatera, a tropical and sub‐tropical fish poisoning. Some species from the Gambierdiscus genus were recently re‐classified into a new genus, Fukuyoa based on their phylogenetic and morphological divergence, however, little is known about their distribution, ecology and toxicology. Here we report the first occurrence of F. paulensis in the temperate coastal waters of eastern Australia and characterize its toxicology. Liquid chromatography–tandem mass spectrometry (LC–MS/MS) did not detect the presence of ciguatoxins, however, a putative maitotoxin congener (MTX‐3) was present. Similarly, high maitotoxin‐like activity was detected in High Performance Liquid Chromatography (HPLC) fractionated cell extracts using a Ca2+ influx bioassay on a Fluorescent Imaging Plate Reader (FLIPR), but no ciguatoxin‐like activity was detected.  相似文献   

11.
Harmful algal bloom (HAB) is a proliferation of algae, which naturally produce biotoxins and cause harmful effects to humans, the environment and organisms associated with it. Paralytic shellfish poisoning (PSP) was reported for the first time in Kuantan Port, Pahang, Malaysia, in November 2013, followed by a second episode in August 2014. The toxicity level reported during the second event was as high as 3500 μg of STX equiv./100 g shellfish. Ten people were hospitalized with PSP symptoms after consuming contaminated shellfish. This study was conducted at Kuantan Port to identify the organisms responsible for these events. Water samples were collected monthly for a period of 12 months beginning in September 2014. HAB species were identified based on their morphology using light and fluorescence microscopes, and their classification was supported by molecular evidence based on internal transcribed spacer (ITS) sequences. Monthly cell abundance of Alexandrium tamiyavanichii was measured at four sampling stations. Toxin production by three strains isolated from the area was determined using HPLC. Our results revealed the presence of several HAB species, including the PSP‐producing species A . tamiyavanichii . The highest cell density of A . tamiyavanichii was 840 cells L?1. The presence of GTX components was detected in these strains. However, other toxin components could not be determined. This study reported, for the first time, the presence of PSP‐producing A . tamiyavanichii on the Pahang coast of east Peninsular Malaysia and confirmed that the PSP events in Kuantan Port were attributable to this species. The presence of this species further indicates that several safety measures need to be considered to safeguard public health, particularly in Pahang coastal waters.  相似文献   

12.
13.
We isolated 12 polymorphic microsatellites from the noxious red‐tide‐causing alga Chattonella ovata. These loci provide a class of highly variable genetic markers, as the number of alleles ranged from four to 12, and the observed and expected heterozygosities ranged from 0.238 to 0.850 and from 0.310 to 0.889, respectively. These loci are useful for revealing the genetic structure of and gene flow among C. ovata populations.  相似文献   

14.
甲藻环沟藻属于一类无色素体、表面有脊的裸甲藻, 因可捕食一些重要的赤潮生物而在海洋生态系统中扮演着重要的角色。有关中国近海环沟藻属的物种多样性信息非常有限。本文报道了2个新记录种——纺锤环沟藻(Gyrodinium fusiforme)和莫氏环沟藻(G. moestrupii)。纺锤环沟藻细胞呈纺锤形, 长48.0-58.0 μm, 宽18.0-23.0 μm, 长宽比为2.4-3.0, 和模式种相比体型和长宽比都较小。莫氏环沟藻细胞也呈纺锤形, 长约30 μm, 宽约15 μm。我们测定了纺锤环沟藻和莫氏环沟藻大亚基的部分序列, 并根据大亚基序列利用最大似然法和贝叶斯法建立了系统发育树。结果显示环沟藻属是单源的, 纺锤环沟藻和裂缝环沟藻(G. fissum)聚合在一起, 但是与螺旋环沟藻(G. spirale)分离。纺锤环沟藻和莫氏环沟藻分别可以摄食米氏凯伦藻(Karenia mikimotoi)和具齿原甲藻(Prorocentrum dentatum), 前者在米氏凯伦藻赤潮中的大量出现显示它可以促进赤潮的消退。  相似文献   

15.
Pseudo‐nitzschia H. Peragallo is a marine diatom genus found worldwide in polar, temperate, subtropical and tropical waters. It includes toxigenic representatives that produce domoic acid (DA), a neurotoxin responsible for Amnesic Shellfish Poisoning. In this study we characterized two species of Pseudo‐nitzschia collected from Port Stephens and the Hawkesbury River (south eastern Australia) previously unreported from Australian waters. Clonal isolates were sub‐sampled for (i) light and transmission electron microscopy; (ii) DNA sequencing, based on the nuclear‐encoded partial large subunit ribosomal RNA gene and internal transcribed spacer (ITS)‐ITS1, 5.8S and ITS2 rDNA regions and, (iii) DA production as measured by liquid chromatography‐mass spectrometry. Morphological and molecular data unambiguously revealed the species to be Pseudo‐nitzschia micropora Priisholm, Moestrup & Lundholm (Port Stephens) and Pseudo‐nitzschia hasleana Lundholm (Hawkesbury River). This is the first report of the occurrence of these species from the Southern Hemisphere and the first report of P. micropora in warm‐temperate waters. Cultures of P. micropora, tested for DA production for the first time, proved to be non‐toxic. Similarly, no detectable toxin concentrations were observed for P. hasleana. Species resolution and knowledge on the toxicity of local Pseudo‐nitzschia species has important implications for harmful algal bloom monitoring and management.  相似文献   

16.
Two species of the marine sand-dwelling dinoflagellate genus Cabra were found in epiphytic assemblages on macrophytes from Peter the Great Bay of the Sea of Japan: the type species of the genus Cabra matta and a new species Cabra levis sp. nov. The new species possesses all characteristics of the genus, e.g. the same plate formula (APC 3′ 1a 5′′ 3c 6s 5′′′ 1′′′′), and is 29.0–42.0 µm long and 24.6–37.8 µm deep. It differs from other Cabra species by its more rounded shape, in lacking a spine on the dorsal side of the cell and a pointed flange on plate 1′′′, in having nearly smooth thecal plates as well as by the position of the epithecal plates. Some details of the sulcal construction of Cabra species are described for the first time. Cabra levis and C. matta were found on macrophytes throughout the year. As both species occurred more often on macrophytes than in near-shore sand, they are epiphytic rather than sand-dwelling.  相似文献   

17.
Benthic dinoflagellates of the genus Ostreopsis produce palytoxin (PTX)‐like compounds. The worldwide distributed Ostreopsis ovata/O. cf. ovata is potentially responsible for outbreaks of human health problems around the coasts of tropical, subtropical, and temperate regions. The present study examined growth responses of an O. cf. ovata strain s0662 collected from coastal waters of Japan with 35 different combinations of temperature (15–35°C) and salinity (20–40) and discusses the bloom dynamics of the organism in Japanese coastal environments. The O. cf. ovata strain s0662 tolerated a wide range of temperature (17.5–35°C) and salinity (25–40). Results of a two‐way ANOVA showed significant effects of temperature‐salinity interaction on growth rates and biomass yields of the O. cf. ovata strain (F(24,70) > 127, P < 0.001). The strain showed a maximal growth rate (1.03 divisions day?1) and biomass yield (240 relative fluorescence) at temperature 25°C and salinity 30. The high growth rates of over 1.0 division day?1 were obtained in conditions of temperature 25–30°C and salinity 30–35, which indicates that strain s0662 prefers high temperature and salinity conditions. The growth rates of O. cf. ovata under the optimal conditions were higher than those of other benthic toxic‐dinoflagellates, Coolia monotis, Gambierdiscus toxicus, and Prorocentrum lima (Dinophyceae) previously reported. Taken together, we suggest that O. cf. ovata is able to grow faster than the other benthic dinoflagellates in waters of high temperature and salinity. The physiological feature probably confers an ecological advantage on O. cf. ovata in the bloom development during warmer seasons in Japan and may be responsible for outbreaks of PTX‐like poisoning in the region especially during the warmer seasons.  相似文献   

18.
We first reported here that the harmful alga Cochlodinium polykrikoides, which had been previously known as an autotrophic dinoflagellate, was a mixotrophic species. We investigated the kinds of prey species and the effects of the prey concentration on the growth and ingestion rates of C. polykrikoides when feeding on an unidentified cryptophyte species (Equivalent Spherical Diameter, ESD = 5.6 microm). We also calculated grazing coefficients by combining field data on abundances of C. polykrikoides and co-occurring cryptophytes with laboratory data on ingestion rates obtained in the present study. Cocholdinium polykrikoides fed on prey cells by engulfing the prey through the sulcus. Among the phytoplankton prey offered, C. polykrikoides ingested small phytoplankton species that had ESD's < or = 11 microm (e.g. the prymnesiophyte Isochrysis galbana, an unidentified cryptophyte, the cryptophyte Rhodomonas salina, the raphidophyte Heterosigma akashiwo, and the dinoflagellate Amphidinium carterae). It did not feed on larger phytoplankton species that had ESD's > or = 12 microm (e.g. the dinoflagellates Heterocapsa triquetra, Prorocentrum minimum, Scrippsiella sp., Alexandrium tamarense, Prorocentrum micans, Gymnodinium catenatum, Akashiwo sanguinea, and Lingulodinium polyedrum). Specific growth rates of C. polykrikoides on a cryptophyte increased with increasing mean prey concentration, with saturation at a mean prey concentration of approximately 270 ng C ml(-1) (i.e. 15,900 cells ml(-1)). The maximum specific growth rate (mixotrophic growth) of C. polykrikoides on a cryptophyte was 0.324 d(-1), under a 14:10 h light-dark cycle of 50 microE m(-2) s(-1), while its growth rate (phototrophic growth) under the same light conditions without added prey was 0.166 d(-1). Maximum ingestion and clearance rates of C. polykrikoides on a cryptophyte were 0.16 ng C grazer(-1)d(-1) (9.4 cells grazer(-1)d(-1)) and 0.33 microl grazer(-1)h(-1), respectively. Calculated grazing coefficients by C. polykrikoides on cryptophytes were 0.001-0.745 h(-1) (i.e. 0.1-53% of cryptophyte populations were removed by a C. polykrikoides population in 1 h). The results of the present study suggest that C. polykrikoides sometimes has a considerable grazing impact on populations of cryptophytes.  相似文献   

19.
A new benthic phototrophic dinoflagellate is described from sediments of a tropical marine cove at Martinique Island and its micromorphology is studied by means of light and electron microscopy. The cell contains small golden-brown chloroplasts and the oval nucleus is posterior. It is laterally compressed, almost circular in shape when viewed laterally. It consists of a small epitheca tilted toward the right lateral side and a larger hypotheca. In the left view, the cingulum is more anterior and the epitheca is reduced. The cingulum is displaced and left-handed. This organism is peculiar in having no apical pore and its thecal plate arrangement is 2′ 1a 7′′ 5c 3s 5′′′ 1′′′′. The plates are smooth with small groups of pores scattered on their surface. An area with 60–80 densely arranged pores is found near the centre of the 2′′′ plate, on the left lateral side. Morphologically, these features are different from all other laterally compressed benthic genera. In addition, molecular genetic sequences of SSU and partial LSU form a distinct and well-supported clade among dinoflagellates and support the erection of a new genus. However, molecular phylogenies inferred from ribosomal genes failed to confirm any clear relationship with other benthic taxa and affinity with other laterally compressed dinoflagellates has not been demonstrated. Hence, the taxonomic affinity of Madanidinium loirii with a defined order and family is unclear at the moment.  相似文献   

20.
Species of the genus Gambierdiscus Adachi & Fukuyo, in particular G. toxicus Adachi & Fukuyo are known producers of neurotoxins associated with ciguatera fish poisoning (CFP). In this study live samples were collected from seaweed beds of the east coast of Sabah, Malaysian Borneo and a strain of Gambierdiscus was isolated and cultured. Examination of the thecal fine morphology was undertaken using light, epifluorescence, and scanning electron microscopy. Observed morphological features and their associated morphometric information enabled identification to Gambierdiscus belizeanus Faust. This represents the first report for the occurrence of G. belizeanus in the Asia Pacific region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号