首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
The vast majority of plants obtain an important proportion of vital resources from soil through mycorrhizal fungi. Generally, this happens in exchange of photosynthetically fixed carbon, but occasionally the interaction is mycoheterotrophic, and plants obtain carbon from mycorrhizal fungi. This process results in an antagonistic interaction between mycoheterotrophic plants and their fungal hosts. Importantly, the fungal‐host diversity available for plants is restricted as mycoheterotrophic interactions often involve narrow lineages of fungal hosts. Unfortunately, little is known whether fungal‐host diversity may be additionally modulated by plant–plant interactions through shared hosts. Yet, this may have important implications for plant competition and coexistence. Here, we use DNA sequencing data to investigate the interaction patterns between mycoheterotrophic plants and arbuscular mycorrhizal fungi. We find no phylogenetic signal on the number of fungal hosts nor on the fungal hosts shared among mycoheterotrophic plants. However, we observe a potential trend toward increased phylogenetic diversity of fungal hosts among mycoheterotrophic plants with increasing overlap in their fungal hosts. While these patterns remain for groups of plants regardless of location, we do find higher levels of overlap and diversity among plants from the same location. These findings suggest that species coexistence cannot be fully understood without attention to the two sides of ecological interactions.  相似文献   

2.
    
Plants often compete with closely related individuals due to limited dispersal, leading to two commonly invoked predictions on competitive outcomes. Kin selection, from evolutionary theory, predicts that competition between relatives will likely be weaker. The niche partitioning hypothesis, from ecological theory, predicts that competition between close relatives will likely be stronger. We tested for evidence consistent with either of these predictions by growing an annual legume in kin and nonkin groups in the greenhouse. We grew plant groups in treatments of symbiotic nitrogen fixing bacteria differing in strain identity and composition to determine if differences in the microbial environment can facilitate or obscure plant competition patterns consistent with kin selection or niche partitioning. Nonkin groups had lower fitness than expected, based on fitness estimates of the same genotypes grown among kin. Higher fitness among kin groups was observed in mixtures of N‐fixing bacteria strains compared to single inoculations of bacteria strains present in the soil, which increased fitness differences between kin and nonkin groups. Lower fitness in nonkin groups was likely caused by increased competitive asymmetry in nonkin groups due to genetic differences in plant size combined with saturating relationships with plant size and fitness‐ i.e. Jensen's inequality. Our study suggests that microbial soil symbionts alter competitive dynamics among kin and nonkin. Our study also suggests that kin groups can have higher fitness, as predicted by kin selection theory, through a commonly heritable trait (plant size), without requiring kin recognition mechanisms.  相似文献   

3.
    
Plants form mutualistic relationship with a variety of belowground fungal species. Such a mutualistic relationship can enhance plant growth and resistance to pathogens. Yet, we know little about how interactions between functionally diverse groups of fungal mutualists affect plant performance and competition. We experimentally determined the effects of interaction between two functional groups of belowground fungi that form mutualistic relationship with plants, arbuscular mycorrhizal (AM) fungi and Trichoderma, on interspecific competition between pairs of closely related plant species from four different genera. We hypothesized that the combination of two functionally diverse belowground fungal species would allow plants and fungi to partition their symbiotic relationships and relax plant–plant competition. Our results show that: 1) the AM fungal species consistently outcompeted the Trichoderma species independent of plant combinations; 2) the fungal species generally had limited effects on competitive interactions between plants; 3) however, the combination of fungal species relaxed interspecific competition in one of the four instances of plant–plant competition, despite the general competitive superiority of AM fungi over Trichoderma. We highlight that the competitive outcome between functionally diverse fungal species may show high consistency across a broad range of host plants and their combinations. However, despite this consistent competitive hierarchy, the consequences of their interaction for plant performance and competition can strongly vary among plant communities.  相似文献   

4.
    
Loss of plant biodiversity can result in reduced abundance and diversity of associated species with implications for ecosystem functioning. In ecosystems low in plant species diversity, such as Neotropical mangrove forests, it is thought that genetic diversity within the dominant plant species could play an important role in shaping associated communities. Here, we used a manipulative field experiment to study the effects of maternal genotypic identity and genetic diversity of the red mangrove Rhizophora mangle on the composition and richness of associated soil bacterial communities. Using terminal restriction fragment length polymorphism (T‐RFLP) community fingerprinting, we found that bacterial community composition differed among R. mangle maternal genotypes but not with genetic diversity. Bacterial taxa richness, total soil nitrogen, and total soil carbon were not significantly affected by maternal genotypic identity or genetic diversity of R. mangle. Our findings show that genotype selection in reforestation projects could influence soil bacterial community composition. Further research is needed to determine what impact these bacterial community differences might have on ecosystem processes, such as carbon and nitrogen cycling.  相似文献   

5.
    
Multi‐species mixed plantations can be designed to meet social, economic, and environmental objectives during forest restoration. This paper reports results from an experiment in southern Sweden concerning the influence of three different fast growing nurse tree species on the cover of herbaceous vegetation and on the performance of several target tree species. After 10 years, the nurse trees had reduced the competing herbaceous vegetation but the effect was weak and it may take more than a decade to achieve effective vegetation control. The nurse tree species Betula pendula and Larix x eurolepis did improve stem form in some target tree species, but had a minor effect on survival and growth. The open conditions before crown closure of nurse trees strongly influence seedling performance and so delayed planting of target tree species may provide a means to avoid those conditions. Survival and growth differed greatly among the tree species. Besides the two nurse tree species mentioned above, high survival was found in Picea abies and Quercus robur and intermediate survival in Fagus sylvatica, Tilia cordata, and in the N‐fixing nurse tree Alnus glutinosa. Survival was low in the target tree species Fraxinus excelsior L. and Prunus avium. For restoration practitioners, our results illustrate the potential of using nurse trees for rapidly building a new forest structure and simultaneously increase productivity, which might be a cost‐effective strategy for forest restoration.  相似文献   

6.
    
Volatile organic compounds (VOCs) emitted by plant roots can influence the germination and growth of neighbouring plants. However, little is known about the effects of root VOCs on plant–herbivore interactions of neighbouring plants. The spotted knapweed (Centaurea stoebe) constitutively releases high amounts of sesquiterpenes into the rhizosphere. Here, we examine the impact of Cstoebe root VOCs on the primary and secondary metabolites of sympatric Taraxacum officinale plants and the resulting plant‐mediated effects on a generalist root herbivore, the white grub Melolontha melolontha. We show that exposure of Tofficinale to C.stoebe root VOCs does not affect the accumulation of defensive secondary metabolites but modulates carbohydrate and total protein levels in Tofficinale roots. Furthermore, VOC exposure increases Mmelolontha growth on Tofficinale plants. Exposure of Tofficinale to a major Cstoebe root VOC, the sesquiterpene (E)‐β‐caryophyllene, partially mimics the effect of the full root VOC blend on Mmelolontha growth. Thus, releasing root VOCs can modify plant–herbivore interactions of neighbouring plants. The release of VOCs to increase the susceptibility of other plants may be a form of plant offense.  相似文献   

7.
    
One important but largely unanswered question about floristic responses to climate change is how interactions such as competition, facilitation and plant–soil feedbacks will influence the ability of species to track shifting climates. In a rugged and moisture‐limited region that has recently warmed by 2° (Siskiyou Mountains, OR, USA), we planted three species into cooler aspects and elevations than those they currently inhabit, with and without removal of neighbouring plants, and tracked them over 2 years. Two species had higher success in cooler topographic locations, and this success was enhanced by neighbouring plants, which appeared to modulate minimum growing season temperatures. One species' success was also facilitated by the higher soil organic matter found in cooler sites. These results are a novel experimental demonstration of two important factors that may buffer climate change impacts on plants: rugged topography and plant–plant facilitation.  相似文献   

8.
    
The extent of the effect of projected changes in climate on trees remains unclear. This study investigated the effect of climatic variation on morphological traits of balsam fir [Abies balsamea (L.) Mill.] provenances sourced from locations spanning latitudes from 44° to 51°N and longitudes from 53° to 102°W across North America, growing in a common garden in eastern Canada. Lower latitude provenances performed significantly better than higher latitude provenances (p < .05) with regard to diameter at breast height (DBH), height (H), and crown width (CW), a distinction indicative of genotypic control of these traits. There was, however, no significant difference among provenances in terms of survival (> .05), an indication of a resource allocation strategy directed at survival relative to productivity in higher latitude provenances as seen in their lower DBH, H, and CW compared to the lower latitude provenances. Temperature had a stronger relationship with DBH, H, and CW than precipitation, a reflection of adaptation to local conditions in populations of the species along latitudinal gradients. Both climatic variables had some effect on tree survival. These results suggest that the response of balsam fir to climatic variation will likely not be uniform in the species, but differ based on genetic characteristics between populations located in the northern and southern parts of the species’ range. Population differences in response to climatic variation may be evident earlier in growth traits, compared to survival in balsam fir. The findings of this study will facilitate modeling in the species that is reflective of genetic variation in response to climatic conditions, and guide provenance selection for utilization in terms of productivity or resilience as well as breeding programs directed at obtaining species that possibly combine both traits.  相似文献   

9.
    
Plants and animals influence biomass production and nutrient cycling in terrestrial ecosystems; however, their relative importance remains unclear. We assessed the extent to which mega‐herbivore species controlled plant community composition and nutrient cycling, relative to other factors during and after the Late Quaternary extinction event in Britain and Ireland, when two‐thirds of the region's mega‐herbivore species went extinct. Warmer temperatures, plant–soil and plant–plant interactions, and reduced burning contributed to the expansion of woody plants and declining nitrogen availability in our five study ecosystems. Shrub biomass was consistently one of the strongest predictors of ecosystem change, equalling or exceeding the effects of other biotic and abiotic factors. In contrast, there was relatively little evidence for mega‐herbivore control on plant community composition and nitrogen availability. The ability of plants to determine the fate of terrestrial ecosystems during periods of global environmental change may therefore be greater than previously thought.  相似文献   

10.
    
Grazing effects on arid and semi‐arid grasslands can be constrained by aridity. Plant functional groups (PFGs) are the most basic component of community structure (CS) and biodiversity & ecosystem function (BEF). They have been suggested as identity‐dependent in quantifying the response to grazing intensity and drought severity. Here, we examine how the relationships among PFGs, CS, BEF, and grazing intensity are driven by climatic drought. We conducted a manipulative experiment with three grazing intensities in 2012 (nondrought year) and 2013 (drought year). We classified 62 herbaceous plants into four functional groups based on their life forms. We used the relative species abundance of PFGs to quantify the effects of grazing and drought, and to explore the mechanisms for the pathway correlations using structural equation models (SEM) among PFGs, CS, and BEF directly or indirectly. Grazers consistently favored the perennial forbs (e.g., palatable or nutritious plants), decreasing the plants’ relative abundance by 23%–38%. Drought decreased the relative abundance of ephemeral plants by 42 ± 13%; and increased perennial forbs by 20 ± 7% and graminoids by 80 ± 31%. SEM confirmed that annuals and biennials had negative correlations with the other three PFGs, with perennial bunchgrasses facilitated by perennial rhizome grass. Moreover, the contributions of grazing to community structure (i.e., canopy height) were 1.6–6.1 times those from drought, whereas drought effect on community species richness was 3.6 times of the grazing treatment. Lastly, the interactive effects of grazing and drought on BEF were greater than either alone; particularly, drought escalated grazing damage on primary production. Synthesis. The responses of PFGs, CS, and BEF to grazing and drought were identity‐dependent, suggesting that grazing and drought regulation of plant functional groups might be a way to shape ecosystem structure and function in grasslands.  相似文献   

11.
    
Most studies of plant–animal mutualistic networks have come from a temporally static perspective. This approach has revealed general patterns in network structure, but limits our ability to understand the ecological and evolutionary processes that shape these networks and to predict the consequences of natural and human‐driven disturbance on species interactions. We review the growing literature on temporal dynamics of plant–animal mutualistic networks including pollination, seed dispersal and ant defence mutualisms. We then discuss potential mechanisms underlying such variation in interactions, ranging from behavioural and physiological processes at the finest temporal scales to ecological and evolutionary processes at the broadest. We find that at the finest temporal scales (days, weeks, months) mutualistic interactions are highly dynamic, with considerable variation in network structure. At intermediate scales (years, decades), networks still exhibit high levels of temporal variation, but such variation appears to influence network properties only weakly. At the broadest temporal scales (many decades, centuries and beyond), continued shifts in interactions appear to reshape network structure, leading to dramatic community changes, including loss of species and function. Our review highlights the importance of considering the temporal dimension for understanding the ecology and evolution of complex webs of mutualistic interactions.  相似文献   

12.
We explored the effects of the presence of conspecifics on host patch choice decisions made by the parasitoid Venturia canescens. Different odor sources were located in plastic boxes at the end of each arm of a glass Y-tube olfactometer. In a set of experiments, odor sources were either (a) host kairomone patches with or without conspecifics (5 or 20) or (b) two odor sources located in successive boxes (a host kairomone patch and a patch with 20 conspecifics in one arm versus a host patch and an empty patch in the other). Our results indicate that V. canescens avoids competition only at high conspecific densities. Avoidance occurs only when foraging wasps perceive the combined odors from host kairomones and conspecific females. Separating the host patch from conspecific parasitoids does not perturb avoidance behavior.  相似文献   

13.
Localized expression of genes in plants from T‐DNAs delivered into plant cells by Agrobacterium tumefaciens is an important tool in plant research. The technique, known as agroinfiltration, provides fast, efficient ways to transiently express or silence a desired gene without resorting to the time‐consuming, challenging stable transformation of the host, the use of less efficient means of delivery, such as bombardment, or the use of viral vectors, which multiply and spread within the host causing physiological alterations themselves. A drawback of the agroinfiltration technique is its temperature dependence: early studies have shown that temperatures above 29 °C are nonpermissive to tumour induction by the bacterium as a result of failure in pilus formation. However, research in plant sciences is interested in studying processes at these temperatures, above the 25 °C experimental standard, common to many host–environment and host–pathogen interactions in nature, and agroinfiltration is an excellent tool for this purpose. Here, we measured the efficiency of agroinfiltration for the expression of reporter genes in plants from T‐DNAs at the nonpermissive temperature of 30 °C, either transiently or as part of viral amplicons, and envisaged procedures that allow and optimize its use for gene expression at this temperature. We applied this technical advance to assess the performance at 30 °C of two viral suppressors of silencing in agropatch assays [Potato virus Y helper component proteinase (HCPro) and Cucumber mosaic virus 2b protein] and, within the context of infection by a Potato virus X (PVX) vector, also assessed indirectly their effect on the overall response of the host Nicotiana benthamiana to the virus.  相似文献   

14.
    
1. In many flowering plants, bumble bees may forage as both pollinators and nectar robbers. This mixed foraging behaviour may be influenced by community context and consequently, potentially affect pollination of the focal plant. 2. Salvia przewalskii is both pollinated and robbed exclusively by bumble bees. In the present study area, it was legitimately visited by two species of bumble bees with different tongue length, Bombus friseanus and Bombus religiosus, but it was only robbed by Bombus friseanus, the shorter‐tongued bumble bee. The intensity of nectar robbing and pollinator visitation rate to the plant were investigated across 26 communities in the Hengduan Mountains in East Himalaya during a 2‐year project. For each of these communities, the floral diversity, and the population size and floral resource of S. przewalskii were quantified. The abundances of the two bumble bee species were also recorded. 3. Both nectar robbing and pollinator visitation rate were influenced by floral diversity. However, pollinator visitation rate was not affected by nectar robbing. The results revealed that relative abundance of the two bumble bee species significantly influenced the incidence of nectar robbing but not the pollinator visitation rate. Increased abundance of B. religiosus, the legitimate visitors, exacerbated nectar robbing, possibly by causing B. friseanus to shift to robbing; however, pollinator visitation remained at a relatively high level. 4. The results may help to explain the persistence of both nectar robbing and pollination, and suggest that, in comparison to pollination, nectar robbing is a more unstable event in a community.  相似文献   

15.
    
Mathematical tools for quantifying plant–plant interactions are continuously improving, for example by attaining desirable statistical properties such as symmetry around zero (positive and negative effects have the same distribution). Standardisation is another such important property, making indices comparable between independent experiments, and can be achieved by standardisation for size. Using simulated data, here we show that an approach to standardisation by size that works well for indices of intensity is not appropriate for those of importance (intensity indices measure the absolute size of interaction effect, whilst importance indices quantify this effect as a proportion of the impact of the environment overall); our analyses also show that importance values can be overestimated in unproductive environments. These issues arise because importance indices use a reference value that is the “maximum growth on the gradient”. This causes problems when comparing the results from studies that examine different sections of an environmental gradient: the maximum growth of plants within these sections is different and so the indices are not easy to compare between different sections of a gradient. Although this may sound like an obvious point, such issues can often be overlooked and a general solution adopted. One such solution is to report raw data from separate studies so that values can be recomputed for combined datasets and thus standardised comparisons. Another solution is to use an off‐gradient reference that is the maximum growth measured under optimal conditions for a model target species (phytometer).  相似文献   

16.
    
Understanding the mechanisms of community coexistence and ecosystem functioning may help to counteract the current biodiversity loss and its potentially harmful consequences. In recent years, plant–soil feedback that can, for example, be caused by below‐ground microorganisms has been suggested to play a role in maintaining plant coexistence and to be a potential driver of the positive relationship between plant diversity and ecosystem functioning. Most of the studies addressing these topics have focused on the species level. However, in addition to interspecific interactions, intraspecific interactions might be important for the structure of natural communities. Here, we examine intraspecific coexistence and intraspecific diversity effects using 10 natural accessions of the model species Arabidopsis thaliana (L.) Heynh. We assessed morphological intraspecific diversity by measuring several above‐ and below‐ground traits. We performed a plant–soil feedback experiment that was based on these trait differences between the accessions in order to determine whether A. thaliana experiences feedback at intraspecific level as a result of trait differences. We also experimentally tested the diversity–productivity relationship at intraspecific level. We found strong differences in above‐ and below‐ground traits between the A. thaliana accessions. Overall, plant–soil feedback occurred at intraspecific level. However, accessions differed in the direction and strength of this feedback: Some accessions grew better on their own soils, some on soils from other accessions. Furthermore, we found positive diversity effects within A. thaliana: Accession mixtures produced a higher total above‐ground biomass than accession monocultures. Differences between accessions in their feedback response could not be explained by morphological traits. Therefore, we suggest that they might have been caused by accession‐specific accumulated soil communities, by root exudates, or by accession‐specific resource use based on genetic differences that are not expressed in morphological traits. Synthesis. Our results provide some of the first evidence for intraspecific plant–soil feedback and intraspecific overyielding. These findings may have wider implications for the maintenance of variation within species and the importance of this variation for ecosystem functioning. Our results highlight the need for an increased focus on intraspecific processes in plant diversity research to fully understand the mechanisms of coexistence and ecosystem functioning.  相似文献   

17.
    
Insect olfactory orientation along odour plumes has been studied intensively with respect to pheromonal communication, whereas little knowledge is available on how plant odour plumes (POPs) affect olfactory searching by an insect for its host plants. The primary objective of this review is to examine the role of POPs in the attraction of insects. First, we consider parameters of an odour source and the environment which determine the size, shape and structure of an odour plume, and we apply that knowledge to POPs. Second, we compare characteristics of insect pheromonal plumes and POPs. We propose a ‘POP concept’ for the olfactory orientation of insects to plants. We suggest that: (i) an insect recognises a POP by means of plant volatile components that are encountered in concentrations higher than a threshold detection limit and that occur in a qualitative and quantitative blend indicating a resource; (ii) perception of the fine structure of a POP enables an insect to distinguish a POP from an unspecific odorous background and other interfering plumes; and (iii) an insect can follow several POPs to their sources, and may leave the track of one POP and switch to another one if this conveys a signal with higher reliability or indicates a more suitable resource. The POP concept proposed here may be a useful tool for research in olfactory‐mediated plant–insect interactions.  相似文献   

18.
    
Ant–plant mutualisms are usually regarded as driven by ants defending plants against herbivores in return for plant‐produced food rewards and housing. However, ants may provide additional services. In a review of published studies on ant–pathogen–plant interactions, we investigated whether ants’ extensive hygiene measures, including the use of ant‐produced antibiotics, extend to their host plants and reduce plant pathogen loads. From 30 reported species combinations, we found that the presence of ants lead to reduced pathogen levels in 18 combinations and to increased levels in 6. On average, ants significantly reduced pathogen incidence with 59%. This effect size did not differ significantly from effect sizes reported from meta‐analyses on herbivore protection. Thus, pathogen and herbivore protection could be of equal importance in ant–plant mutualisms. Considering the abundance of these interactions, ecological impacts are potentially high. Furthermore, awareness of this service may stimulate the development of new measures to control plant diseases in agriculture. It should be noted, though, that studies were biased toward tropical ant–plant symbioses and that the literature in the field is limited at present. Future research on plant pathogens is needed to enhance our understanding of ant–plant mutualisms and their evolution.  相似文献   

19.
    
Heterogeneity–diversity relationship (HDR) is commonly shown to be positive in accordance with classic niche processes. However, recent soil‐based studies have often found neutral and even negative HDRs. Some of the suggested reasons for this discrepancy include the lack of resemblance between manipulated substrate and natural settings, the treated areas not being large enough to contain species' root span, and finally limited‐sized plots may not sustain focal species’ populations over time. Vegetated green roofs are a growing phenomenon in many cities that could be an ideal testing ground for this problem. Recent studies have focused on the ability of these roofs to sustain stable and diverse plant communities and substrate heterogeneity that would increase niches on the roof has been proposed as a method to attain this goal. We constructed an experimental design using green roof experimental modules (4 m2) where we manipulated mineral and organic substrate component heterogeneity in different subplots (0.25 m2) within the experimental module while maintaining the total sum of mineral and organic components. A local annual plant community was seeded in the modules and monitored over three growing seasons. We found that plant diversity and biomass were not affected by experimentally created substrate heterogeneity. In addition, we found that different treatments, as well as specific subplot substrates, had an effect on plant community assemblages during the first year but not during the second and third years. Substrate heterogeneity levels were mostly unchanged over time. The inability to retain plant community composition over the years despite the maintenance of substrate differences supports the hypothesis that maintenance of diversity is constrained at these spatial scales by unfavorable dispersal and increased stochastic events as opposed to predictions of classic niche processes.  相似文献   

20.
    
  • 1 The vine weevil Otiorhynchus sulcatus is a major pest of horticultural crops worldwide, with root‐feeding larvae causing most damage. Adult oviposition aboveground may therefore influence levels of damage as the larvae are relatively immobile after oviposition.
  • 2 The present study investigated feeding and oviposition behaviour on red raspberry Rubus idaeus using intact plants, ensuring that choices reflected the realistic differences in cultivar appearance and chemical composition. Previous studies investigating vine weevil feeding and oviposition on other crops have used excised plant material, which may inadvertently influence behaviour.
  • 3 Adult weevils significantly preferred to feed on particular cultivars in the choice experiment (e.g. Tulameen), although they consumed significantly more foliage (0.22–1.03 cm2/day) on different raspberry cultivars (e.g. Glen Moy, Glen Rosa and a wild accession) in no‐choice situations.
  • 4 In choice experiments, weevils tended to avoid laying eggs on some cultivars (e.g. Glen Moy and the wild accession). The number of eggs laid (1.91–4.32 eggs per day) did not, however, differ significantly between the cultivars in a no‐choice situation. Foliar nitrogen and magnesium concentrations were positively, although weakly, correlated with the total number of eggs laid.
  • 5 The present study highlights the importance of considering both choice and no‐choice tests when assessing crop susceptibility to attack because weevils may avoid feeding on certain cultivars (e.g. Glen Moy) when given a choice, although this would cause significant damage to such cultivars if they were grown in monoculture (i.e. when there is no alternative).
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号