首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The largest tegument protein of herpes simplex virus type 1 (HSV1), pUL36, is a multivalent cross-linker between the viral capsids and the tegument and associated membrane proteins during assembly that upon subsequent cell entry releases the incoming capsids from the outer tegument and viral envelope. Here we show that pUL36 was recruited to cytosolic progeny capsids that later colocalized with membrane proteins of herpes simplex virus type 1 (HSV1) and the trans-Golgi network. During cell entry, pUL36 dissociated from viral membrane proteins but remained associated with cytosolic capsids until arrival at the nucleus. HSV1 UL36 mutants lacking C-terminal portions of increasing size expressed truncated pUL36 but could not form plaques. Cytosolic capsids of mutants lacking the C-terminal 735 of the 3,164 amino acid residues accumulated in the cytosol but did not recruit pUL36 or associate with membranes. In contrast, pUL36 lacking only the 167 C-terminal residues bound to cytosolic capsids and subsequently colocalized with viral and host membrane proteins. Progeny virions fused with neighboring cells, but incoming capsids did not retain pUL36, nor could they target the nucleus or initiate HSV1 gene expression. Our data suggest that residues 2430 to 2893 of HSV1 pUL36, containing one binding site for the capsid protein pUL25, are sufficient to recruit pUL36 onto cytosolic capsids during assembly for secondary envelopment, whereas the 167 residues of the very C terminus with the second pUL25 binding site are crucial to maintain pUL36 on incoming capsids during cell entry. Capsids lacking pUL36 are targeted neither to membranes for virus assembly nor to nuclear pores for genome uncoating.  相似文献   

2.
Pseudorabies virus (PRV), a member of the Alphaherpesvirinae, has a complex multilayered extracellular virion that is structurally conserved among other herpesviruses. PRV virions contain a double-stranded DNA genome within a proteinaceous capsid surrounded by the tegument, a layer of viral and cellular proteins. The envelope layer, which encloses the capsid and tegument, contains viral transmembrane proteins anchored in a phospholipid bilayer. The viral and host proteins contained within virions execute important functions during viral spread and pathogenesis, but a detailed understanding of the composition of PRV virions has been lacking. In this report, we present the first comprehensive proteomic characterization of purified PRV virions by mass spectrometry using two complementary approaches. To exclude proteins present in the extracellular medium that may nonspecifically associate with virions, we also analyzed virions treated with proteinase K and samples prepared from mock-infected cells. Overall, we identified 47 viral proteins associated with PRV virions, 40 of which were previously localized to the capsid, tegument, and envelope layers using traditional biochemical approaches. Additionally, we identified seven viral proteins that were previously undetected in virions, including pUL8, pUL20, pUL32, pUL40 (RR2), pUL42, pUL50 (dUTPase), and Rsp40/ICP22. Furthermore, although we did not enrich for posttranslational modifications, we detected phosphorylation of four virion proteins: pUL26, pUL36, pUL46, and pUL48. Finally, we identified 48 host proteins associated with PRV virions, many of which have known functions in important cellular pathways such as intracellular signaling, mRNA translation and processing, cytoskeletal dynamics, and membrane organization. This analysis extends previous work aimed at determining the composition of herpesvirus virions and provides novel insights critical for understanding the mechanisms underlying PRV entry, assembly, egress, spread, and pathogenesis.  相似文献   

3.
The herpes simplex virus type 1 (HSV-1) structural tegument protein pUL37, which is conserved across the Herpesviridae family, is known to be essential for secondary envelopment during the egress of viral particles. To shed light on additional roles of pUL37 during viral replication a yeast two-hybrid screen of a human brain cDNA library was undertaken. This screen identified ten host cell proteins as potential pUL37 interactors. One of the interactors, serine threonine kinase TAOK3, was subsequently confirmed to interact with pUL37 using an in vitro pulldown assay. Such host cell/pUL37 interactions provide further insights into the multifunctional role of this herpesviral tegument protein.  相似文献   

4.
Immunogold electron microscopy was used to determine whether the tegument proteins VP13/14, VP22, and VP16 of herpes simplex virus type 1 (HSV1) are components of primary enveloped virions. Whereas VP13/14 and VP22 were not detected in virus particles in the perinuclear space and were present in only mature extracellular virions, VP16 was acquired prior to primary envelopment of the virus at the inner nuclear membrane. This finding highlights potential similarities and differences between HSV1 and the related alphaherpesvirus, pseudorabies virus, in which the homologues of all three of these tegument proteins are not incorporated into the virion until secondary envelopment.  相似文献   

5.
Herpes simplex virus 1 (HSV-1) enters neurons primarily by fusion of the viral envelope with the host cell plasma membrane, leading to the release of the capsid into the cytosol. The capsid travels via microtubule-mediated retrograde transport to the nuclear membrane, where the viral DNA is released for replication in the nucleus. In the present study, the composition and kinetics of incoming HSV-1 capsids during entry and retrograde transport in axons of human fetal and dissociated rat dorsal root ganglia (DRG) neurons were examined by wide-field deconvolution microscopy and transmission immunoelectron microscopy (TIEM). We show that HSV-1 tegument proteins, including VP16, VP22, most pUL37, and some pUL36, dissociated from the incoming virions. The inner tegument proteins, including pUL36 and some pUL37, remained associated with the capsid during virus entry and transit to the nucleus in the neuronal cell body. By TIEM, a progressive loss of tegument proteins, including VP16, VP22, most pUL37, and some pUL36, was observed, with most of the tegument dissociating at the plasma membrane of the axons and the neuronal cell body. Further dissociation occurred within the axons and the cytosol as the capsids moved to the nucleus, resulting in the release of free tegument proteins, especially VP16, VP22, pUL37, and some pUL36, into the cytosol. This study elucidates ultrastructurally the composition of HSV-1 capsids that encounter the microtubules in the core of human axons and the complement of free tegument proteins released into the cytosol during virus entry.  相似文献   

6.
7.
The herpes simplex virus type 1 tegument protein known as VP13/14, or hUL47, localizes to the nucleus and binds RNA. Using fluorescence loss in photobleaching analysis, we show that hUL47 undergoes nucleocytoplasmic shuttling during infection. We identify the hUL47 nuclear export signal (NES) as a C-terminal 10-residue hydrophobic peptide and measure its efficiency relative to that of the classical human immunodeficiency virus type 1 Rev NES. Finally, we show that the hUL47 NES is sensitive to the inhibitor of CRM1-mediated nuclear export leptomycin B. Hence, hUL47 joins a growing list of virus-encoded RNA-binding proteins that use CRM1 to exit the nucleus.  相似文献   

8.
Many viruses depend on host microtubule motors to reach their destined intracellular location. Viral particles of neurotropic alphaherpesviruses such as herpes simplex virus 1 (HSV1) show bidirectional transport towards the cell center as well as the periphery, indicating that they utilize microtubule motors of opposing directionality. To understand the mechanisms of specific motor recruitment, it is necessary to characterize the molecular composition of such motile viral structures. We have generated HSV1 capsids with different surface features without impairing their overall architecture, and show that in a mammalian cell-free system the microtubule motors dynein and kinesin-1 and the dynein cofactor dynactin could interact directly with capsids independent of other host factors. The capsid composition and surface was analyzed with respect to 23 structural proteins that are potentially exposed to the cytosol during virus assembly or cell entry. Many of these proteins belong to the tegument, the hallmark of all herpesviruses located between the capsid and the viral envelope. Using immunoblots, quantitative mass spectrometry and quantitative immunoelectron microscopy, we show that capsids exposing inner tegument proteins such as pUS3, pUL36, pUL37, ICP0, pUL14, pUL16, and pUL21 recruited dynein, dynactin, kinesin-1 and kinesin-2. In contrast, neither untegumented capsids exposing VP5, VP26, pUL17 and pUL25 nor capsids covered by outer tegument proteins such as vhs, pUL11, ICP4, ICP34.5, VP11/12, VP13/14, VP16, VP22 or pUS11 bound microtubule motors. Our data suggest that HSV1 uses different structural features of the inner tegument to recruit dynein or kinesin-1. Individual capsids simultaneously accommodated motors of opposing directionality as well as several copies of the same motor. Thus, these associated motors either engage in a tug-of-war or their activities are coordinately regulated to achieve net transport either to the nucleus during cell entry or to cytoplasmic membranes for envelopment during assembly.  相似文献   

9.
Studies with herpes simplex virus type 1 (HSV-1) have shown that secondary envelopment and virus release are blocked in mutants deleted for the tegument protein gene UL36 or UL37, leading to the accumulation of DNA-containing capsids in the cytoplasm of infected cells. The failure to assemble infectious virions has meant that the roles of these genes in the initial stages of infection could not be investigated. To circumvent this, cells infected at a low multiplicity were fused to form syncytia, thereby allowing capsids released from infected nuclei access to uninfected nuclei without having to cross a plasma membrane. Visualization of virus DNA replication showed that a UL37-minus mutant was capable of transmitting infection to all the nuclei within a syncytium as efficiently as the wild-type HSV-1 strain 17+ did, whereas infection by UL36-minus mutants failed to spread. Thus, these inner tegument proteins have differing functions, with pUL36 being essential during both the assembly and uptake stages of infection, while pUL37 is needed for the formation of virions but is not required during the initial stages of infection. Analysis of noninfectious enveloped particles (L-particles) further showed that pUL36 and pUL37 are dependent on each other for incorporation into tegument.  相似文献   

10.
Retroviruses must gain access to the host cell nucleus for subsequent replication and viral propagation. Human immunodeficiency virus type 1 (HIV-1) and other primate lentiviruses are distinguished from the gammaretroviruses by their ability to infect nondividing cells such as macrophages, an important viral reservoir in vivo. Rather than requiring nuclear membrane breakdown during cell division, the HIV-1 preintegration complex (PIC) enters the nucleus by traversing the central aqueous channel of the limiting nuclear pore complex. The HIV-1 PIC contains three nucleophilic proteins, matrix, integrase, and Vpr, all of which have been implicated in nuclear targeting. The mechanism by which Vpr can display such nucleophilic properties and yet also be available for incorporation into virions assembling at the plasma membrane is unresolved. We recently characterized Vpr as a nucleocytoplasmic shuttling protein that contains two novel nuclear import signals and an exportin-1-dependent nuclear export signal (NES). We now demonstrate that mutation of this NES impairs the incorporation of Vpr into newly formed virions. Furthermore, we find that the Vpr NES is required for efficient HIV replication in tissue macrophages present in human spleens and tonsils. These findings underscore how the nucleocytoplasmic shuttling of Vpr not only contributes to nuclear import of the HIV-1 PIC but also enables Vpr to be present in the cytoplasm for incorporation into virions, leading to enhancement of viral spread within nondividing tissue macrophages.  相似文献   

11.
12.
Hepatitis C virus (HCV) infection is a major cause of chronic liver disease worldwide. HCV core protein is involved in nucleocapsid formation, but it also interacts with multiple cytoplasmic and nuclear molecules and plays a crucial role in the development of liver disease and hepatocarcinogenesis. The core protein is found mostly in the cytoplasm during HCV infection, but also in the nucleus in patients with hepatocarcinoma and in core-transgenic mice. HCV core contains nuclear localization signals (NLS), but no nuclear export signal (NES) has yet been identified.We show here that the aa(109-133) region directs the translocation of core from the nucleus to the cytoplasm by the CRM-1-mediated nuclear export pathway. Mutagenesis of the three hydrophobic residues (L119, I123 and L126) in the identified NES or in the sequence encoding the mature core aa(1-173) significantly enhanced the nuclear localisation of the corresponding proteins in transfected Huh7 cells. Both the NES and the adjacent hydrophobic sequence in domain II of core were required to maintain the core protein or its fragments in the cytoplasmic compartment. Electron microscopy studies of the JFH1 replication model demonstrated that core was translocated into the nucleus a few minutes after the virus entered the cell. The blockade of nucleocytoplasmic export by leptomycin B treatment early in infection led to the detection of core protein in the nucleus by confocal microscopy and coincided with a decrease in virus replication.Our data suggest that the functional NLS and NES direct HCV core protein shuttling between the cytoplasmic and nuclear compartments, with at least some core protein transported to the nucleus. These new properties of HCV core may be essential for virus multiplication and interaction with nuclear molecules, influence cell signaling and the pathogenesis of HCV infection.  相似文献   

13.
The late stages of assembly of herpes simplex virus (HSV) and other herpesviruses are not well understood. Acquisition of the final virion envelope apparently involves interactions between viral nucleocapsids coated with tegument proteins and the cytoplasmic domains of membrane glycoproteins. This promotes budding of virus particles into cytoplasmic vesicles derived from the trans-Golgi network or endosomes. The identities of viral membrane glycoproteins and tegument proteins involved in these processes are not well known. Here, we report that HSV mutants lacking two viral glycoproteins, gD and gE, accumulated large numbers of unenveloped nucleocapsids in the cytoplasm. These aggregated capsids were immersed in an electron-dense layer that appeared to be tegument. Few or no enveloped virions were observed. More subtle defects were observed with an HSV unable to express gD and gI. A triple mutant lacking gD, gE, and gI exhibited more severe defects in envelopment. We concluded that HSV gD and the gE/gI heterodimeric complex act in a redundant fashion to anchor the virion envelope onto tegument-coated capsids. In the absence of either one of these HSV glycoproteins, envelopment proceeds; however, without both gD and gE, or gE/gI, there is profound inhibition of cytoplasmic envelopment.  相似文献   

14.
The structure of pseudorabies virus (PRV) capsids isolated from the nucleus of infected cells and from PRV virions was determined by cryo-electron microscopy (cryo-EM) and compared to herpes simplex virus type 1 (HSV-1) capsids. PRV capsid structures closely resemble those of HSV-1, including distribution of the capsid vertex specific component (CVSC) of HSV-1, which is a heterodimer of the pUL17 and pUL25 proteins. Occupancy of CVSC on all PRV capsids is near 100%, compared to ~ 50% reported for HSV-1 C-capsids and 25% or less that we measure for HSV-1 A- and B-capsids. A PRV mutant lacking pUL25 does not produce C-capsids and lacks visible CVSC density in the cryo-EM-based reconstruction. A reconstruction of PRV capsids in which green fluorescent protein was fused within the N-terminus of pUL25 confirmed previous studies with a similar HSV-1 capsid mutant localizing pUL25 to the CVSC density region that is distal to the penton. However, comparison of the CVSC density in a 9-Å-resolution PRV C-capsid map with the available crystal structure of HSV-1 pUL25 failed to find a satisfactory fit, suggesting either a different fold for PRV pUL25 or a capsid-bound conformation for pUL25 that does not match the X-ray model determined from protein crystallized in solution. The PRV capsid imaged within virions closely resembles C-capsids with the addition of weak but significant density shrouding the pentons that we attribute to tegument proteins. Our results demonstrate significant structure conservation between the PRV and HSV capsids.  相似文献   

15.
Yang K  Homa F  Baines JD 《Journal of virology》2007,81(12):6419-6433
Herpes simplex virus (HSV) terminase is an essential component of the molecular motor that translocates DNA through the portal vertex in the capsid during DNA packaging. The HSV terminase is believed to consist of the UL15, UL28, and UL33 gene products (pUL15, pUL28, and pUL33, respectively), whereas the HSV type 1 portal vertex is encoded by UL6. Immunoprecipitation reactions revealed that pUL15, pUL28, and pUL33 interact in cytoplasmic and nuclear lysates. Deletion of a canonical nuclear localization signal (NLS) from pUL15 generated a dominant-negative protein that, when expressed in an engineered cell line, decreased the replication of wild-type virus up to 80-fold. When engineered into the genome of recombinant HSV, this mutation did not interfere with the coimmunoprecipitation of pUL15, pUL28, and pUL33 from cytoplasmic lysates of infected cells but prevented viral replication, most nuclear import of both pUL15 and pUL28, and coimmunoprecipitation of pUL15, pUL28, and pUL33 from nuclear lysates. When the pUL15/pUL28 interaction was reduced in infected cells by the truncation of the C terminus of pUL28, pUL28 remained in the cytoplasm. Whether putative terminase components localized in the nucleus or cytoplasm, pUL6 localized in infected cell nuclei, as viewed by indirect immunofluorescence. The finding that the portal and terminase do eventually interact was supported by the observation that pUL6 coimmunoprecipitated strongly with pUL15 and weakly with pUL28 from extracts of infected cells in 1.0 M NaCl. These data are consistent with the hypothesis that the pUL15/pUL28/pUL33 complex forms in the cytoplasm and that an NLS in pUL15 is used to import the complex into the nucleus where at least pUL15 and pUL28 interact with the portal to mediate DNA packaging.  相似文献   

16.
The mature virion of the alphaherpesvirus pseudorabies virus (PrV) contains a minimum of 31 structural proteins which are recruited into the virus particle by a network of protein-protein interactions which is only incompletely understood. We show here that deletion of the tegument protein pUL21 resulted in a drastic decrease in the incorporation of the pUL46, pUL49, and pUS3 tegument components into mature virions. Moreover, the attenuated PrV strain Bartha (PrV-Ba), which, among other defects, carries mutations in pUL21, also fails to package pUL46, pUL49, and pUS3 efficiently. By the reconstitution of wild-type pUL21 expression to PrV-Ba and the transfer of mutated PrV-Ba pUL21 into wild-type PrV, we demonstrate that this phenotype is due to the mutated pUL21.  相似文献   

17.
The leucine-rich nuclear export signal (NES) is used to shuttle large cellular proteins from the nucleus to the cytoplasm. The nuclear export receptor Crm1 is essential in this process by recognizing the NES motif. Here, we show that the oncogenic hepatitis B virus (HBV) X protein (HBx) contains a functional NES motif. We found that the predominant cytoplasmic localization of HBx is sensitive to the drug leptomycin B (LMB), which specifically inactivates Crm1. Mutations at the two conserved leucine residues to alanine at the NES motif (L98A,L100A) resulted in a nuclear redistribution of HBx. A recombinant HBx protein binds to Crm1 in vitro. In addition, ectopic expression of HBx sequesters Crm1 in the cytoplasm. Furthermore, HBx activates NFkappaB by inducing its nuclear translocation in a NES-dependent manner. Abnormal cytoplasmic sequestration of Crm1, accompanied by a nuclear localization of NFkappaB, was also observed in hepatocytes from HBV-positive liver samples with chronic active hepatitis. We suggest that Crm1 may play a role in HBx-mediated liver carcinogenesis.  相似文献   

18.
The splicing machinery which positions a protein export complex near the exon-exon junction mediates nuclear export of mRNAs generated from intron-containing genes. Many Epstein-Barr virus (EBV) early and late genes are intronless, and an alternative pathway, independent of splicing, must export the corresponding mRNAs. Since the EBV EB2 protein induces the cytoplasmic accumulation of intronless mRNA, it is tempting to speculate that EB2 is a viral adapter involved in the export of intronless viral mRNA. If this is true, then the EB2 protein is essential for the production of EBV infectious virions. To test this hypothesis, we generated an EBV mutant in which the BMLF1 gene, encoding the EB2 protein, has been deleted (EBV(BMLF1-KO)). Our studies show that EB2 is necessary for the production of infectious EBV and that its function cannot be transcomplemented by a cellular factor. In the EBV(BMLF1-KO) 293 cells, oriLyt-dependent DNA replication was greatly enhanced by EB2. Accordingly, EB2 induced the cytoplasmic accumulation of a subset of EBV early mRNAs coding for essential proteins implicated in EBV DNA replication during the productive cycle. Two herpesvirus homologs of the EB2 protein, the herpes simplex virus type 1 protein ICP27 and, the human cytomegalovirus protein UL69, only partly rescued the phenotype of the EBV(BMLF1-KO) mutant, indicating that some EB2 functions in virus production cannot be transcomplemented by ICP27 and UL69.  相似文献   

19.
Cao S  Liu X  Yu M  Li J  Jia X  Bi Y  Sun L  Gao GF  Liu W 《Journal of virology》2012,86(9):4883-4891
The influenza A virus matrix 1 protein (M1) shuttles between the cytoplasm and the nucleus during the viral life cycle and plays an important role in the replication, assembly, and budding of viruses. Here, a leucine-rich nuclear export signal (NES) was identified specifically for the nuclear export of the M1 protein. The predicted NES, designated the Flu-A-M1 NES, is highly conserved among all sequences from the influenza A virus subtype, but no similar NES motifs are found in the M1 sequences of influenza B or C viruses. The biological function of the Flu-A-M1 NES was demonstrated by its ability to translocate an enhanced green fluorescent protein (EGFP)-NES fusion protein from the nucleus to the cytoplasm in transfected cells, compared to the even nuclear and cytoplasmic distribution of EGFP. The translocation of EGFP-NES from the nucleus to the cytoplasm was not inhibited by leptomycin B. NES mutations in M1 caused a nuclear retention of the protein and an increased nuclear accumulation of NEP during transfection. Indeed, as shown by rescued recombinant viruses, the mutation of the NES impaired the nuclear export of M1 and significantly reduced the virus titer compared to titers of wild-type viruses. The NES-defective M1 protein was retained in the nucleus during infection, accompanied by a lowered efficiency of the nuclear export of viral RNPs (vRNPs). In conclusion, M1 nuclear export was specifically dependent on the Flu-A-M1 NES and critical for influenza A virus replication.  相似文献   

20.
The herpes simplex virus type 1 (HSV-1) immediate-early protein ICP27 is an RNA-binding protein that performs multiple functions required for the expression of HSV-1 genes during a productive infection. One essential function involves shuttling between the nucleus and the cytoplasm. Some of the domains identified in ICP27 include a leucine-rich nuclear export sequence (NES), a nuclear localization signal, three KH-like RNA-binding domains, and an RGG-box type RNA-binding motif. To study the contribution of two of the essential domains in ICP27 to HSV gene expression, we generated recombinant herpesviruses carrying deleterious mutations in the NES and KH domains of ICP27. To accomplish this, we fused the green fluorescent protein (GFP) to ICP27 and utilized fluorescence as a marker to isolate recombinant herpesviruses. Fusion of GFP to wild-type ICP27 did not disturb its localization or function or significantly reduce virus yield. Analysis of HSV gene expression in cells infected with a recombinant virus carrying a point mutation in the first KH-like RNA-binding domain revealed that nuclear export of ICP27 was not blocked, and the expression of only a subset of ICP27-dependent late genes was affected. These findings suggest that individual KH-like RNA-binding motifs in ICP27 may be involved in binding distinct RNAs. Analysis of recombinant viruses carrying a lethal mutation in the NES of ICP27 was not accomplished because this mutation results in a strong dominant-negative phenotype. Finally, we demonstrate that shuttling by ICP27 is regulated by an export control sequence adjacent to its NES that functions like the inhibitory sequence element found adjacent to the NES of NS1 from influenza virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号