首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Shugoshin is a conserved protein in eukaryotes that protects the centromeric cohesin of sister chromatids from cleavage by separase during meiosis. In this study, we identify the rice (Oryza sativa, 2n=2x=24) homolog of ZmSGO1 in maize (Zea mays), named OsSGO1. During both mitosis and meiosis, OsSGO1 is recruited from nucleoli onto centromeres at the onset of prophase. In the Tos17-insertional Ossgo1-1 mutant, centromeres of sister chromatids separate precociously from each other from metaphase I, which causes unequal chromosome segregation during meiosis II. Moreover, the release of OsSGO1 from nucleoli is completely blocked in Ossgo1-1, which leads to the absence of OsSGO1 in centromeric regions after the onset of mitosis and meiosis. Furthermore, the timely assembly and maintenance of synaptonemal complexes during early prophase I are affected in Ossgo1 mutants. Finally, we found that the centromeric localization of OsSGO1 depends on OsAM1, not other meiotic proteins such as OsREC8, PAIR2, OsMER3, or ZEP1.  相似文献   

2.
COM1/SAE2 is a highly conserved gene from yeast to higher eukaryotes. Its orthologs, known to cooperate with the MRX complex (Mre11/Rad50/Xrs2), are required for meiotic DNA double‐strand break (DSB) ends resection and specific mitotic DSB repair events. Here, the rice (Oryza sativa, 2n = 2x = 24) COM1/SAE2 homolog was identified through positional cloning, termed OsCOM1. Four independent mutants of OsCOM1 were isolated and characterized. In Oscom1 mutants, synaptonemal complex (SC) formation, homologous pairing and recombination were severely inhibited, whereas aberrant non‐homologous chromosome entanglements occurred constantly. Several key meiotic proteins, including ZEP1 and OsMER3, were not loaded normally onto chromosomes in Oscom1 mutants, whereas the localization of OsREC8, PAIR2 and PAIR3 seemed to be normal. Moreover, OsCOM1 was loaded normally onto meiotic chromosomes in Osrec8, zep1 and Osmer3 mutants, but could not be properly loaded in Osam1, pair2 and OsSPO11‐1RNAi plants. These results provide direct evidence for the functions of OsCOM1 in promoting homologous synapsis and recombination in rice meiosis.  相似文献   

3.
《遗传学报》2021,48(6):485-496
Meiotic recombination is essential for reciprocal exchange of genetic information between homologous chromosomes and their subsequent proper segregation in sexually reproducing organisms. MLH1 and MLH3 belong to meiosis-specific members of the Mut L-homolog family, which are required for normal level of crossovers(COs) in some eukaryotes. However, their functions in plants need to be further elucidated.Here, we report the identification of Os MLH1 and reveal its functions during meiosis in rice. Using CRISPRCas9 approach, two independent mutants, Osmlh1-1 and Osmlh1-2, are generated and exhibited significantly reduced male fertility. In Osmlh1-1, the clearance of PAIR2 is delayed and partial ZEP1 proteins are not loaded into the chromosomes, which might be due to the deficient in resolution of interlocks at late zygotene. Thus, Os MLH1 is required for the assembly of synapsis complex. In Osmlh1-1, CO number is dropped by ~53% and the distribution of residual COs is consistent with predicted Poisson distribution,indicating that Os MLH1 is essential for the formation of interference-sensitive COs(class I COs). Os MLH1 interacts with Os MLH3 through their C-terminal domains. Mutation in Os MLH3 also affects the pollen fertility. Thus, our experiments reveal that the conserved heterodimer Mut Lg(Os MLH1-Os MLH3) is essential for the formation of class I COs in rice.  相似文献   

4.
《Molecular cell》2023,83(16):2941-2958.e7
  1. Download : Download high-res image (110KB)
  2. Download : Download full-size image
  相似文献   

5.
Che L  Tang D  Wang K  Wang M  Zhu K  Yu H  Gu M  Cheng Z 《Cell research》2011,21(4):654-665
The events occurring at the onset of meiosis have not been fully elucidated. In the present study, OsAM1 was identified in rice (Oryza sativa L.) by map-based cloning. OsAM1, a homolog of Arabidopsis SWI1 and maize AM1, encodes a protein with a coiled-coil domain in its central region. In the Osam1 mutant, pollen mother cells are arrested at leptotene, showing that OsAM1 is required for the leptotene-zygotene transition. Immunocytological analysis revealed that OsAM1 exists as foci in early prophase I meiocytes. Very faint OsREC8 foci persisted in the Osam1 mutant, indicating that OsAM1 is not required for the initial meiotic recruitment of OsREC8. In the absence of OsAM1, many other critical meiotic components, including PAIR2, ZEP1 and OsMER3, could not be correctly installed onto chromosomes. In contrast, in pair2, Osmer3 and zep1 mutants, OsAM1 could be loaded normally, suggesting that OsAM1 plays a fundamental role in building the proper chromosome structure at the beginning of meiosis.  相似文献   

6.
7.
During meiosis, crossover recombination is tightly regulated. A spatial patterning phenomenon known as interference ensures that crossovers are well-spaced along the chromosomes. Additionally, every pair of homologs acquires at least one crossover. A third feature, crossover homeostasis, buffers the system such that the number of crossovers remains steady despite decreases or increases in the number of earlier recombinational interactions. Here we summarize recent work from our laboratory supporting the idea that all 3 of these aspects are intrinsic consequences of a single basic process and suggesting that the underlying logic of this process corresponds to that embodied in a particular (beam-film) model.  相似文献   

8.
Yeast DMC1 is a meiosis-specific gene required for homologous chromosome pairing in meiosis. Using degenerate primers designed according to amino acid motifs conserved in yeast Dmc1 and Arabidopsis AtDmc1, we obtained full-length cDNA of a rice homologue of the DMC1 gene (OsDMC1) by RT-PCR and rapid amplification of cDNA ends (RACEs). OsDmc1 exhibited 53% amino acid sequence identity to yeast Dmc1 and 81% to AtDmc1. OsDMC1 was expressed at high-levels in reproductive organs, low-levels in roots, and undetectable levels in leaves and seedlings. Southern blot analyses revealed that OsDMC1 is one of two DMC1 homologues present in rice. Received: 18 December 2000 / Accepted: 22 December 2000  相似文献   

9.
While many studies have provided significant insight into homolog pairing during meiosis, information on non-homologous pairing is much less abundant. In the present study, fluorescence in situ hybridization (FISH) was used to investigate non-homologous pairing in haploid rice during meiosis. At pachytene, non-homologous chromosomes paired and formed synaptonemal complexes. FISH analysis data indicated that chromosome pairing could be grouped into three major types: (1) single chromosome paired fold-back as the univalent structure, (2) two non-homologous chromosomes paired as the bivalent structure, and (3) three or more non-homologous chromosomes paired as the multivalent structure. In the survey of 70 cells, 65 contained univalents, 45 contained bivalents, and 49 contained multivalent. Moreover, chromosomes 9 and 10 as well as chromosomes 11 and 12 formed non-homologous bivalents at a higher frequency than the other chromosomes. However, chiasma was always detected in the bivalent only between chromosomes 11 and 12 at diakinesis or metaphase I, indicating the pairing between these two chromosomes leads non-homologous recombination during meiosis. The synaptonemal complex formation between non-homologs was further proved by immunodetection of RCE8, PAIR2, and ZEP1. Especially, ZEP1 only loaded onto the paired chromosomes other than the un-paired chromosomes at pachytene in haploid.  相似文献   

10.
Erp1 (also called Emi2), an inhibitor of the APC/C ubiquitin ligase, is a key component of cytostatic factor (CSF) responsible for Meta-II arrest in vertebrate eggs. Reportedly, however, Erp1 is expressed even during meiosis I in Xenopus oocytes. If so, it is a puzzle why normally maturing oocytes cannot arrest at Meta-I. Here, we show that actually Erp1 synthesis begins only around the end of meiosis I in Xenopus oocytes, and that specific inhibition of Erp1 synthesis by morpholino oligos prevents entry into meiosis II. Furthermore, we demonstrate that premature, ectopic expression of Erp1 at physiological Meta-II levels can arrest maturing oocytes at Meta-I. Thus, our results show the essential role for Erp1 in the meiosis I/meiosis II transition in Xenopus oocytes and can explain why normally maturing oocytes cannot arrest at Meta-I.  相似文献   

11.
12.
13.
14.
The mechanisms by which weedy rice (Oryza sativa f. spontanea) has adapted to endure low‐temperature stress in northern latitudes remain unresolved. In this study, we assessed cold tolerance of 100 rice varieties and 100 co‐occurring weedy rice populations, which were sampled across a broad range of climates in China. A parallel pattern of latitude‐dependent variation in cold tolerance was detected in cultivated rice and weedy rice. At the molecular level, differential cold tolerance was strongly correlated with relative expression levels of CBF cold response pathway genes and with methylation levels in the promoter region of OsICE1, a regulator of this pathway. Among all methylated cytosine sites of the OsICE1 promoter, levels of CHG and CHH methylation were found to be significantly correlated with cold tolerance among accessions. Furthermore, within many of the collection locales, weedy rice shared identical or near‐identical OsICE1 methylation patterns with co‐occurring cultivated rice. These findings provide new insights on the possible roles that methylation variation in the OsICE1 promoter may play in cold tolerance, and they suggest that weedy rice can rapidly acquire cold tolerance via methylation patterns that are shared with co‐occurring rice cultivars.  相似文献   

15.
16.
Meiotic recombination is initiated by formation of DNA double‐strand breaks (DSBs). This involves a protein complex that includes in plants the two similar proteins, SPO11‐1 and SPO11‐2. We analysed the sequences of SPO11‐2 in hexaploid bread wheat (Triticum aestivum), as well as in its diploid and tetraploid progenitors. We investigated its role during meiosis using single, double and triple mutants. The three homoeologous SPO11‐2 copies of hexaploid wheat exhibit high nucleotide and amino acid similarities with those of the diploids, tetraploids and Arabidopsis. Interestingly, however, two nucleotides deleted in exon‐2 of the A copy lead to a premature stop codon and suggest that it encodes a non‐functional protein. Remarkably, the mutation was absent from the diploid A‐relative Triticum urartu, but present in the tetraploid Triticum dicoccoides and in different wheat cultivars indicating that the mutation occurred after the first polyploidy event and has since been conserved. We further show that triple mutants with all three copies (A, B, D) inactivated are sterile. Cytological analyses of these mutants show synapsis defects, accompanied by severe reductions in bivalent formation and numbers of DMC1 foci, thus confirming the essential role of TaSPO11‐2 in meiotic recombination in wheat. In accordance with its 2‐nucleotide deletion in exon‐2, double mutants for which only the A copy remained are also sterile. Notwithstanding, some DMC1 foci remain visible in this mutant, suggesting a residual activity of the A copy, albeit not sufficient to restore fertility.  相似文献   

17.
Plant architecture, a complex of the important agronomic traits that determine grain yield, is a primary target of artificial selection of rice domestication and improvement. Some important genes affecting plant architecture and grain yield have been isolated and characterized in recent decades; however, their underlying mechanism remains to be elucidated. Here, we report genetic identification and functional analysis of the PLANT ARCHITECTURE AND YIELD 1 (PAY1) gene in rice, which affects plant architecture and grain yield in rice. Transgenic plants over‐expressing PAY1 had twice the number of grains per panicle and consequently produced nearly 38% more grain yield per plant than control plants. Mechanistically, PAY1 could improve plant architecture via affecting polar auxin transport activity and altering endogenous indole‐3‐acetic acid distribution. Furthermore, introgression of PAY1 into elite rice cultivars, using marker‐assisted background selection, dramatically increased grain yield compared with the recipient parents. Overall, these results demonstrated that PAY1 could be a new beneficial genetic resource for shaping ideal plant architecture and breeding high‐yielding rice varieties.  相似文献   

18.
Replication protein A (RPA) is involved in many aspects of DNA metabolism including meiotic recombination. Many species possess a single RPA1 gene but Arabidopsis possesses five RPA1 paralogues. This feature has enabled us to gain further insight into the meiotic role of RPA1. Proteomic analysis implicated one of the AtRPA1 family (AtRPA1a) in meiosis. Immunofluorescence studies confirmed that AtRPA1a is associated with meiotic chromosomes from leptotene through to early pachytene. Analysis of an Atrpa1a mutant revealed that AtRPA1a is not essential at early stages in the recombination pathway. DNA double‐strand breaks are repaired in Atrpa1a, but the mutant is defective in the formation of crossovers, exhibiting a 60% reduction in chiasma frequency. Consistent with this, localization of recombination proteins AtRAD51 and AtMSH4 appears normal, whereas the numbers of AtMLH1 and AtMLH3 foci at pachytene are significantly reduced. This suggests that the defect in Atrpa1a is manifested at the stage of second‐end capture. Analysis of Atrpa1a/Atmsh4 and Atrpa1a/Atmlh3 double mutants indicates that loss of AtRPA1a predominantly affects the formation of class I, interference‐dependent crossovers.  相似文献   

19.
Comment on: Adhikari D, et al. Hum Mol Gene 2012; 21:2476-84.  相似文献   

20.
Comment on: Adhikari D, et al. Hum Mol Gene 2012; 21:2476-84.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号