首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fourteen species of land snails have been tested for their preference for surfaces at 0, 90 or 180 degrees under laboratory conditions. They range from high-spired (height/breadth = 4.1) to discoidal forms (height/breadth = 0.4). There is a positive association of spire height with tendency to adopt the 90 degree surface. Species of intermediate (globular) shape show less specificity for a particular surface than high- or low-spired species. The exception is Helix aspersa , which behaves more like one of the high-spired species than like one of its similarly shaped relatives. The differences in preference will help to reduce interaction between co-existing species in the field.  相似文献   

2.
The existence of consistent individual differences in behaviour (‘animal personality’) has been well documented in recent years. However, how such individual variation in behaviour is maintained over evolutionary time is an ongoing conundrum. A well-studied axis of animal personality is individual variation along a bold–shy continuum, where individuals differ consistently in their propensity to take risks. A predation-risk cost to boldness is often assumed, but also that the reproductive benefits associated with boldness lead to equivalent fitness outcomes between bold and shy individuals over a lifetime. However, an alternative or complementary explanation may be that bold individuals phenotypically compensate for their risky lifestyle to reduce predation costs, for instance by investing in more pronounced morphological defences. Here, we investigate the ‘phenotypic compensation’ hypothesis, i.e. that bold individuals exhibit more pronounced anti-predator defences than shy individuals, by relating shell shape in the aquatic snail Radix balthica to an index of individual boldness. Our analyses find a strong relationship between risk-taking propensity and shell shape in this species, with bolder individuals exhibiting a more defended shell shape than shy individuals. We suggest that this supports the ‘phenotypic compensation’ hypothesis and sheds light on a previously poorly studied mechanism to promote the maintenance of personality variation among animals.  相似文献   

3.
《Trends in genetics : TIG》2023,39(9):703-714
Phenotypic plasticity, the ability of an organism to display different phenotypes across environments, is widespread in nature. Plasticity aids survival in novel environments. Herein, we review studies from yeast that allow us to start uncovering the genetic architecture of phenotypic plasticity. Genetic variants and their interactions impact the phenotype in different environments, and distinct environments modulate the impact of genetic variants and their interactions on the phenotype. Because of this, certain hidden genetic variation is expressed in specific genetic and environmental backgrounds. A better understanding of the genetic mechanisms of phenotypic plasticity will help to determine short- and long-term responses to selection and how wide variation in disease manifestation occurs in human populations.  相似文献   

4.
Morphologic and phylogenetic analysis of freshwater sponges endemic to lakes in Central Sulawesi, Siberia and South-East Europe is presented. We also analyzed several cosmopolitan sponge species from Eurasia and North America and included sponge sequences from public databases. In agreement with previous reports [Addis, J.S., Peterson, K.J., 2005. Phylogenetic relationships of freshwater sponges (Porifera, Spongillina) inferred from analyses of 18S rDNA, COI mtDNA, and ITS2 rDNA sequences. Zool. Scr. 34, 549-557], the metaniid sponge Corvomeyenia sp. was the most deeply branching species within a monophyletic lineage of the suborder Spongillina. Pachydictyum globosum (Malawispongiidae) and Nudospongilla vasta (Spongillidae), two morphologically quite distinct species from Sulawesi were found in a joint clade with Trochospongilla (Spongillidae) rendering Trochospongilla paraphyletic. Furthermore, Ochridaspongia sp., another Malawispongiidae, clustered far away from that clade, together with Ephydatia fluviatilis, making the latter family polyphyletic. The Lubomirskiidae endemic to Lake Baikal, Lubomirskia abietina, Baikalospongia bacillifera, B. intermedia, and Swartschewskia papyracea formed a well-supported clade that was most closely linked to the genus Ephydatia (99.9% identity over a total length of 2169 concatenated nucleotide positions). Our study indicates the frequent and independent origin of sponge species endemic to different freshwater ecosystems from a few cosmopolitan founder species. The highly specific primer sets newly developed here facilitate work on the molecular phylogeny and DNA barcoding of sponges.  相似文献   

5.
Morphology and aestivation behaviour in some Madagascan acavid land snails   总被引:2,自引:0,他引:2  
Nine species of Madagascan acavid land snails were compared in a phylogenetic context. The two most plesiomorphic, Clauator johnsoni and C. moreleti, differ from the others by their high-spired shells, short tentacles, short tails, long necks, and crawling mode of hitching the shell along the ground. In the seven more apomorphic species, the crawling mode is smooth, with the shell resting on the tail, and the relative lengths of tail and shell correlate significantly. Among these seven species, three pairs of closest relatives (Helicophanta petiti and H. uesicalis, H. farafanga and H. souuerbiana, Ampeltta decaryi and A. julii) show evidence of phylogenetic constraints on ranked shell size. Aestivation site (as tentatively inferred from rare data) does not correlate with shell shape or size: burrowers have H/D = 2.7 to 0.6 and D = 70 to 25 mm; arboreals have H/D = 0.8 to 0.5 and D = 70 to 30 mm; the species with both the highest spire and the smallest diameter (C. moreleti) is neither a burrower or an arboreal, but stays on the ground surface. Inferred aestivation sites are randomly distributed phylogenetically. Climate shows no correlation, except that the arborcals are only from humid to wet regimes. Uniform shell colouration occurs only in burrowers (C. johnsoni, H. petiti, H. uestcalis), but disruptive shell colouration occurs in all others, including burrowers (H. farafanga, A. decaryt), ground-surface aestivators (C. moreleti), arboreals (H. souuerbiana, A. julii), and semi-arboreals (Ampefita subfunebris). Among all nine species, burrowers have significantly thicker shells (than their close relatives of similar size), wider bodies, and longer snouts than non-burrowers (H. souuerbiana is exceptional in being arboreal despite its huge size and in having the broad foot and snout of a burrower). Thus, although there is some evidence for phylogenetic constraints, natural selection for aestivation and crawling behaviours seems to have dominated the evolution of external body morphology and of shell thickness (but not shell size and shape) in these snails.  相似文献   

6.
7.
Three species of the families Viviparidae and Pleuroceridae, the first intermediate host of paragonimiasis, metagonimiasis and echinostomiasis were studied cytologically. The observed diploid chromosome number was as follows: Semisulcospira libertina 36, S. dolichostoma 34, and Viviparus rivularis 64. The mitotic chromosome complement of S. libertina has nine metacentric pairs and nine submetacentric pairs, and S. dolichostoma has three metacentric pairs and 14 submetacentric pairs of chromosomes. Viviparus rivularis showed two metacentric pairs and 30 submetacentric pairs of chromosomes.  相似文献   

8.
Ancient lakes represent one of the most stable freshwater environments on Earth, with a species richness clearly exceeding that of younger and more short-lived limnic habitats. In most cases, the biological colonization of old lake systems must have occurred via the surrounding rivers. Two ancient lake systems of Sulawesi (Malili lake system and Lake Poso) have been studied in terms of the taxonomy and phylogeny of freshwater crabs (Decapoda: Brachyura: Gecarcinucidae: Parathelphusinae). Both systems have been colonized twice independently, and in both systems we can find three trophic niches which are always occupied by different crab species: molluskivores, omnivores, and detritivores. In the present study, we reconstruct phylogenies of freshwater crabs from more than 20 river systems of Sulawesi. We thereby confirm two independent colonization events for both ancient lake systems, with subsequent radiations. The phylogenies imply that the lineages which evolved into the molluskivore forms were the first ones to colonize, whereas omnivores and detritivores are derived from later colonization events and, based on their monophyletic relationship, resulted from minor lacustrine radiations. Most of the diversity of freshwater crabs from Sulawesi remains taxonomically undescribed. This study uncovers several undocumented phylogenetic units, with long independent evolutionary histories according to patristic distances.  相似文献   

9.
Many authors have described a pattern of morphological variation in freshwater bivalves where shells taken from lentic and lotic environments, or headwaters and main stem reaches, appear to exhibit phenotypic gradients in size and shape. For example, mussels taken from headwater reaches tend to possess smooth, less inflated shells compared to the more obese, sculptured individuals downstream. Others observed similar relationships in certain freshwater gastropods, but this variation has not been quantified nor its existence explained in an ecological or evolutionary context. Geometric morphometrics indicated freshwater snails shells from the pleurocerid genus Lithasia from the Duck River, Tennessee, USA, show phenotypic gradients similar to those in freshwater mussels. Shells from upstream areas were narrow and less sculptured on the posterior portions of their body whorls, while downstream shells were more inflated and possessed significantly more sculpture. This phenotypic variation may reduce predation or damage due to dislodging. The nature of the observed plasticity suggests an unidirectional environment similar to that proposed by the river continuum concept. Handling editor: K. Martens  相似文献   

10.
Evolutionary constraint results from the interaction between the distribution of available genetic variation and the position of selective optima. The availability of genetic variance in multitrait systems, as described by the additive genetic variance-covariance matrix (G), has been the subject of recent attempts to assess the prevalence of genetic constraints. However, evolutionary constraints have not yet been considered from the perspective of the phenotypes available to multivariate selection, and whether genetic variance is present in all phenotypes potentially under selection. Determining the rank of the phenotypic variance-covariance matrix (P) to characterize the phenotypes available to selection, and contrasting it with the rank of G, may provide a general approach to determining the prevalence of genetic constraints. In a study of a laboratory population of Drosophila bunnanda from northern Australia we applied factor-analytic modeling to repeated measures of individual wing phenotypes to determine the dimensionality of the phenotypic space described by P. The phenotypic space spanned by the 10 wing traits had 10 statistically supported dimensions. In contrast, factor-analytic modeling of G estimated for the same 10 traits from a paternal half-sibling breeding design suggested G had fewer dimensions than traits. Statistical support was found for only five and two genetic dimensions, describing a total of 99% and 72% of genetic variance in wing morphology in females and males, respectively. The observed mismatch in dimensionality between P and G suggests that although selection might act to shift the intragenerational population mean toward any trait combination, evolution may be restricted to fewer dimensions.  相似文献   

11.
Species flocks in ancient lakes have long been appreciated as ideal model systems for the study of speciation and adaptive processes. We here present data from a new invertebrate model system with intrinsic parameters distinct from those of other documented radiations. The ancient lakes on Sulawesi harbour an endemic species flock of at least 33 species of viviparous snails. Molecular data reveal multiple independent colonizations of the lakes by riverine ancestors. In each colonizing clade, parallel evolution of conspicuous shell morphologies, followed by a differentiation of trophic morphology and the development of habitat specificity can be observed. Extensive shell crushing experiments and strong dentition of the chelae observed in some lacustrine crab species suggest that coevolution with crabs, i.e. escalation, is the most likely cause of initial shell divergence. By contrast, repeated parallel evolution in radula morphology indicates that speciation within lineages is driven by divergent adaptation to different resources among sympatric taxa. The inclusion of coevolutionary processes is unique in this system compared with diversification models developed for vertebrate radiations.  相似文献   

12.
The objective of the present study was to estimate heritabilities as well as genetic and phenotypic correlations for egg weight, specific gravity, shape index, shell ratio, egg shell strength, egg length, egg width and shell weight in Japanese quail eggs. External egg quality traits were measured on 5864 eggs of 934 female quails from a dam line selected for two generations. Within the Bayesian framework, using Gibbs Sampling algorithm, a multivariate animal model was applied to estimate heritabilities and genetic correlations for external egg quality traits. The heritability estimates for external egg quality traits were moderate to high and ranged from 0.29 to 0.81. The heritability estimates for egg and shell weight of 0.81 and 0.76 were fairly high. The genetic and phenotypic correlations between egg shell strength with specific gravity, shell ratio and shell weight ranging from 0.55 to 0.79 were relatively high. It can be concluded that it is possible to determine egg shell quality using the egg specific gravity values utilizing its high heritability and fairly high positive correlation with most of the egg shell quality traits. As a result, egg specific gravity may be the choice of selection criterion rather than other external egg traits for genetic improvement of egg shell quality in Japanese quails.  相似文献   

13.
Novel phenotypes can come about through a variety of mechanisms including standing genetic variation from a founding population. Cave animals are an excellent system in which to study the evolution of novel phenotypes such as loss of pigmentation and eyes. Asellus aquaticus is a freshwater isopod crustacean found in Europe and has both a surface and a cave ecomorph which vary in multiple phenotypic traits. An orange eye phenotype was previously revealed by F2 crosses and backcrosses to the cave parent within two examined Slovenian cave populations. Complete loss of pigmentation, both in eye and body, is epistatic to the orange eye phenotype and therefore the orange eye phenotype is hidden within the cave populations. Our goal was to investigate the origin of the orange eye alleles within the Slovenian cave populations by examining A. aquaticus individuals from Slovenian and Romanian surface populations and Asellus aquaticus infernus individuals from a Romanian cave population. We found orange eye individuals present in lab raised surface populations of A. aquaticus from both Slovenia and Romania. Using a mapping approach with crosses between individuals of two surface populations, we found that the region known to be responsible for the orange eye phenotype within the two previously examined Slovenian cave populations was also responsible within both the Slovenian and the Romanian surface populations. Complementation crosses between orange eye Slovenian and orange eye Romanian surface individuals suggest that the same gene is responsible for the orange eye phenotype in both surface populations. Additionally, we observed a low frequency phenotype of eye loss in crosses generated between the two surface populations and also in the Romanian surface population. Finally, in a cave population from Romania, A. aquaticus infernus, we found that the same region is also responsible for the orange eye phenotype as the Slovenian cave populations and the Slovenian and Romanian surface populations. Therefore, we present evidence that variation present in the cave populations could originate from standing variation present in the surface populations and/or transgressive hybridization of different surface phylogenetic lineages rather than de novo mutations.  相似文献   

14.
Using a phylogenomic approach with 10 fungi of very different virulence and habitat, we determined that there was substantial diversification of subtilase-type proteases early in ascomycete history (with subsequent loss in many lineages) but with no comparable diversification of trypsins. Patterns of intron loss and the degree of divergence between paralogues demonstrated that the proliferation of proteinase K subtilases and subtilisin type subtilases seen in pathogenic ascomycetes (Metarhizium anisopliae, Magnaporthe grisea, Fusarium graminearum) occurred after the basidiomycete/ascomycete split but predated radiation of ascomycete lineages. This suggests that the early ascomycetes had a lifestyle that selected for multiple proteases, whereas the current disparity in gene numbers between ascomycete lineages results from retention of genes in at least some pathogens that have been lost in other lineages (yeasts, Aspergillus nidulans, Neurospora crassa). A similar prevailing trend towards lineage specific gene loss of trypsins in saprophytes and some pathogens suggests that their phylogenetic breadth will have been much wider in early fungi than currently.  相似文献   

15.
Receptor-like kinases (RLKs) play significant roles in mediating innate immunity and development of plants. The evolution of plant RLKs has been characterized by extensive variation in copy numbers and domain configurations. However, much remains unknown about the origin, evolution, and early diversification of plant RLKs. Here, we perform phylogenomic analyses of RLKs across plants (Archaeplastida), including embryophytes, charophytes, chlorophytes, prasinodermophytes, glaucophytes, and rhodophytes. We identify the presence of RLKs in all the streptophytes (land plants and charophytes), nine out of 18 chlorophytes, one prasinodermophyte, and one glaucophyte, but not in rhodophytes. Interestingly, the copy number of RLKs increased drastically in streptophytes after the split of the clade of Mesostigmatophyceae and Chlorokybophyceae and other streptophytes. Moreover, phylogenetic analyses suggest RLKs from charophytes form diverse distinct clusters, and are dispersed along the diversity of land plant RLKs, indicating that RLKs have extensively diversified in charophytes and charophyte RLKs seeded the major diversity of land plant RLKs. We identify at least 81 and 76 different kinase-associated domains for charophyte and land plant RLKs, 23 of which are shared, suggesting that RLKs might have evolved in a modular fashion through frequent domain gains or losses. We also detect signatures of positive selection for many charophyte RLK groups, indicating potential functions in host–microbe interaction. Taken together, our findings provide significant insights into the early evolution and diversification of plant RLKs and the ancient evolution of plant–microbe symbiosis.  相似文献   

16.
17.
The predictability of evolution depends on the roles that selection and historical contingency play in determining its outcomes, but the relative importance of these evolutionary mechanisms has attracted considerable debate. One view is that historical events have such a profound impact on the genetic structure of populations that patterns of phenotypic evolution are essentially unpredictable. The opposing view is that selection is so powerful that evolutionary change is primarily deterministic, and thus highly predictable. By controlling for the effects of phylogeny, geographic location and habitat, this study examined the relative roles of contingency and determinism in a local radiation of land snails, genus Rhagada, in a continental archipelago. Informed by previous studies on a single island, which revealed a strong association between low‐spired shells and rocky habitats, 28 population pairs were sampled in directly adjoining rocky and spinifex plain habitats. When considered in their respective pairs, the effect of habitat was remarkably consistent, with lower‐spired shells observed in the rocky habitat in 24 of the comparisons. However, when analyzed outside the context of those pairs, the association was obscured by broad variation in shell shape within habitat types and among lineages. These results reveal the complex nature of a morphological radiation; while the pattern of ecological divergence is highly predictable at the scale that selection acts, deterministic evolution is largely obscured by phylogenetic and population history.  相似文献   

18.
The present day distribution and spatial genetic diversity of Mesoamerican biota reflects a long history of responses to habitat change. The hummingbird Lampornis amethystinus is distributed in northern Mesoamerica, with geographically disjunct populations. Based on sampling across the species range using mitochondrial DNA (mtDNA) sequences and nuclear microsatellites jointly analysed with phenotypic and climatic data, we (1) test whether the fragmented distribution is correlated with main evolutionary lineages, (2) assess body size and plumage color differentiation of populations in geographic isolation, and (3) evaluate a set of divergence scenarios and demographic patterns of the hummingbird populations. Analysis of genetic variation revealed four main groups: blue‐throated populations (Sierra Madre del Sur); two groups of amethyst‐throated populations (Trans‐Mexican Volcanic Belt and Sierra Madre Oriental); and populations east of the Isthmus of Tehuantepec (IT) with males showing an amethyst throat. The most basal split is estimated to have originated in the Pleistocene, 2.39–0.57 million years ago (MYA), and corresponded to groups of populations separated by the IT. However, the estimated recent divergence time between blue‐ and amethyst‐throated populations does not correspond to the 2‐MY needed to be in isolation for substantial plumage divergence, likely because structurally iridescent colors are more malleable than others. Results of species distribution modeling and Approximate Bayesian Computation analysis fit a model of lineage divergence west of the Isthmus after the Last Glacial Maximum (LGM), and that the species’ suitable habitat was disjunct during past and current conditions. These results challenge the generality of the contraction/expansion glacial model to cloud forest‐interior species and urges management of cloud forest, a highly vulnerable ecosystem to climate change and currently facing destruction, to prevent further loss of genetic diversity or extinction.  相似文献   

19.
Biogeography and genetic variation of freshwater organisms are influenced not only by current freshwater connections but also by past drainage networks. The Seto Inland Sea is a shallow enclosed sea in Japan, but geological evidence showed that a large freshwater drainage had intermittently appeared in this area between the late Pliocene and Pleistocene. Here, we demonstrated that this paleodrainage greatly affected the genetic variation of the East Asian freshwater snails, Semisulcospira spp. We found that the mtDNA haplotypes originated in the Lake Biwa endemic Semisulcospira species at the upstream side of the paleodrainage were frequently observed in the riverine Semisulcospira species at its downstream side. The genome‐wide DNA and morphological analyses consistently showed that there was no clear evidence of nuclear introgression between the Lake Biwa endemics and riverine species. These results suggest that the large paleodrainage had facilitated mitochondrial introgression and had broadly spread the introgressed mtDNA haplotypes to its downstream region around the Seto Inland Sea. Our study highlights the role of paleodrainages in shaping the genetic variation of freshwater organisms.  相似文献   

20.
We have earlier found that freshwater pond snails Helisoma trivolvis and Lymnaea stagnalis, when reared under conditions of starvation, release chemical signals that reversibly suppress larval development of conspecific embryos. Here, we report that (i) these signals are not strictly conspecific and affect also embryos of a closely related species, which occupies a similar environmental niche; (ii) besides the development of embryos, the signals also affect the release of main motor programs, such as locomotion, feeding, and cardiac activity; (iii) action of the signals is bidirectional: they retard the development and release of motor programs at the early larval stages (trochophore to veliger) and accelerate them at later stages (late veliger to hatching). A possible adaptive significance of the described phenomena is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号