首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Summary A primary rabbit kidney epithelial cell culture system has been developed which retains differentiated functions of the renal proximal tubule. In addition, the cells have a distinctive metabolism and spectrum of hormone responses. The primary cell were observed to retain in vitro a Na+-dependent sugar transport system (distinctive of the proximal segment of the nephron) and a Na+-dependent phosphate transport system. Both of these transport processes are localized on the apical membrane of proximal tubule cells in vivo. In addition, probenicid-sensitivep-aminohippurate (PAH) uptake was observed in basolateral membranes of the primary tubule cells, and the PAH uptake by these vesicles occurred at a rate that was very similar to that observed with membranes derived from the original tissue. Several other characteristics of the primary cells were examined, including hormone-sensitive cyclic AMP production and phosphoenolpyruvate carboxykinase (PEPCK) activity. Like the cells in vivo, the primary proximal tubule cells were observed to produce significant cyclic AMP in response to parathyroid hormone, but not in response to arginine vasopressin or salmon calcitonin. Significant PEPCK acivity was observed in the particulate fraction derived from a homogenate of primary rabbit kidney proximal tubule cells. This paper was presented at a Symposium on the Physiology and Toxicology of the Kidney In Vitro co-sponsored by The Society of Toxicology (SOT) and the Tissue Culture Association held at the 27th annual meeting of the SOT in Dallas, Texas in 1988. This work was supported by Grant 9 RO1 DK40286-07 from the National Institutes of Health, Bethesda, MD, and NIH Research Career Development Award 1 K04 CA 0088-01 to M.T.  相似文献   

3.
4.
5.
Proliferation, morphology and time course patterns of marker enzyme activities of primary cultures of renal rabbit proximal tubule cells (RPT cells) and Opossum kidney cells (OK cells) in antibiotic-free and serum-free defined medium were investigated. Both RPT and OK cells grew to confluency within 6-8 days. RPT cells were thicker and displayed higher density of both microvilli and mitochondria when compared with OK cells. RPT cells exhibited higher activity of glutathione-S-transferase when compared with OK cells, whereas in the latter, higher glutathione content could be detected. Apical and basolateral membrane enzymes were higher in RPT cells than in OK cells. Stable high glycolytic activity and low gluconeogenesis activity in OK cells pointed out a strict dependence on glycolysis, whereas RPT cells exhibited glucose metabolism shift towards the glycolysis pathway.  相似文献   

6.
Summary Lipid deposits in the cat kidney are mainly located in the epithelium of the proximal tubuli contorti, particularly in the pars contorta. As the amount of fatty acids in the blood of renal arteries is higher than in renal veins, the lipid inclusions are likely to be formed in the proximal convoluted tubule. Whether fat occurring in the urine has been released from the nephron epithelium and the mode of this release remains obscure. The structural equivalent of lipid extrusion into the tubules has not been observed.Components of the tubular lipids include triglycerides, phosphoglycerides and cholesterol. The results of the digitonin-cholesterol reaction favour the assumption that cholesterol is eliminated in the glomeruli and pinocytotically reabsorbed by the brush border cells, this process possibly serving recycling of this compound. The dilated basal labyrinth and intercellular space contain perpendicularly oriented lipid accumulations that reach the basal lamina. The ultrastructure of the lipid storing cells of pars contorta reacting positively for phosphoglyceride and cholesterol is characterised mainly by bodies with marginal plates. As far as can be judged from their morphology, these bodies are interpreted as large peroxisomes. A special feature of the pars recta are dumbbell shaped bodies and elongated or cup-like mitochondria concentrically surrounding cytoplasmic areas, as well as a well-developed smooth ER. In what way the organelles of the brush border cells are involved in catabolic and anabolic processes as far as renal lipid metabolism is concerned remains to be answered.This investigation was supported by a grant from the Deutsche ForschungsgemeinschaftThis paper is dedicated in friendship to Professor Berta Scharrer (New York) on the occasion of her 70th birthday  相似文献   

7.
Sublethal renal ischemia induces tubular epithelium damage and kidney dysfunction. Using NRK-52E rat proximal tubular epithelial cells, we have established an in vitro model, which includes oxygen and nutrients deprivation, to study the proximal epithelial cell response to ischemia. By means of this system, we demonstrate that confluent NRK-52E cells lose monolayer integrity and detach from collagen IV due to: (i) actin cytoskeleton reorganization; (ii) Rac1 and RhoA activity alterations; (iii) Adherens junctions (AJ) and Tight junctions (TJ) disruption, involving redistribution but not degradation of E-cadherin, beta-catenin and ZO-1; (iv) focal adhesion complexes (FAC) disassembly, entangled by mislocalization of paxillin and FAK dephosphorylation. Reactive oxygen species (ROS) are generated during the deprivation phase and rapidly balanced at recovery involving MnSOD induction, among others. The use of antioxidants (NAC) prevented FAC disassembly by blocking paxillin redistribution and FAK dephosphorylation, without abrogating AJ or TJ disruption. In spite of this, NAC did not show any protective effect on cell detachment. H(2)O(2), as a pro-oxidant treatment, supported the contribution of ROS in tubular epithelial cell-matrix but not cell-cell adhesion alterations. In conclusion, ROS-mediated FAC disassembly was not sufficient for the proximal epithelial cell shedding in response to sublethal ischemia, which also requires intercellular adhesion disruption.  相似文献   

8.
9.
Arsenic is an environmental toxicant and a human carcinogen. The kidney, a known target organ of arsenic toxicity, is critical for both in vivo arsenic biotransformation and elimination. This study investigates the potential of an immortalized human proximal tubular epithelial cell line, HK-2, to serve as a representative model for low level exposures of the human kidney to arsenic. Subcytotoxic concentrations of arsenite (< or = 10 micromol/L) and arsenate (< 100 micromol/L) were determined by leakage of LDH from cells exposed for 24 h. Threshold concentrations of arsenite (between 1 and 10 micromol/L) and arsenate (between 10 and 25 micromol/L) were found to affect MTT processing by mitochondria. Biotransformation of subcytotoxic arsenite or arsenate was determined using HPLC-ICP-MS to detect metabolites in cell culture media and cell lysates. Following 24 h, analysis of media revealed that arsenite was minimally oxidized to arsenate and arsenate was reduced to arsenite. Only arsenite was detected in cell lysates. Pentavalent methylated arsenicals were not detected in media or lysates following exposure to either inorganic arsenical. The activities of key arsenic biotransformation enzymes--MMAV reductase and AsIII methyltransferase--were evaluated to determine whether HK-2 cells could reduce and methylate arsenicals. When compared to the activities of these enzymes in other animal tissues, the specific activities of HK-2 cells were indicative of a robust capacity to metabolize arsenic. It appears this human renal cell line is capable of biotransforming inorganic arsenic compounds, primarily reducing arsenate to arsenite. In addition, even at low concentrations, the mitochondria are a primary target for toxicity.  相似文献   

10.
Summary A culture system is described in which rat kidney proximal tubule epithelial cells (RPTE) can be prepared with good yield and high viability and grown in culture under serum-free conditions. The cells require EGF, insulin, cholera toxin and either 1% dialyzed serum or a complex of bovine serum albumin with oleic acid (BSA/OA). The cells can be maintained for long periods of time and express several markers for RPTE. The cells have both alkaline phosphatase and γ-glutamyltransferase activity and respond to parathyroid hormone but not vasopressin. The specific activity of γ-glutamyltransferase decreases when the cells begin to grow, but increases when they reach confluence. Extracellular calcium plays a role in the induction of γ-glutamyltransferase in confluent cells. Cells grown in media containing low calcium, i.e. less than 0.4 mM, have reduced specific activity of γ-glutamyltransferase. Extracellular calcium also alters the morphology of the cells in that cells grown in low calcium are single cells or loose clusters suggesting poor cell-cell contact. When the calcium is raised to 1.0 mM, the cells change their shape and organization to adopt the morphology of cells maintained continuously in 1.0 mM calcium. The cells can be passaged onto plastic surfaces which have been coated with collagen but cannot be subcultured on uncoated or serum coated plastic. This culture system will be a useful model for the investigation of renal carcinogenesis and the role of cell proliferation in that process. This work was supported by grants CA48197 and DK38925 from the National Institutes of Health Editor's Statement This paper reports a method for isolation and, uniquely, multipassage culture of rat proximal tubule epithelial cells. The authors use this culture system to explore some aspects of the physiology of these cells, demonstrating the value of the model.  相似文献   

11.
Ferroportin 1 (FPN1) is an iron export protein expressed in liver and duodenum, as well as in reticuloendothelial macrophages. Previously, we have shown that divalent metal transporter 1 (DMT1) is expressed in late endosomes and lysosomes of the kidney proximal tubule (PT), the nephron segment responsible for the majority of solute reabsorption. We suggested that following receptor mediated endocytosis of transferrin filtered by the glomerulus, DMT1 exports iron liberated from transferrin into the cytosol. FPN1 is also expressed in the kidney yet its role remains obscure. As a first step towards determining the role of renal FPN1, we localized FPN1 in the PT. FPN1 was found to be located in association with the basolateral PT membrane and within the cytosolic compartment. FPN1 was not expressed on the apical brush‐border membrane of PT cells. These data support a role for FPN1 in vectorial export of iron out of PT cells. Furthermore, under conditions of iron loading of cultured PT cells, FPN1 was trafficked to the plasma membrane suggesting a coordinated cellular response to export excess iron and limit cellular iron concentrations.  相似文献   

12.
The disease burden from diabetic kidney disease is large and growing. Effective therapies are lacking, despite an urgent need. Hyperbaric oxygen therapy (HBOT) activates Nrf2 and cellular antioxidant defenses; therefore, it may be generally useful for treating conditions that feature chronic oxidative tissue damage. Herein, we determined how periodic exposure to oxygen at elevated pressure affected type 2 diabetes mellitus-related changes in the kidneys of db/db mice. Two groups of db/db mice, designated 2.4 ATA and 1.5 ATA, were treated four times per week with 100 % oxygen at either 1.5 or 2.4 ATA (atmospheres absolute) followed by tests to assess kidney damage and function. The sham group of db/db mice and the Hets group of db/+ mice were handled but did not receive HBOT. Several markers of kidney damage were reduced significantly in the HBOT groups including urinary biomarkers neutrophil gelatinase-associated lipocalin (NGAL) and cystatin C (CyC) along with significantly lower levels of caspase-3 activity in kidney tissue extracts. Other stress biomarkers also showed trends to improvement in the HBOT groups, including urinary albumin levels. Expressions of the stress response genes NRF2, HMOX1, MT1, and HSPA1A were reduced in the HBOT groups at the end of the experiment, consistent with reduced kidney damage in treated mice. Urinary albumin/creatinine ratio (ACR), a measure of albuminuria, was significantly reduced in the db/db mice receiving HBOT. All of the db/db mouse groups had qualitatively similar changes in renal histopathology. Glycogenated nuclei, not previously reported in db/db mice, were observed in these three experimental groups but not in the control group of nondiabetic mice. Overall, our findings are consistent with therapeutic HBOT alleviating stress and damage in the diabetic kidney through cytoprotective responses. These findings support an emerging paradigm in which tissue oxygenation and cellular defenses effectively limit damage from chronic oxidative stress more effectively than chemical antioxidants.

Electronic supplementary material

The online version of this article (doi:10.1007/s12192-015-0574-3) contains supplementary material, which is available to authorized users.  相似文献   

13.
Calorie restriction (CR) has been repeatedly shown to prevent cancer, diabetes, hypertension, and other age‐related diseases in a wide range of animals, including non‐human primates and humans. In rodents, CR also increases lifespan and is a powerful tool for studying the aging process. Recently, it has been reported in mice that dietary fat plays an important role in determining lifespan extension with 40% CR. In these conditions, animals fed lard as dietary fat showed an increased longevity compared with mice fed soybean or fish oils. In this paper, we study the effect of these dietary fats on structural and physiological parameters of kidney from mice maintained on 40% CR for 6 and 18 months. Analyses were performed using quantitative electron microcopy techniques and protein expression in Western blots. CR mitigated most of the analyzed age‐related parameters in kidney, such as glomerular basement membrane thickness, mitochondrial mass in convoluted proximal tubules and autophagic markers in renal homogenates. The lard group showed improved preservation of several renal structures with aging when compared to the other CR diet groups. These results indicate that dietary fat modulates renal structure and function in CR mice and plays an essential role in the determination of health span in rodents.  相似文献   

14.
Free fatty acid-bound albumin (FFA-albumin)-related oxidative stress is involved in the pathogenesis of proximal tubular cell (PTC) damage and subsequent renal dysfunction in patients with refractory proteinuria. Nicotinamide adenine dinucleotide (NAD) metabolism has recently been focused on as a novel therapeutic target for several modern diseases, including diabetes. This study was designed to identify a novel molecule in NAD metabolism to protect PTCs from lipotoxicity-related oxidative stress. Among 19 candidate enzymes involved in mammalian NAD metabolism, the mRNA expression level of nicotinamide n-methyltransferase (NNMT) was significantly increased in both the kidneys of FFA-albumin-overloaded mice and cultured PTCs stimulated with palmitate-albumin. Knockdown of NNMT exacerbated palmitate-albumin-induced cell death in cultured PTCs, whereas overexpression of NNMT inhibited it. Intracellular concentration of 1-Methylnicotinamide (1-MNA), a metabolite of NNMT, increased and decreased in cultured NNMT-overexpressing and -knockdown PTCs, respectively. Treatment with 1-MNA inhibited palmitate-albumin-induced mitochondrial reactive oxygen species generation and cell death in cultured PTCs. Furthermore, oral administration of 1-MNA ameliorated oxidative stress, apoptosis, necrosis, inflammation, and fibrosis in the kidneys of FFA-albumin-overloaded mice. In conclusion, NNMT-derived 1-MNA can reduce lipotoxicity-mediated oxidative stress and cell damage in PTCs. Supplementation of 1-MNA may have potential as a new therapy in patients with refractory proteinuria.  相似文献   

15.
Summary This study examined the role of odd and even short-chain fatty acid substrates on aerobic and glycolytic metabolism in well-aerated primary cultures of rabbit renal proximal tubule cells (RPTC). Increasing oxygen delivery to primary cultures of RPTC by shaking the dishes (SHAKE) reduced total lactate levels and lactate dehydrogenase (LDH) activity and reduced net glucose consumption compared to RPTC cultured under standard conditions (STILL). The addition of butyrate, valerate, heptanoate, or octanoate to SHAKE RPTC produced variable effects on glycolytic metabolism. Although butyrate and heptanoate further reduced total lactate levels and net glucose consumption during short-term culture (<24 h), no fatty acid tested further reduced total lactate levels, net glucose consumption, or LDH activity during long-term culture (7 days). During the first 12 h of culture, maintenance of aerobic metabolism in SHAKE RPTC was dependent on medium supplementation with fatty acid substrates (2 mM). However, by 24 h, SHAKE RPTC did not require fatty acid substrates to maintain levels of aerobic metabolism equivalent to freshly isolated proximal tubules and greater than STILL RPTC. This suggests that SHAKE RPTC undergo adaptive changes between 12 and 24 h of culture, which give RPTC the ability to utilize other substrates for mitochondrial oxidation, therefore allowing greater expression of mitochondrial oxidative potential in SHAKE RPTC than in STILL RPTC.  相似文献   

16.
17.
We studied the effects of SEB on [14C]-choline transport and metabolism of choline containing phospholipids in cultured human kidney proximal tubular (PT) cells. SEB increased the uptake of [14C]-choline in PT cells as a function of toxin concentration, incubation time, and pH. The maximum increase in uptake (3.5–5-fold compared to control) was observed at a toxin concentration of 10 ug/104 cells, at 4 h and at pH 7.4. Two toxins structurally related to SEB, Staphylococcal enterotoxin-A and toxic shock toxin (TST-1) failed to alter [14C]-choline uptake in PT cells, a finding which indicates that SEB-mediated alteration in choline uptake in PT cells has high specificity.We found that SEB markedly and significantly increased the incorporation of [14C]-choline into phosphatidylcholine, Iysophosphatidylcholine and sphingomyelin, but not into phosphatidylethanolamine. Maximum increase in the incorporation of [14C]-choline into phosphatidlycholine (3-fold compared to control) was observed at 4 h after incubation with toxin. In contrast, SEB did not alter the incorporation of [14C]-choline in phosphatidylethanolamine. The cellular level of phosphatidylcholine was also increased (2-fold compared to control) in PT cells incubated with SEB. This was accompanied by a 3-to-4-fold increase in CTP: phosphocholine, cytidyltransferase activity.In sum, SEB specifically stimulates phosphatidylcholine synthesis in PT cells by increasing choline uptake or by activating CTP: phosphocholine, cytidyltransferase, or both. We believe this is the first-ever report indicating that a toxin can increase phosphatidylcholine synthesis. This high order of specificity may be in part due to the presence of a glycosphingolipid receptor in PT cells that specifically binds SEB but not SEA or TST-1. Accordingly, it is tempting to speculate that the receptor may somehow be involved in the SEB-mediated regulation of phosphatidylcholine synthesis.Abbreviations SEB Staphylococcal entertoxin-B - SEA Staphylococcal enterotoxin-A - TST-1 Toxic shock syndrome toxin-1 - PT Proximal tubular - PC Phosphatidylcholine - SM Sphingomyelin - LPC Lysophosphatidyl-choline - CT Cytidyltransferase  相似文献   

18.
李潮海  尹飞  王群 《生态学报》2006,26(6):1912-1919
干旱是制约玉米生产最主要的逆境因子。通过在活动式防雨棚下进行盆栽试验,以耐旱性不同的2个玉米杂交种及其亲本自交系为材料,研究了水分胁迫下玉米叶片活性氧代谢的变化及膜脂过氧化水平。结果表明,在水分胁迫下:(1)玉米叶片O2产生速率和H2O2含量升高、活性氧清除酶类SOD、CAT、AsP活性和清除剂AsA含量在生育前期略微升高,在生育后期明显降低,致使膜脂过氧化产物MDA含量在整个生育期,特别在生育后期明显升高;(2)耐旱性不同的玉米材料维持活性氧代谢平衡的能力存在差异,且该差异在生育后期更为明显。耐旱性较强的掖单2号及其亲本叶片昕产生速率和H2O2含量增加幅度小。生育前期SOD、CAT和AsP活性,以及AsA含量增幅大,后期清除酶活性和清除剂含量较高,全生育期内MDA含量增幅小,表现出较强的维持活性氧代谢平衡能力。而耐旱性较弱的掖单13及其亲本正相反;(3)杂交种维持活性氧代谢平衡的能力受亲本维持能力遗传决定。杂交种各指标的相对耐旱值与其两亲本的平均值呈正相关,其中CAT和AsP活性以及AsA含量3个指标差异达显著水平。  相似文献   

19.
The effect of acute increase in temperature on oxygen partial pressure (Po 2) was measured in the gill arches of Atlantic cod Gadus morhua between 10 and 19° C by use of oxygen microoptodes. Oxygen saturation of the gill blood under control conditions varied between 90 and 15% reflecting a variable percentage of arterial or venous blood in accordance with the position of each optode in the gill arch. The data obtained suggested that arterial Po2 remained more or less constant and arterial oxygen uptake did not become limiting during warming. A progressive drop in venous Po2, however, was observed at >10° C indicating that excessive oxygen uptake from the blood is not fully compensated for by circulatory performance, until finally, Po2 levels fully collapse. In a second set of experiments energy and acid–base status of white muscle of Atlantic cod in vivo was measured by magnetic resonance (31P‐NMR) spectroscopy in unanaesthetized and unimmobilized fish in the temperature range between 13 and 21° C. A decrease in white muscle intracellular pH (pHi) with temperature occurred between 10 and 16° C (ΔpH per ° C = ?0·025 per ° C). In white muscle temperature changes had no influence on high‐energy phosphates such as phosphocreatine (PCr) or ATP except during exposure to high critical temperatures (>16° C), indicating that white muscle energy status appears to be relatively insensitive to thermal stress if compared to the thermal sensitivity of the whole animal. The data were consistent with the hypothesis of an oxygen limitation of thermal tolerance in animals, which is set by limited capacity of oxygen supply mechanisms. In the case of Atlantic cod circulatory rather than ventilatory performance may be the first process to cause oxygen deficiency during heat stress.  相似文献   

20.
Aging is a time‐dependent complex biological phenomenon observed in various organs and organelles of all living organisms. To understand the molecular mechanism of age‐associated functional loss in aging kidneys, we have analyzed the expression of proteins in the kidneys of young (19–22 wk) and old (24 months) C57/BL6 male mice using 2‐DE followed by LC‐MS/MS. We found that expression levels of 49 proteins were upregulated (p ≤ 0.05), while that of only ten proteins were downregulated (p ≤ 0.05) due to aging. The proteins identified belong to three broad functional categories: (i) metabolism (e.g., aldehyde dehydrogenase family, ATP synthase β‐subunit, malate dehydrogenase, NADH dehydrogenase (ubiquinone), hydroxy acid oxidase 2), (ii) transport (e.g., transferrin), and (iii) chaperone/stress response (e.g., Ig‐binding protein, low density lipoprotein receptor‐related protein associated protein 1, selenium‐binding proteins (SBPs)). Some proteins with unknown functions were also identified as being differentially expressed. ATP synthase β subunit, transferrin, fumarate hydratase, SBPs, and albumin are present in multiple forms, possibly arising due to proteolysis or PTMs. The above functional categories suggest specific mechanisms and pathways for age‐related kidney degeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号