首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The movement of chromosomes during meiosis involves location of their telomeres at the inner surface of the nuclear envelope. Sad1/UNC‐84 (SUN) domain proteins are inner nuclear envelope proteins that are part of complexes linking cytoskeletal elements with the nucleoskeleton, connecting telomeres to the force‐generating mechanism in the cytoplasm. These proteins play a conserved role in chromosome dynamics in eukaryotes. Homologues of SUN domain proteins have been identified in several plant species. In Arabidopsis thaliana, two proteins that interact with each other, named AtSUN1 and AtSUN2, have been identified. Immunolocalization using antibodies against AtSUN1 and AtSUN2 proteins revealed that they were associated with the nuclear envelope during meiotic prophase I. Analysis of the double mutant Atsun11 Atsun22 has revealed severe meiotic defects, namely a delay in the progression of meiosis, absence of full synapsis, the presence of unresolved interlock‐like structures, and a reduction in the mean cell chiasma frequency. We propose that in Arabidopsis thaliana, overlapping functions of SUN1 and SUN2 ensure normal meiotic recombination and synapsis.  相似文献   

2.
Polar growth of root hairs is critical for plant survival and requires fine‐tuned Rho of plants (ROP) signaling. Multiple ROP regulators participate in root hair growth. However, protein S‐acyl transferases (PATs), mediating the S‐acylation and membrane partitioning of ROPs, are yet to be found. Using a reverse genetic approach, combining fluorescence probes, pharmacological drugs, site‐directed mutagenesis and genetic analysis with related root‐hair mutants, we have identified and characterized an Arabidopsis PAT, which may be responsible for ROP2 S‐acylation in root hairs. Specifically, functional loss of PAT4 resulted in reduced root hair elongation, which was rescued by a wild‐type but not an enzyme‐inactive PAT4. Membrane‐associated ROP2 was significantly reduced in pat4, similar to S‐acylation‐deficient ROP2 in the wild type. We further showed that PAT4 and SCN1, a ROP regulator, additively mediate the stability and targeting of ROP2. The results presented here indicate that PAT4‐mediated S‐acylation mediates the membrane association of ROP2 at the root hair apex and provide novel insights into dynamic ROP signaling during plant tip growth.  相似文献   

3.
The phylum Apicomplexa includes a number of significant human pathogens like Toxoplasma gondii and Plasmodium species. These obligate intracellular parasites possess a membranous structure, the inner membrane complex (IMC), composed of flattened vesicles apposed to the plasma membrane. Numerous proteins associated with the IMC are anchored via a lipid post‐translational modification termed palmitoylation. This acylation is catalysed by multi‐membrane spanning protein S‐acyl‐transferases (PATs) containing a catalytic Asp‐His‐His‐Cys (DHHC) motif, commonly referred to as DHHCs. Contrasting the redundancy observed in other organisms, several PATs are essential for T. gondii tachyzoite survival; 2 of them, TgDHHC2 and TgDHHC14 being IMC‐resident. Disruption of either of these TgDHHCs results in a rapid collapse of the IMC in the developing daughter cells leading to dramatic morphological defects of the parasites while the impact on the other organelles is limited to their localisation but not to their biogenesis. The acyl‐transferase activity of TgDHHC2 and TgDHHC14 is involved sequentially in the formation of the sub‐compartments of the IMC. Investigation of proteins known to be palmitoylated and localised to these sub‐compartments identified TgISP1/3 as well as TgIAP1/2 to lose their membrane association revealing them as likely substrates of TgDHHC2, while these proteins are not impacted by TgDHHC14 depletion.  相似文献   

4.
5.
6.
Replication factor C1 (RFC1), which is conserved in eukaryotes, is involved in DNA replication and checkpoint control. However, a RFC1 product participating in DNA repair at meiosis has not been reported in Arabidopsis. Here, we report functional characterization of AtRFC1 through analysis of the rfc1–2 mutant. The rfc1–2 mutant displayed normal vegetative growth but showed silique sterility because the male gametophyte was arrested at the uninucleus microspore stage and the female at the functional megaspore stage. Expression of AtRFC1 was concentrated in the reproductive organ primordia, meiocytes and developing gametes. Chromosome spreads showed that pairing and synapsis were normal, and the chromosomes were broken when desynapsis began at late prophase I, and chromosome fragments remained in the subsequent stages. For this reason, homologous chromosomes and sister chromatids segregated unequally, leading to pollen sterility. Immunolocalization revealed that the AtRFC1 protein localized to the chromosomes during zygotene and pachytene in wild‐type but were absent in the spo11–1 mutant. The chromosome fragmentation of rfc1–2 was suppressed by spo11–1, indicating that AtRFC1 acted downstream of AtSPO11‐1. The similar chromosome behavior of rad51 rfc1–2 and rad51 suggests that AtRFC1 may act with AtRAD51 in the same pathway. In summary, AtRFC1 is required for DNA double‐strand break repair during meiotic homologous recombination of Arabidopsis.  相似文献   

7.
Meiosis is a specialized cell division essential for sexual reproduction. During meiosis the chromosomes are highly organized, and correct chromosome architecture is required for faithful segregation of chromosomes at anaphase I and II. Condensin is involved in chromosome organization during meiotic and mitotic cell divisions. Three condensin subunits, AtSMC4 and the condensin I and II specific subunits AtCAP‐D2 and AtCAP‐D3, respectively, have been studied for their role in meiosis. This has revealed that both the condensin I and condensin II complexes are required to maintain normal structural integrity of the meiotic chromosomes during the two nuclear divisions. Their roles appear functionally distinct in that condensin I is required to maintain normal compaction of the centromeric repeats and 45S rDNA, whereas loss of condensin II was associated with extensive interchromosome connections at metaphase I. Depletion of condensin is also associated with a slight reduction in crossover formation, suggesting a role during meiotic prophase I.  相似文献   

8.
PIRIN (PRN) is a member of the functionally diverse cupin protein superfamily. There are four members of the Arabidopsis thaliana PRN family, but the roles of these proteins are largely unknown. Here we describe a function of the Arabidopsis PIRIN2 (PRN2) that is related to susceptibility to the bacterial plant pathogen Ralstonia solanacearum. Two prn2 mutant alleles displayed decreased disease development and bacterial growth in response to R.  solanacearum infection. We elucidated the underlying molecular mechanism by analyzing PRN2 interactions with the papain‐like cysteine proteases (PLCPs) XCP2, RD21A, and RD21B, all of which bound to PRN2 in yeast two‐hybrid assays and in Arabidopsis protoplast co‐immunoprecipitation assays. We show that XCP2 is stabilized by PRN2 through inhibition of its autolysis on the basis of PLCP activity profiling assays and enzymatic assays with recombinant protein. The stabilization of XCP2 by PRN2 was also confirmed in planta. Like prn2 mutants, an xcp2 single knockout mutant and xcp2 prn2 double knockout mutant displayed decreased susceptibility to R. solanacearum, suggesting that stabilization of XCP2 by PRN2 underlies susceptibility to R. solanacearum in Arabidopsis.  相似文献   

9.
S‐Alk(en)yl‐l ‐cysteine sulfoxides are cysteine‐derived secondary metabolites highly accumulated in the genus Allium. Despite pharmaceutical importance, the enzymes that contribute to the biosynthesis of S‐alk‐(en)yl‐l ‐cysteine sulfoxides in Allium plants remain largely unknown. Here, we report the identification of a flavin‐containing monooxygenase, AsFMO1, in garlic (Allium sativum), which is responsible for the S‐oxygenation reaction in the biosynthesis of S‐allyl‐l ‐cysteine sulfoxide (alliin). Recombinant AsFMO1 protein catalyzed the stereoselective S‐oxygenation of S‐allyl‐l ‐cysteine to nearly exclusively yield (RCSS)‐S‐allylcysteine sulfoxide, which has identical stereochemistry to the major natural form of alliin in garlic. The S‐oxygenation reaction catalyzed by AsFMO1 was dependent on the presence of nicotinamide adenine dinucleotide phosphate (NADPH) and flavin adenine dinucleotide (FAD), consistent with other known flavin‐containing monooxygenases. AsFMO1 preferred S‐allyl‐l ‐cysteine to γ‐glutamyl‐S‐allyl‐l ‐cysteine as the S‐oxygenation substrate, suggesting that in garlic, the S‐oxygenation of alliin biosynthetic intermediates primarily occurs after deglutamylation. The transient expression of green fluorescent protein (GFP) fusion proteins indicated that AsFMO1 is localized in the cytosol. AsFMO1 mRNA was accumulated in storage leaves of pre‐emergent nearly sprouting bulbs, and in various tissues of sprouted bulbs with green foliage leaves. Taken together, our results suggest that AsFMO1 functions as an S‐allyl‐l ‐cysteine S‐oxygenase, and contributes to the production of alliin both through the conversion of stored γ‐glutamyl‐S‐allyl‐l ‐cysteine to alliin in storage leaves during sprouting and through the de novo biosynthesis of alliin in green foliage leaves.  相似文献   

10.
11.
12.
Cohesins are a group of conserved proteins responsible for cohesion between replicated sister chromatids during mitosis and meiosis and which are implicated in double-strand break repair and meiotic recombination. We describe here the identification and characterisation of an Arabidopsis gene - DETERMINATE, INFERTILE1 (DIF1), which is a homolog of the Schizosaccharomyces pombe REC8/RAD21 cohesin genes, and is essential for meiotic chromosome segregation. Five independent alleles of the DIF1 gene were isolated by transposon mutagenesis, and the mutants show complete male and female sterility. Pollen mother cells (PMCs) of dif1 mutants show multiple meiotic defects which are represented by univalent chromosomes and chromosome fragmentation at metaphase I, and acentric fragments and chromatin bridges in meiosis I and II. Consequently, chromosome segregation is strongly affected, resulting in meiotic products of uneven size, shape and of variable ploidy. The similarities in phenotype, and the sequence homology between DIF1 and the REC8/RAD21 cohesins suggests that cohesin function is largely conserved between eukaryotes and highlights the essential role cohesins play in plant meiosis.  相似文献   

13.
The cellular roles of RAD51 paralogs in somatic and reproductive growth have been extensively described in a wide range of animal systems and, to a lesser extent, in Arabidopsis, a dicot model plant. Here, the OsRAD51D gene was identified and characterized in rice (Oryza sativa L.), a monocot model crop. In the rice genome, three alternative OsRAD51D mRNA splicing variants, OsRAD51D.1, OsRAD51D.2, and OsRAD51D.3, were predicted. Yeast two‐hybrid studies, however, showed that only OsRAD51D.1 interacted with OsRAD51B and OsRAD51C paralogs, suggesting that OsRAD51D.1 is a functional OsRAD51D protein in rice. Loss‐of‐function osrad51d mutant rice plants displayed normal vegetative growth. However, the mutant plants were defective in reproductive growth, resulting in sterile flowers. Homozygous osrad51d mutant flowers exhibited impaired development of lemma and palea and contained unusual numbers of stamens and stigmas. During early meiosis, osrad51d pollen mother cells (PMCs) failed to form normal homologous chromosome pairings. In subsequent meiotic progression, mutant PMCs represented fragmented chromosomes. The osrad51d pollen cells contained numerous abnormal micro‐nuclei that resulted in malfunctioning pollen. The abnormalities of heterozygous mutant and T2 Ubi:RNAi‐OsRAD51D RNAi‐knock‐down transgenic plants were intermediate between those of wild type and homozygous mutant plants. The osrad51d and Ubi:RNAi‐OsRAD51D plants contained longer telomeres compared with wild type plants, indicating that OsRAD51D is a negative factor for telomere lengthening. Overall, these results suggest that OsRAD51D plays a critical role in reproductive growth in rice. This essential function of OsRAD51D is distinct from Arabidopsis, in which AtRAD51D is not an essential factor for meiosis or reproductive development.  相似文献   

14.
Nitric oxides (NO) act as one of the major signal molecules and modulate various cell functions including oocyte meiosis in mammals. The present study was designed to investigate the mechanism of NO action during spontaneous meiotic exit from diplotene arrest (EDA) in rat cumulus oocytes complexes (COCs) cultured in vitro. Diplotene‐arrested COCs collected from ovary of immature female rats after 20 IU pregnant mare's serum gonadotropins (PMSG) for 48 h were exposed to various concentrations of NO donor, S‐nitroso‐N‐acetyl penicillamine (SNAP) and inducible nitric oxide synthase (iNOS) inhibitor, aminoguanidine (AG) for 3 h in vitro and downstream factors were analyzed. Our results suggest that SNAP inhibited, while AG induced EDA in a concentration‐dependent manner. The iNOS‐mediated total NO, cyclic nucleotides and cell division cycle 25B (Cdc25B) levels were reduced significantly. The decreased Cdc25B was associated with the increased Thr14/Tyr15 phosphorylated cyclin‐dependent kinase 1 (Cdk1) level and decreased Thr161 phosphorylated Cdk1 as well as cyclin B1 levels leading to maturation promoting factor (MPF) destabilization. The destabilized MPF finally induced spontaneous EDA. Taken together, these results suggest that reduction of iNOS‐mediated NO level destabilizes MPF during spontaneous EDA in rat COCs cultured in vitro.  相似文献   

15.
Self‐incompatibility (SI) is a self/non‐self discrimination system found widely in angiosperms and, in many species, is controlled by a single polymorphic S‐locus. In the Solanaceae, Rosaceae and Plantaginaceae, the S‐locus encodes a single S‐RNase and a cluster of S‐locus F‐box (SLF) proteins to control the pistil and pollen expression of SI, respectively. Previous studies have shown that their cytosolic interactions determine their recognition specificity, but the physical force between their interactions remains unclear. In this study, we show that the electrostatic potentials of SLF contribute to the pollen S specificity through a physical mechanism of ‘like charges repel and unlike charges attract’ between SLFs and S‐RNases in Petunia hybrida. Strikingly, the alteration of a single C‐terminal amino acid of SLF reversed its surface electrostatic potentials and subsequently the pollen S specificity. Collectively, our results reveal that the electrostatic potentials act as a major physical force between cytosolic SLFs and S‐RNases, providing a mechanistic insight into the self/non‐self discrimination between cytosolic proteins in angiosperms.  相似文献   

16.
Mitogen‐activated protein kinase (MPK) cascades are conserved mechanisms of signal transduction across eukaryotes. Despite the importance of MPK proteins in signaling events, specific roles for many Arabidopsis MPK proteins remain unknown. Multiple studies have suggested roles for MPK signaling in a variety of auxin‐related processes. To identify MPK proteins with roles in auxin response, we screened mpk insertional alleles and identified mpk1‐1 as a mutant that displays hypersensitivity in auxin‐responsive cell expansion assays. Further, mutants defective in the upstream MAP kinase kinase MKK3 also display hypersensitivity in auxin‐responsive cell expansion assays, suggesting that this MPK cascade affects auxin‐influenced cell expansion. We found that MPK1 interacts with and phosphorylates ROP BINDING PROTEIN KINASE 1 (RBK1), a protein kinase that interacts with members of the Rho‐like GTPases from Plants (ROP) small GTPase family. Similar to mpk1‐1 and mkk3‐1 mutants, rbk1 insertional mutants display auxin hypersensitivity, consistent with a possible role for RBK1 downstream of MPK1 in influencing auxin‐responsive cell expansion. We found that RBK1 directly phosphorylates ROP4 and ROP6, supporting the possibility that RBK1 effects on auxin‐responsive cell expansion are mediated through phosphorylation‐dependent modulation of ROP activity. Our data suggest a MKK3 ? MPK1 ? RBK1 phosphorylation cascade that may provide a dynamic module for altering cell expansion.  相似文献   

17.
18.
The substrate specificity of mouse recombinant phenylalanine monooxygenase (mPAH) has been investigated with respect to the mucoactive drug, S‐carboxymethyl‐L ‐cysteine (SCMC) and its thioether metabolites. Phenylalanine monooxygenase was shown to be able to catalyze the S‐oxygenation of SCMC, its decarboxylated metabolite, S‐methyl‐L ‐cysteine and both their corresponding N‐acetylated forms. However, thiodiglycolic acid was found not to be a substrate. The enzyme profiles for both phenylalanine and SCMC showed Michaelis‐Menten with noncompetitive substrate inhibition for both the substrate‐activated and the lysophosphatidylcholine‐activated mPAH assays. The tetrameric enzyme was shown to undergo posttranslational activation by preincubation with substrate, lysophosphatidylcholine, N‐ethylmaleimide (a thiol alkylating agent), and the proteolytic enzymes α‐chymotrypsin and trypsin. Similar posttranslational activation of PAH activity in the rat and human has also been reported. These results suggest that in the mouse, PAH was responsible for the S‐oxidation of SCMC and that the mouse models of the hyperphenylalaninemias may be a potential tool in the investigation of the S‐oxidation polymorphism in man. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:119–124, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20274  相似文献   

19.
Two BRCA2-like sequences are present in the Arabidopsis genome. Both genes are expressed in flower buds and encode nearly identical proteins, which contain four BRC motifs. In a yeast two-hybrid assay, the Arabidopsis Brca2 proteins interact with Rad51 and Dmc1. RNAi constructs aimed at silencing the BRCA2 genes at meiosis triggered a reproducible sterility phenotype, which was associated with dramatic meiosis alterations. We obtained the same phenotype upon introduction of RNAi constructs aimed at silencing the RAD51 gene at meiosis in dmc1 mutant plants. The meiotic figures we observed strongly suggest that homologous recombination is highly disturbed in these meiotic cells, leaving aberrant recombination events to repair the meiotic double-strand breaks. The 'brca2' meiotic phenotype was eliminated in spo11 mutant plants. Our experiments point to an essential role of Brca2 at meiosis in Arabidopsis. We also propose a role for Rad51 in the dmc1 context.  相似文献   

20.
The RTR (R ecQ/Top 3/Rmi 1) complex has been elucidated as essential for ensuring genome stability in eukaryotes. Fundamental for the dissolution of Holliday junction (HJ)-like recombination intermediates, the factors have been shown to play further, partly distinct roles in DNA repair and homologous recombination. Across all kingdoms, disruption of this complex results in characteristic phenotypes including hyper-recombination and sensitivity to genotoxins. The type IA topoisomerase TOP3α has been shown as essential for viability in various animals. In contrast, in the model plant species Arabidopsis, the top3α mutant is viable. rmi1 mutants are deficient in the repair of DNA damage. Moreover, as opposed to other eukaryotes, TOP3α and RMI1 were found to be indispensable for proper meiotic progression, with mutants showing severe meiotic defects and sterility. We now established mutants of both TOP3α and RMI1 in tomato using CRISPR/Cas technology. Surprisingly, we found phenotypes that differed dramatically from those of Arabidopsis: the top3α mutants proved to be embryo-lethal, implying an essential role of the topoisomerase in tomato. In contrast, no defect in somatic DNA repair or meiosis was detectable for rmi1 mutants in tomato. This points to a differentiation of function of RTR complex partners between plant species. Our results indicate that there are relevant differences in the roles of basic factors involved in DNA repair and meiosis within dicotyledons, and thus should be taken as a note of caution when generalizing knowledge regarding basic biological processes obtained in the model plant Arabidopsis for the entire plant kingdom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号