首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
2.
Root hairs are instrumental for nutrient uptake in monocot cereals. The maize (Zea mays L.) roothairless5 (rth5) mutant displays defects in root hair initiation and elongation manifested by a reduced density and length of root hairs. Map‐based cloning revealed that the rth5 gene encodes a monocot‐specific NADPH oxidase. RNA‐Seq, in situ hybridization and qRT‐PCR experiments demonstrated that the rth5 gene displays preferential expression in root hairs but also accumulates to low levels in other tissues. Immunolocalization detected RTH5 proteins in the epidermis of the elongation and differentiation zone of primary roots. Because superoxide and hydrogen peroxide levels are reduced in the tips of growing rth5 mutant root hairs as compared with wild‐type, and Reactive oxygen species (ROS) is known to be involved in tip growth, we hypothesize that the RTH5 protein is responsible for establishing the high levels of ROS in the tips of growing root hairs required for elongation. Consistent with this hypothesis, a comparative RNA‐Seq analysis of 6‐day‐old rth5 versus wild‐type primary roots revealed significant over‐representation of only two gene ontology (GO) classes related to the biological functions (i.e. oxidation/reduction and carbohydrate metabolism) among 893 differentially expressed genes (FDR <5%). Within these two classes the subgroups ‘response to oxidative stress’ and ‘cellulose biosynthesis’ were most prominently represented.  相似文献   

3.
4.
5.
6.
7.
Root hairs are specialized cells that are important for nutrient uptake. It is well established that nutrients such as phosphate have a great influence on root hair development in many plant species. Here we investigated the role of nitrate on root hair development at a physiological and molecular level. We showed that nitrate increases root hair density in Arabidopsis thaliana. We found that two different root hair defective mutants have significantly less nitrate than wild‐type plants, suggesting that in A. thaliana root hairs have an important role in the capacity to acquire nitrate. Nitrate reductase‐null mutants exhibited nitrate‐dependent root hair phenotypes comparable with wild‐type plants, indicating that nitrate is the signal that leads to increased formation of root hairs. We examined the role of two key regulators of root hair cell fate, CPC and WER, in response to nitrate treatments. Phenotypic analyses of these mutants showed that CPC is essential for nitrate‐induced responses of root hair development. Moreover, we showed that NRT1.1 and TGA1/TGA4 are required for pathways that induce root hair development by suppression of longitudinal elongation of trichoblast cells in response to nitrate treatments. Our results prompted a model where nitrate signaling via TGA1/TGA4 directly regulates the CPC root hair cell fate specification gene to increase formation of root hairs in A. thaliana.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
Inflammaging plays an important role in most age‐related diseases. However, the mechanism of inflammaging is largely unknown, and therapeutic control of inflammaging is challenging. Human alpha‐1 antitrypsin (hAAT) has immune‐regulatory, anti‐inflammatory, and cytoprotective properties as demonstrated in several disease models including type 1 diabetes, arthritis, lupus, osteoporosis, and stroke. To test the potential anti‐inflammaging effect of hAAT, we generated transgenic Drosophila lines expressing hAAT. Surprisingly, the lifespan of hAAT‐expressing lines was significantly longer than that of genetically matched controls. To understand the mechanism underlying the anti‐aging effect of hAAT, we monitored the expression of aging‐associated genes and found that aging‐induced expressions of Relish (NF‐?B orthologue) and Diptericin were significantly lower in hAAT lines than in control lines. RNA‐seq analysis revealed that innate immunity genes regulated by NF‐kB were significantly and specifically inhibited in hAAT transgenic Drosophila lines. To confirm this anti‐inflammaging effect in human cells, we treated X‐ray‐induced senescence cells with hAAT and showed that hAAT treatment significantly decreased the expression and maturation of IL‐6 and IL‐8, two major factors of senescence‐associated secretory phenotype. Consistent with results from Drosophila,RNA‐seq analysis also showed that hAAT treatment significantly inhibited inflammation related genes and pathways. Together, our results demonstrated that hAAT significantly inhibited inflammaging in both Drosophila and human cell models. As hAAT is a FDA‐approved drug with a confirmed safety profile, this novel therapeutic potential may make hAAT a promising candidate to combat aging and aging‐related diseases.  相似文献   

17.
18.
To maintain iron homoeostasis, the iron regulatory hormone hepcidin is tightly controlled by BMP‐Smad signalling pathway, but the physiological role of Smad7 in hepcidin regulation remains elusive. We generated and characterized hepatocyte‐specific Smad7 knockout mice (Smad7Alb/Alb), which showed decreased serum iron, tissue iron, haemoglobin concentration, up‐regulated hepcidin and increased phosphor‐Smad1/5/8 levels in both isolated primary hepatocytes and liver tissues. Increased levels of hepcidin lead to reduced expression of intestinal ferroportin and mild iron deficiency anaemia. Interestingly, we found no difference in hepcidin expression or phosphor‐Smad1/5/8 levels between iron‐challenged Smad7Alb/Alb and Smad7flox/flox, suggesting other factors assume the role of iron‐induced hepcidin regulation in Smad7 deletion. We performed RNA‐seq to identify differentially expressed genes in the liver. Significantly up‐regulated genes were then mapped to pathways, revealing TGF‐β signalling as one of the most relevant pathways, including the up‐regulated genes Smad6, Bambi and Fst (Follistatin). We found that Smad6 and Bambi—but not Follistatin—are controlled by the iron‐BMP–Smad pathway. Overexpressing Smad6, Bambi or Follistatin in cells significantly reduced hepcidin expression. Smad7 functions as a key regulator of iron homoeostasis by negatively controlling hepcidin expression, and Smad6 and Smad7 have non‐redundant roles. Smad6, Bambi and Follistatin serve as additional inhibitors of hepcidin in the liver.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号