首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exosomes are extracellular vesicles that transport different molecules between cells. They are formed and stored inside multivesicular bodies (MVB) until they are released to the extracellular environment. MVB fuse along the plasma membrane, driving non‐polarized secretion of exosomes. However, polarized signaling potentially directs MVBs to a specific point in the plasma membrane to mediate a focal delivery of exosomes. MVB polarization occurs across a broad set of cellular situations, e.g. in immune and neuronal synapses, cell migration and in epithelial sheets. In this review, we summarize the current state of the art of polarized MVB docking and the specification of secretory sites at the plasma membrane. The current view is that MVB positioning and subsequent exosome delivery requires a polarizing, cytoskeletal dependent‐trafficking mechanism. In this context, we propose scenarios in which biochemical and mechanical signals could drive the polarized delivery of exosomes in highly polarized cells, such as lymphocytes, neurons and epithelia.   相似文献   

2.
R S Molday  L L Molday 《FEBS letters》1984,170(2):232-238
Immunospecific magnetic microspheres, consisting of ferromagnetic iron dextran conjugated to Protein A, were used to specifically label red blood cells (RBC) for cell separation studies using high gradient magnetic chromatography ( HGMC ). When 10(7)-10(8) RBC labeled with Protein A-iron dextran microspheres were applied to a column containing 30 mg stainless steel wire placed in a 7.5 kilogauss magnetic field, 96 +/- 2% of the cells were retained in the column. These cells could be eluted by removing the magnetic field and mechanically agitating the column. The retention of labeled cells by HGMC was shown to be dependent on the applied magnetic field and the amount of wire packed into the column. HGMC in conjunction with cell labeling with immunospecific iron dextran microspheres have useful applications for the separation of specific cell types.  相似文献   

3.
4.
Cell separation using methodological standards that ensure high purity is a very important step in cell transplantation for regenerative medicine and for stem cell research. A separation protocol using magnetic beads has been widely used for cell separation to isolate negative and positive cells. However, not only the surface marker pattern, e.g., negative or positive, but also the density of a cell depends on its developmental stage and differentiation ability. Rapid and label‐free separation procedures based on surface marker density are the focus of our interest. In this study, we have successfully developed an antiCD34 antibody‐immobilized cell‐rolling column, that can separate cells depending on the CD34 density of the cell surfaces. Various conditions for the cell‐rolling column were optimized including graft copolymerization, and adjustment of the column tilt angle, and medium flow rate. Using CD34‐positive and ‐negative cell lines, the cell separation potential of the column was established. We observed a difference in the rolling velocities between CD34‐positive and CD34‐negative cells on antibody‐immobilized microfluidic device. Cell separation was achieved by tilting the surface 20 degrees and the increasing medium flow. Surface marker characteristics of the isolated cells in each fraction were analyzed using a cell‐sorting system, and it was found that populations containing high density of CD34 were eluted in the delayed fractions. These results demonstrate that cells with a given surface marker density can be continuously separated using the cell rolling column. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

5.
1. Twenty‐one submersed macrophyte species were grown in the greenhouse at low and high dissolved inorganic carbon (DIC) concentrations and at pH 6 to test the hypothesis that growth response to DIC enrichment in the water column would be greatest for species able to use both bicarbonate (HCO) and free CO2 from the water column, intermediate for species restricted to free CO2 in the water column, and least for those species able to use free CO2 from both sediment porewater and the water column. 2. Relative growth rates (RGR) increased significantly with DIC enrichment for 12 of the 21 species. Bicarbonate users as a group averaged a 4.6‐fold increase in RGR with DIC enrichment, significantly greater than the 2.5‐ and 1.7‐fold increases of the water column CO2 users and sediment CO2 users, respectively. 3. The ability to use HCO, as measured by a pH drift technique, was positively correlated with the ratio of RGR at high DIC to RGR at low DIC for the 21 species. 4. Bicarbonate users also exhibited significantly lower belowground : total biomass (R : T) ratios than the other two groups, and alone showed a significant increase in R : T ratio with DIC enrichment. 5. Our results indicate that DIC availability may influence community structure in acidic and circumneutral lakes.  相似文献   

6.
Proteins involved in the organizing of lipid rafts can be found in exosomes, as shown for caveolin‐1, and they could contribute to exosomal cargo sorting, as shown for flotillins. Stomatin belongs to the same stomatin/prohibitin/flotillin/HflK/C family of lipid rafts proteins, but it has never been studied in exosomes except for extracellular vesicles (EVs) originating from blood cells. Here we first show the presence of stomatin in exosomes produced by epithelial cancer cells (non–small cell lung cancer, breast, and ovarian cancer cells) as well as in EVs from biological fluids, including blood plasma, ascitic fluids, and uterine flushings. A high abundance of stomatin in EVs of various origins and its enrichment in exosomes make stomatin a promising exosomal marker. Comparison with other lipid raft proteins and exosomal markers showed that the level of stomatin protein in exosomes from different sources corresponds well to that of CD9, while it differs essentially from flotillin‐1 and flotillin‐2 homologs, which in turn are present in exosomes in nearly equal proportions. In contrast, the level of vesicular caveolin‐1 as well as its EV‐to‐cellular ratio vary drastically depending on cell type.  相似文献   

7.
Exosomes are deliverers of critically functional proteins, capable of transforming target cells in numerous cancers, including hepatocellular carcinoma (HCC). We hypothesize that the motility of HCC cells can be featured by comparative proteome of exosomes. Hence, we performed the super‐SILAC‐based MS analysis on the exosomes secreted by three human HCC cell lines, including the non‐motile Hep3B cell, and the motile 97H and LM3 cells. More than 1400 exosomal proteins were confidently quantified in each MS analysis with highly biological reproducibility. We justified that 469 and 443 exosomal proteins represented differentially expressed proteins (DEPs) in the 97H/Hep3B and LM3/Hep3B comparisons, respectively. These DEPs focused on sugar metabolism‐centric canonical pathways per ingenuity pathway analysis, which was consistent with the gene ontology analysis on biological process enrichment. These pathways included glycolysis I, gluconeogenesis I and pentose phosphate pathways; and the DEPs enriched in these pathways could form a tightly connected network. By analyzing the relative abundance of proteins and translating mRNAs, we found significantly positive correlation between exosomes and cells. The involved exosomal proteins were again focusing on sugar metabolism. In conclusion, motile HCC cells tend to preferentially export more sugar metabolism‐associated proteins via exosomes that differentiate them from non‐motile HCC cells.  相似文献   

8.
The maturation of magnetic cell separation technology places increasing demands on magnetic cell separation performance. While a number of factors can cause sub‐optimal performance, one of the major challenges can be non‐specific binding of magnetic nano‐ or microparticles to non‐targeted cells. Depending on the type of separation, this non‐specific binding can have a negative effect on the final purity, the recovery of the targeted cells, or both. In this work, we quantitatively demonstrate that non‐specific binding of magnetic nanoparticles can impart a magnetization to cells such that these cells can be retained in a separation column and thus negatively impact the purity of the final product and the recovery of the desired cells. Through experimental data and theoretical arguments, we demonstrate that the number of MACS magnetic particles needed to impart a magnetization that is sufficient to cause non‐targeted cells to be retained in the column to be on the order of 500–1,000 nanoparticles. This number of non‐specifically bound particles was demonstrated experimentally with an instrument, cell tracking velocimeter, CTV, and it is demonstrated that the sensitivity of the CTV instrument for Fe atoms contained in magnetic nanoparticles on the order of 1 × 10?15 g/mL of Fe. Biotechnol. Bioeng. 2010;105: 1078–1093. © 2009 Wiley Periodicals, Inc.  相似文献   

9.
Mutations in the large BEACH domain‐containing protein LYST causes Chediak–Higashi syndrome. The diagnostic hallmark is enlarged lysosomes and lysosome‐related organelles in various cell types. Dysfunctional secretion of enlarged lysosome‐related organelles has been observed in cells with mutations in LYST, but the capacity of the enlarged lysosomes to degrade endogenous proteins has not been studied. Here, we show for the first time that small interfering RNA‐depletion of LYST in human cell lines recapitulates the LYST mutant phenotype of enlarged lysosomes. We found no evidence for an effect of LYST depletion on autophagy or endocytic degradation. Autophagosomes are formed in normal size and quantities and are able to fuse to the enlarged lysosomes, leading to normal rates of degradation. Degradation of the epidermal growth factor receptor (EGFR) was similarly not affected, indicating that the enlarged lysosomes are fully functional in degrading endogenous proteins. Retrograde trafficking of toxins as well as the localization of transporters of lysosomal proteins, adaptor protein‐3 (AP‐3) and cation‐independent mannose‐6‐phosphate receptor (CI‐MPR), were all found to be unaffected by LYST. Quantitative analysis of the enlarged lysosomes shows that LYST depletion causes a reduction in vesicle quantity per cell, while the total enzymatic content and vesicular pH are unaffected, supporting a role for LYST in lysosomal fission and/or fusion events.   相似文献   

10.
Using novel media formulations, it has been demonstrated that human placenta and umbilical cord blood-derived CD34+ cells can be expanded and differentiated into erythroid cells with high efficiency. However, obtaining mature and functional erythrocytes from the immature cell cultures with high purity and in an efficient manner remains a significant challenge. A distinguishing feature of a reticulocyte and maturing erythrocyte is the increasing concentration of hemoglobin and decreasing cell volume that results in increased cell magnetophoretic mobility (MM) when exposed to high magnetic fields and gradients, under anoxic conditions. Taking advantage of these initial observations, we studied a noninvasive (label-free) magnetic separation and analysis process to enrich and identify cultured functional erythrocytes. In addition to the magnetic cell separation and cell motion analysis in the magnetic field, the cell cultures were characterized for cell sedimentation rate, cell volume distributions using differential interference microscopy, immunophenotyping (glycophorin A), hemoglobin concentration and shear-induced deformability (elongation index, EI, by ektacytometry) to test for mature erythrocyte attributes. A commercial, packed column high-gradient magnetic separator (HGMS) was used for magnetic separation. The magnetically enriched fraction comprised 80% of the maturing cells (predominantly reticulocytes) that showed near 70% overlap of EI with the reference cord blood-derived RBC and over 50% overlap with the adult donor RBCs. The results demonstrate feasibility of label-free magnetic enrichment of erythrocyte fraction of CD34+ progenitor-derived cultures based on the presence of paramagnetic hemoglobin in the maturing erythrocytes.  相似文献   

11.
Ultracentrifugation on a density gradient remains the only reliable way to obtain highly pure mitochondria preparations. However, it is not readily available for any laboratory and has a serious disadvantage of providing low mitochondria yield, which can be critical when working with limited starting material. Here we describe a combined method for isolation of mitochondria for proteomic studies that includes cell disruption by sonication, differential centrifugation, and magnetic separation. Our method provides remarkable enrichment of mitochondrial proteins as compared to differential centrifugation, magnetic separation, or their combination, and it enables the strongest depletion of cytoplasmic components, as assessed by two-dimensional electrophoresis, mass spectrometry, and Western blot. It also doubles the yield of mitochondria. However, our method should not be used for functional studies as most of the isolated organelles demonstrate disturbed structure in electron microphotographs.  相似文献   

12.
Peng SE  Chen WN  Chen HK  Lu CY  Mayfield AB  Fang LS  Chen CS 《Proteomics》2011,11(17):3540-3555
Gastrodermal lipid bodies (LBs) are organelles involved in the regulation of the mutualistic endosymbiosis between reef‐building corals and their dinoflagellate endosymbionts (genus Symbiodinium). As their molecular composition remains poorly defined, we herein describe the first gastrodermal LB proteome and examine in situ morphology of LBs in order to provide insight into their structure and function. After tissue separation of the tentacles of the stony coral Euphyllia glabrescens, buoyant LBs of the gastroderm encompassing a variety of sizes (0.5–4 μm in diameter) were isolated after two cycles of subcellular fractionation via stepwise sucrose gradient ultracentrifugation and detergent washing. The purity of the isolated LBs was demonstrated by their high degree of lipid enrichment and as well as the absence of contaminating proteins of the host cell and Symbiodinium. LB‐associated proteins were then purified, subjected to SDS‐PAGE, and identified by MS using an LC‐nano‐ESI‐MS/MS. A total of 42 proteins were identified within eight functional groups, including metabolism, intracellular trafficking, the stress response/molecular modification and development. Ultrastructural analyses of LBs in situ showed that they exhibit defined morphological characteristics, including a high‐electron density resulting from a distinct lipid composition from that of the lipid droplets of mammalian cells. Coral LBs were also characterized by the presence of numerous electron‐transparent inclusions of unknown origin and composition. Both proteomic and ultrastructural observations seem to suggest that both Symbiodinium and host organelles, such as the ER, are involved in LB biogenesis.  相似文献   

13.
Methods for rapid and label‐free cell assay are highly desired in life science. Single‐shot diffraction imaging presents strong potentials to achieve this goal as evidenced by past experimental results using methods such as polarization diffraction imaging flow cytometry. We present here a platform of methods toward solving these problems and results of optical cell model (OCM) evaluations by calculations and analysis of cross‐polarized diffraction image (p‐DI) pairs. Four types of realistic OCMs have been developed with two prostate cell structures and adjustable refractive index (RI) parameters to investigate the effects of cell morphology and index distribution on calculated p‐DI pairs. Image patterns have been characterized by a gray‐level co‐occurrence matrix (GLCM) algorithm and four GLCM parameters and linear depolarization ratio δL have been selected to compare calculated against measured data of prostate cells. Our results show that the irregular shapes of and heterogeneity in RI distributions for organelles play significant roles in the spatial distribution of scattered light by cells in comparison to the average RI values and their differences among the organelles. Discrepancies in GLCM and δL parameters between calculated and measured p‐DI data provide useful insight for understanding light scattering by single cells and improving OCM.   相似文献   

14.
A new type of high‐throughput imaging flow cytometer (>20 000 cells s‐1) based upon an all‐optical ultrafast laser‐scanning imaging technique, called free‐space angular‐chirp‐enhanced delay (FACED) is reported. FACED imaging flow cytometers enables high‐throughput visualization of functional morphology of individual cells with subcellular resolution. It critically empowers largescale and deep characterization of single cells and their heterogeneity with high statistical power— an ability to become increasingly critical in single‐cell analysis adopted in a wide range of biomedical and life‐science applications. Further details can be found in the article by Wenwei Yan et al. ( e201700178 )

  相似文献   


15.
Ultrafast time‐stretch imaging technique recently attracts an increasing interest for applications in cell classification due to high throughput and high sensitivity. A novel imaging modality of time‐stretch imaging technique for edge detection is proposed. Edge detection based on the directional derivative is realized using differential detection. As the image processing is mainly implemented in the physical layer, the computation complexity of edge extraction is significantly reduced. An imaging system for edge detection with the scan rate of 77.76 MHz is experimentally demonstrated. Resolution target is first measured to verify the feasibility of the edge extraction. Furthermore, various cells, including red blood cells, lung cancer cells and breast cancer cells, are detected. The edges of cancerous cells present in a completely different form. The imaging system for edge detection would be a good candidate for high‐throughput cell classification.   相似文献   

16.

Background

Human cells release nano-sized vesicles called exosomes, containing mRNA, miRNA and specific proteins. Exosomes from one cell can be taken up by another cell, which is a recently discovered cell-to-cell communication mechanism. Also, exosomes can be taken up by different types of cancer cells, but the potential functional effects of mast cell exosomes on tumor cells remain unknown.

Methods and results

Exosomes were isolated from the human mast cell line, HMC-1, and uptake of PKH67-labelled exosomes by the lung epithelial cell line, A549, was examined using flow cytometry and fluorescence microscopy. The RNA cargo of the exosomes was analyzed with a Bioanalyzer and absence or presence of the c-KIT mRNA was determined by RT-PCR. The cell proliferation was determined in a BrdU incorporation assay, and proteins in the KIT-SCF signaling pathway were detected by Western blot. Our result demonstrates that exosomes from mast cells can be taken up by lung cancer cells. Furthermore, HMC-1 exosomes contain and transfer KIT protein, but not the c-KIT mRNA to A549 cells and subsequently activate KIT-SCF signal transduction, which increase cyclin D1 expression and accelerate the proliferation in the human lung adenocarcinoma cells.

Conclusions

Our results indicate that exosomes can transfer KIT as a protein to tumor cells, which can affect recipient cell signaling events through receptor-ligand interactions.
  相似文献   

17.
Summary Cell recovery by means of continuous flotation of the Hansenula polymorpha cultivation medium without additives was investigated as a function of the cultivation conditions as well as of the flotation equipment construction and flotation operational parameters. The cell enrichment and separation is improved at high liquid residence times, high aeration rates, small bubble sizes, increasing height of the aerated column, and diameter of the foam column. Increasing cell age and cultivation with nitrogen limitation reduce the cell separation.Symbols CP cell mass concentration in medium g·l–1 - CR cell mass concentration in residue g·l–1 - CS cell mass concentration in foam liquid g·l–1 - V equilibrium foam volume cm3 - V gas flow rate through the aerated liquid column cm3·s–1 - VF feed rate to the flotation column ml/min - 1 V S/V foaminess s - mean liquid residence time in the column s  相似文献   

18.
Positive selection of CD34+ blood progenitor cells from circulation has been reported to improve patient recovery in applications of autologous transplantation. Current magnetic separation methods rely on cell capture and release on solid supports rather than sorting from flowing suspensions, which limits the range of therapeutic applications and the process scale up. We tested CD34+ cell immunomagnetic labeling and isolation from fresh leukocyte fraction of peripheral blood (leukapheresis) using the continuous quadrupole magnetic flow sorter (QMS), consisting of a flow channel (SHOT, Greenville, IN) and a quadrupole magnet with a maximum field intensity (B(o)) of 1.42 T and a mean force field strength (S(m)) of 1.45 x 10(8) TA/m(2). Both the sample magnetophoretic mobility (m) and the inlet and outlet flow patterns highly affect the QMS performance. Seven commercial progenitor cell labeling reagent combinations were quantitatively evaluated by measuring magnetophoretic mobility of a high CD34 expression cell line, KG-1a, using the cell tracking velocimeter (CTV). The CD34 Progenitor Cell Isolation Kit (Miltenyi Biotec, Bergisch Gladbach, Germany) showed the strongest labeling of KG-1a cells and was selected for progenitor cell enrichment from 11 fresh and 11 cryopreserved clinical leukapheresis samples derived from different donors. The CD34+ cells were isolated with a purity of 60-96%, a recovery of 18-60%, an enrichment rate of 12-169, and a throughput of (1.7-9.3) x 10(4) cells/s. The results also showed a highly regular dependence of the QMS performance on the flow conditions that agreed with the theoretical predictions based on the CD34+ cell magnetophoretic mobility.  相似文献   

19.
Predicting clinical variables from whole‐brain neuroimages is a high‐dimensional problem that can potentially benefit from feature selection or extraction. Penalized regression is a popular embedded feature selection method for high‐dimensional data. For neuroimaging applications, spatial regularization using the or norm of the image gradient has shown good performance, yielding smooth solutions in spatially contiguous brain regions. Enormous resources have been devoted to establishing structural and functional brain connectivity networks that can be used to define spatially distributed yet related groups of voxels. We propose using the fused sparse group lasso (FSGL) penalty to encourage structured, sparse, and interpretable solutions by incorporating prior information about spatial and group structure among voxels. We present optimization steps for FSGL penalized regression using the alternating direction method of multipliers algorithm. With simulation studies and in application to real functional magnetic resonance imaging data from the Autism Brain Imaging Data Exchange, we demonstrate conditions under which fusion and group penalty terms together outperform either of them alone.  相似文献   

20.
Heat shock proteins (HSPs) participate in the regulation of different cell activities in response to stimuli. By applying different strategies, the modulation of heat shock proteins is at the center of attention. Conventional delivery approaches are not fully encouraged due to cytotoxicity and immunogenicity issues. Exosomes are touted as bio-shuttles for delivery of distinct biomolecules inside the cells. Here, we aimed to HSP27 small interfering RNA (siRNA)-tagged exosomes for the inhibition of Hsp27 in human neuroblastoma cell line SH-SY5Y and explored differentiation into neuron-like cells. Exosomes were isolated, characterized by scanning electron microscope (SEM) and CD63 then enriched with siRNA against Hsp27. Neuroblastoma cells were incubated with exosomes carrying siRNA for 48 hr. Exosome uptake was monitored by immunofluorescence assay. The cell viability and proliferation were analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and bromodeoxyuridine/5-bromo-2′-deoxyuridine incorporation assays. The ability of cells to form colonies was evaluated by clonogenic assay. The cell potential to express NeuN, a mature neuron factor, was studied by flow cytometry analysis. SEM showed the nano-sized particles and a high level of CD63 after enrichment. Immunofluorescence imaging revealed an appropriate transfection rate in cell exposed to Hsp27 siRNA tagged exosomes. The cell viability and proliferation were reduced compared to cells received nude exosomes ( p < 0.05). Clonogenic activity of cells was diminished by the inhibition of Hsp27. Flow cytometry analysis revealed that the inhibition of Hsp27 prohibited NeuN content, showing the maturation of SH-SY5Y cells to mature cells compared to control. These data confirmed that exosomes could be used as appropriate bio-shuttles for the inhibition of Hsp27-aborted cell differentiation toward mature neuron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号