首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Norman Owen‐Smith 《Oikos》2015,124(11):1417-1426
Simple models coupling the dynamics of single predators to single prey populations tend to generate oscillatory dynamics of both predator and prey, or extirpation of the prey followed by that of the predator. In reality, such oscillatory dynamics may be counteracted by prey refugia or by opportunities for prey switching by the predator in multi‐prey assemblages. How these mechanisms operate depends on relative prey vulnerability, a factor ignored in simple interactive models. I outline how compositional, temporal, demographic and spatial heterogeneities help explain the contrasting effects of top predators on large herbivore abundance and population dynamics in species‐rich African savanna ecosystems compared with less species‐diverse northern temperate or subarctic ecosystems. Demographically, mortality inflicted by predation depends on the relative size and life history stage of the prey. Because all animals eventually die and are consumed by various carnivores, the additive component of the mortality inflicted is somewhat less than the predation rate. Prey vulnerability varies annually and seasonally, and between day and night. Spatial variation in the risk of predation depends on vegetation cover as well as on the availability of food resources. During times of food shortage, herbivores become prompted to occupy more risky habitats retaining more food. Predator concentrations dependent on the abundance of primary prey species may restrict the occurrence of other potential prey species less resistant to predation. The presence of multiple herbivore species of similar size in African savannas allows the top predator, the lion, to shift its prey selection flexibly dependent on changing prey vulnerability. Hence top–down and bottom–up influences on herbivore populations are intrinsically entangled. Models coupling the population dynamics of predators and prey need to accommodate the changing influences of prey demography, temporal variation in environmental conditions, and spatial variation in the relative vulnerability of alternative prey species to predation. Synthesis While re‐established predators have had major impacts on prey populations in northern temperate regions, multiple large herbivore species typically coexist along with diverse carnivores in African savanna ecosystems. In order to explain these contrasting outcomes, certain functional heterogeneities must be recognised, including relative vulnerability of alternative prey, temporal variation in the risk of predation, demographic differences in susceptibility to predation, and spatial contrasts in exposure to predation. Food shortfalls prompt herbivores to exploit more risky habitats, meaning that top–down and bottom–up influences on prey populations are intrinsically entangled. Models coupling the interactive dynamics of predator and prey populations need to incorporate these varying influences on relative prey vulnerability.  相似文献   

2.
Predation is a strong selective force in most natural systems, potentially fueling evolutionary changes in prey morphology, life history and behaviour. Recent work has suggested that contrasting predation pressures may lead to population differentiation in personality traits. However, there are indications that these personality traits also differ between sexes and not necessarily in a consistent way between populations. We used an integrative approach to quantify boldness (latency to emerge from a shelter) in wild‐caught guppies in relation to predation pressure, population origin, sex and size. In addition we quantified the repeatability of these personality traits. We show that predation regime had significant effects on emergence time. In general, fish from high predation localities emerged sooner from the shelter compared to those from low predation localities. We found strong sex differences; males were significantly bolder than females. The relationship between emergence time and body size was non‐significant in all populations. We discuss what responses to expect from predator‐naïve versus predator‐experienced individuals and how this can be linked to the shyness–boldness continuum.  相似文献   

3.
Exogenous and endogenous environmental factors can have simultaneous additive as well as interacting effects on life‐history traits. Ignoring such interactions can lead to a biased understanding of variability in demographic rates and consequently population dynamics. These interactions have been the focus of decades‐long debates on the mechanisms underlying small mammal population fluctuations. They have often been studied indirectly through seasonal effects, but studies considering them directly and more mechanistically are rare. We investigated the joint effects of exogenous (temperature, food availability) and endogenous (population density) factors on the demographic rates of a group‐living diurnal rodent, the African striped mouse Rhabdomys pumilio using nine‐year mark–recapture data from a population in the Succulent Karoo, South Africa. In general, higher temperatures and lower food availability were associated with higher survival, whereas high population densities were either beneficial or detrimental to survival depending on interacting food availability. High reproductive rates were related to lower temperatures, higher food availability and lower population density, and interactions among environmental factors mediated the strength of these relationships. Our study highlights the complex ways in which different environmental factors can interact to shape demographic rates and emphasizes the importance of explicitly including interactions among exogenous and endogenous factors into studies of population dynamics.  相似文献   

4.
Theoretical treatments of intraguild predation and its effects on behavioral interactions regard the phenomenon as a size‐structured binary response wherein predation among competitors is completely successful or completely unsuccessful. However, intermediate outcomes occur when individuals escape intraguild (IG) interactions with non‐lethal injuries. While the effects of wounds for prey include compromised mobility and increased predation risk, the consequences of similar injuries among top predators are not well understood, despite the implications for species interactions. Using an amphibian IG predator, Ambystoma opacum (Caudata: Ambystomatidae), we examined associations between non‐lethal injuries and predator body size, foraging strategy, microhabitat selection, and intraspecific agonistic interactions. Wounds were common among IG predators, generally increasing in frequency throughout larval ontogeny. Non‐lethal injuries were associated with differences in predator body size and behavior, with injured predators exhibiting smaller body sizes, increased use of benthic microhabitats, reduced agonistic displays, and increased risk of intraspecific aggression. While such effects were not ultimately associated with reduced foraging success, non‐lethal injury could contribute to niche partitioning between injured and healthy predators via habitat selection, but injured predators likely continue to exert predatory pressure on IG and basal prey populations. Our results indicate that studies of top‐down population regulation should incorporate injury‐related modifications to both prey and predator behavior and size structure.  相似文献   

5.
Non-lethal effects of predation in birds   总被引:2,自引:2,他引:0  
WILL CRESSWELL 《Ibis》2008,150(1):3-17
Predators can affect individual fitness and population and community processes through lethal effects (direct consumption or ‘density’ effects), where prey is consumed, or through non‐lethal effects (trait‐mediated effects or interactions), where behavioural compensation to predation risk occurs, such as animals avoiding areas of high predation risk. Studies of invertebrates, fish and amphibians have shown that non‐lethal effects may be larger than lethal effects in determining the behaviour, condition, density and distribution of animals over a range of trophic levels. Although non‐lethal effects have been well described in the behavioural ecology of birds (and also mammals) within the context of anti‐predation behaviour, their role relative to lethal effects is probably underestimated. Birds show many behavioural and physiological changes to reduce direct mortality from predation and these are likely to have negative effects on other aspects of their fitness and population dynamics, as well as affecting the ecology of their own prey and their predators. As a consequence, the effects of predation in birds are best measured by trade‐offs between maximizing instantaneous survival in the presence of predators and acquiring or maintaining resources for long‐term survival or reproduction. Because avoiding predation imposes foraging costs, and foraging behaviour is relatively easy to measure in birds, the foraging–predation risk trade‐off is probably an effective framework for understanding the importance of non‐lethal effects, and so the population and community effects of predation risk in birds and other animals. Using a trade‐off approach allows us to predict better how changes in predator density will impact on population and community dynamics, and how animals perceive and respond to predation risk, when non‐lethal effects decouple the relationship between predator density and direct mortality rate. The trade‐off approach also allows us to identify where predation risk is structuring communities because of avoidance of predators, even when this results in no observable direct mortality rate.  相似文献   

6.
Variation in the abundance of animals has traditionally been explained as the outcome of endogenous forcing from density dependence and exogenous forcing arising from variation in weather and predation. Emerging evidence suggests that the effects of density dependence interact with external influences on population dynamics. In particular, spatial heterogeneity in resources and the presence of capable predators may weaken feedbacks from density dependence to growth of populations. We used the Kalman filter to analyze 23 time series of estimates of abundance of northern ungulate populations arrayed along a latitudinal gradient (latitude range of 40°–70°N) to evaluate the influence of spatial heterogeneity in resources and predation on density dependence. We also used contingency tables to test whether density dependence was independent of the presence of carnivores (our estimate of predation) and multiple regressions to determine the effects of spatial heterogeneity in resources, predation, and latitude on the strength of density dependence. Our results showed that the strength of density dependence of ungulate populations was low in the presence of large carnivores, particularly at northern latitudes with low primary productivity. We found that heterogeneity in elevation, which we assume acted as a surrogate for spatial heterogeneity in plant phenology, also reduced effects of density dependence. Thus, we show that external forces created by heterogeneity in resources and predation interact with internal feedbacks from population density to shape dynamics of populations of northern ungulates.  相似文献   

7.
Humans are increasingly influencing global climate and regional predator assemblages, yet a mechanistic understanding of how climate and predation interact to affect fluctuations in prey populations is currently lacking. Here we develop a modelling framework to explore the effects of different predation strategies on the response of age-structured prey populations to a changing climate. We show that predation acts in opposition to temporal correlation in climatic conditions to suppress prey population fluctuations. Ambush predators such as lions are shown to be more effective at suppressing fluctuations in their prey than cursorial predators such as wolves, which chase down prey over long distances, because they are more effective predators on prime-aged adults. We model climate as a Markov process and explore the consequences of future changes in climatic autocorrelation for population dynamics. We show that the presence of healthy predator populations will be particularly important in dampening prey population fluctuations if temporal correlation in climatic conditions increases in the future.  相似文献   

8.
Variation in the vulnerability of herbivore prey to predation is linked to body size, yet whether this relationship is size‐nested or size‐partitioned remains debated. If size‐partitioned, predators would be focused on prey within their preferred prey size range. If size‐nested, smaller prey species should become increasingly more vulnerable because increasingly more predators are capable of catching them. Yet, whether either of these strategies manifests in top–down prey population limitation would depend both on the number of potential predator species as well as the total mortality imposed. Here we use a rare ecosystem scale ‘natural experiment’ comparing prey population dynamics between a period of intense predator persecution and hence low predator densities and a period of active predator protection and population recovery. We use three decades of data on herbivore abundance and distribution to test the role of predation as a mechanism of population limitation among prey species that vary widely in body size. Notably, we test this within one of the few remaining systems where a near‐full suite of megaherbivores occur in high density and are thus able to include a thirtyfold range in herbivore body size gradient. We test whether top–down limitation on prey species of particular body size leads to compositional shifts in the mammalian herbivore community. Our results support both size‐nested and size‐partitioning predation but suggest that the relative top–down limiting impact on prey populations may be more severe for intermediate sized species, despite having fewer predators than small species. In addition we show that the gradual recovery of predator populations shifted the herbivore community assemblage towards large‐bodied species and has led to a community that is strongly dominated by large herbivore biomass.  相似文献   

9.
The evolution of striking phenotypes on islands is a well‐known phenomenon, and there has been a long‐standing debate on the patterns of body size evolution on islands. The ecological causes driving divergence in insular populations are, however, poorly understood. Reduced predator fauna is expected to lower escape propensity, increase body size and relax selection for crypsis in small‐bodied, insular prey species. Here, we investigated whether escape behaviour, body size and dorsal coloration have diverged as predicted under predation release in spatially replicated islet and mainland populations of the lizard species Podarcis gaigeae. We show that islet lizards escape approaching observers at shorter distances and are larger than mainland lizards. Additionally, we found evidence for larger between‐population variation in body size among the islet populations than mainland populations. Moreover, islet populations are significantly more divergent in dorsal coloration and match their respective habitats poorer than mainland lizards. These results strongly suggest that predation release on islets has driven population divergence in phenotypic and behavioural traits and that selective release has affected both trait means and variances. Relaxed predation pressure is therefore likely to be one of the major ecological factors driving body size divergence on these islands.  相似文献   

10.
  • 1 Reasons for fluctuating populations of small mammals have been intensively investigated since the early days of modern ecology. Particular interest has been taken in vole populations exhibiting multiannual oscillations. Much empirical and theoretical work has been accomplished to find out the key factor(s) driving these population cycles and many reviews have been written about the results.
  • 2 One of the most plausible processes for explaining regular fluctuations in small mammals is predation. Here I review the existing literature on the experimental studies of the role of predation in vole population dynamics in the hope that a critical examination of these studies will help researchers improve the design of future experiments.
  • 3 Most predation manipulations have been done in exclosures, but there are also studies that have attempted to reduce or increase predator numbers in non‐fenced areas, islands and enclosures.
  • 4 As the number of experimental studies has increased, their quality in terms of replication, use of controls and realistic spatial and temporal scales has also improved.
  • 5 Most studies have found population‐level effects of predator manipulations on prey populations. The effects have varied from very weak to very strong, reflecting dissimilar experimental designs and the great variety of predator–prey interactions among different kinds of species in different landscapes. Most of these studies show that predation limits population growth of voles, and in some circumstances even regulate vole population fluctuations, but none of them clearly demonstrates that predation consistently changes fluctuation patterns of voles.
  • 6 To be able to assess more reliably the true role of predation on (cyclic) population fluctuations of voles, more competent experiments are still needed not only over the geographical range of cyclic population dynamics, but also in areas of weakly or non‐cyclic populations of voles.
  相似文献   

11.
Traditional predation theory assumes that prey density is the primary determinant of kill rate. More recently, the ratio of prey‐to‐predator has been shown to be a better predictor of kill rate. However, the selective behavior of many predators also suggests that age structure of the prey population should be an important predictor of kill rate. We compared wolf–moose predation dynamics in two sites, south‐central Scandinavia (SCA) and Isle Royale, Lake Superior, North America (IR), where prey density was similar, but where prey age structure and prey‐to‐predator ratio differed. Per capita kill rates of wolves preying on moose in SCA are three times greater than on IR. Because SCA and IR have similar prey densities differences in kill rate cannot be explained by prey density. Instead, differences in kill rate are explained by differences in the ratio of prey‐to‐predator, pack size and age structure of the prey populations. Although ratio‐dependent functional responses was an important variable for explaining differences in kill rates between SCA and IR, kill rates tended to be higher when calves comprised a greater portion of wolves’ diet (p =0.05). Our study is the first to suggest how age structure of the prey population can affect kill rate for a mammalian predator. Differences in age structure of the SCA and IR prey populations are, in large part, the result of moose and forests being exploited in SCA, but not in IR. While predator conservation is largely motivated by restoring trophic cascades and other top–down influences, our results show how human enterprises can also alter predation through bottom–up processes.  相似文献   

12.
The probability of individuals being targeted as prey often decreases as they grow in size. Such size‐dependent predation risk is very common in systems with intraguild predation (IGP), i.e. when predatory species interact through predation and competition. Theory on IGP predicts that community composition depends on productivity. When recently testing this prediction using a terrestrial experimental system consisting of two phytoseiid mite species, Iphiseius degenerans as the IG‐predator and Neoseiulus cucumeris as the IG‐prey, and pollen (Typha latifolia) as the shared resource, we could not find the predicted community shift. Instead, we observed that IG‐prey excluded IG‐predators when the initial IG‐prey/IG‐predator ratio was high, whereas the opposite held when the initial ratio was low, which is also not predicted by theory. We therefore hypothesized that the existence of vulnerable and invulnerable stages in the two populations could be an important driver of the community composition. To test this, we first demonstrate that IG‐prey adults indeed attacked IG‐predator juveniles in the presence of the shared resource. Second, we show that the invasion capacity of IG‐predators at high productivity levels indeed depended on the structure of resident IG‐prey populations. Third, we further confirmed our hypothesis by mimicking successive invasion events of IG‐predators into an established population of IG‐prey at high productivity levels, which consistently failed. Our results show that the interplay between stage structure of populations and reciprocal intraguild predation is decisive at determining the species composition of communities with intraguild predation.  相似文献   

13.
14.
Predation is thought to play a selective role in the emergence of behavioural traits in prey. Differences in behaviour between prey demographics may, therefore, be driven by predation with select components of the population being less vulnerable to predators. While under controlled conditions prey demography has been shown to have consequences for predation success, investigations linking these implications to natural prey population demographics are scarce. Here we assess predator–prey dynamics between notonectid predators (backswimmers) and Lovenula raynerae (Copepoda), key faunal groups in temperate ephemeral pond ecosystems. Using a combination of field and experimental approaches we test for the development and mechanism of predation‐induced sex‐skewed ratios. A natural population of L. raynerae was tracked over time in relation to their predator (notonectid) and prey (Cladocera) numbers. In the laboratory, L. raynerae sex ratios were also assessed over time but in the absence of predation pressure. Predation success and prey performance experiments evaluating differences between L. raynerae male, female, gravid female and copulating pairs exposed to notonectid predation were then examined. Under natural conditions, a female dominated copepod population developed over time and was correlated to predation pressure, while under predator‐free conditions non sex‐skewed prey population demographics persisted. Predator–prey laboratory trials showed no difference in vulnerability and escape performance for male, female and gravid female copepods, but pairs in copula were significantly more vulnerable to predation. This vulnerability was not shared by both sexes, with only female copepods ultimately escaping from successful predation on a mating pair. These results suggest that contact periods during copula may contribute to the development of sex‐skewed copepod ratios over time in ecosystems dominated by hexapod predators. This is discussed within the context of vertebrate and invertebrate predation and how these dissimilar types of predation are likely to have acted as selective pressures for copepod mating systems.  相似文献   

15.
Introduced invertebrates are important prey for a generalist predator   总被引:4,自引:0,他引:4  
Concern over biological invasions has drawn increased attention to the impacts of introduced predators or competitors, but not to the importance of introduced prey. North American forests are rich in introduced invertebrates, including species that represent relatively novel taxonomic or trophic guilds and show biased distributions among forest types. We analysed the diets of red‐backed salamanders, Plethodon cinereus, from three upland and three lowland forests to determine whether introduced prey are important contributors to geographical or temporal variation in salamander food resources. We found several introduced species were volumetrically important salamander prey, and were responsible for resource differences between forest types and much of the seasonal fluctuation in food resources in both forest types. In lowland forests, rain had a stronger effect on salamander predation on non‐native earthworms than native taxa, creating more dynamic resource fluctuations in resource levels than was observed in upland forests where earthworms were absent. With one exception, predation on non‐native species was positively associated with predation on native species, suggesting non‐native prey have added to salamander resources rather than replaced salamander predation on native taxa. We hypothesize that the novel resource gradients created by non‐native prey introductions are contributing to patterns of geographical and temporal phenotypic variation among salamander populations.  相似文献   

16.
Natural populations are exposed to multiple stressors. These stressors may interact, leading to synergistic or antagonistic responses. In addition to these direct interaction effects, there may also be an interaction between stressors through a selection effect: as the population genetically responds to one stressor, it may become more vulnerable to another one, for instance because of an associated reduction in genetic variation. We here capitalized on a selection experiment involving the exposure of Daphnia populations to carbaryl pulses to test the hypothesis that selection imposed by this pesticide may increase vulnerability to fish predation in the resulting population. A direct predation experiment with individuals isolated from carbaryl-exposed and non-exposed populations revealed no effect of prior selection by carbaryl exposure on mortality due to stickleback predation.  相似文献   

17.
Harvesting for food or sport is often non‐random with respect to demographic state, such as size or life stage. The population‐level consequences of such selective harvesting depend upon which states are harvested and how those states contribute to population dynamics. We focused on a form of selective harvesting that has not previously been investigated in an experimental context: sex‐selective harvesting, a common feature of exploited, dioecious populations. Using simple metapopulations (two patches connect by dispersal) of sexually dimorphic Bruchid beetles in the laboratory, we contrasted the effects of female‐selective, male‐selective, and non‐selective harvesting over six generation of population dynamics. We also tested the ability of a harvest refuge (one patch of the metapopulation free from harvesting) to mitigate the effects of harvesting, and whether refuge effects interacted with sex selectivity. Sex‐selective harvesting significantly perturbed operational sex ratios and harvest refuges dampened these perturbations. Metapopulations assigned to male‐selective and non‐selective treatments were able to fully compensate for harvesting, such that their dynamics did not differ from non‐harvested controls. Only female‐selective harvesting led to significant reductions in population size and this effect was completely offset by dispersal from a harvest refuge. A two‐sex model confirmed that population dynamics are more sensitive to female vs. male harvesting, but suggested that higher levels of male harvest than included in our experiment would cause population decline. We discuss the roles of density‐dependent competition and frequency‐dependent sexual processes in the population response to sex‐selective harvesting.  相似文献   

18.
Eva Banda  Guillermo Blanco 《Oikos》2009,118(7):991-1000
Nest‐site limitation may have different implications in the spatial distribution of breeding pairs depending on the availability of suitable habitat and the types of nest‐sites. Distribution of cavities suitable as nest sites may allow circumstantial aggregation or active choice of colonial nesting, which may have different implications on breeding performance through effects on breeding density, with variable costs and benefits depending on the consequences of intraspecific competition, social interactions and predation. We evaluated the effects of breeding density derived from nesting site limitation on breeding performance and predation at different spatial scales and considering multiple social, population and environmental limiting factors in the red‐billed chough Pyrrhocorax pyrrhocorax. The results indicate that variable breeding density may arise within the population depending on the availability and spatial distribution of nest‐sites. Nest‐site availability and distribution may also determine social breeding systems (isolated or aggregated) at variable densities, thus resembling differences found at different spatially distant populations under contrasting environmental conditions. Breeding performance was related to density‐dependent processes of population regulation, especially density‐dependent nest predation due to predator attraction to nest clusters. Results also indicate that predation pressure depend on density patterns at large scales. This suggest that predation may have important consequences on population dynamics of spatially structured populations depending on the strength of this kind of density dependence, which in turn may depend on habitat features affecting the prey but also the spatially variable guild of predators. Because habitat and nesting site availability may vary spatially depending on multiple human influences, understanding the strength and form in which breeding density and nest predation at different spatial scales may influence the size and persistence of populations can help to manage them more adequately.  相似文献   

19.
Both predation and individual variation in life history traits influence population dynamics. Recent results from laboratory predator–prey systems suggest that differences between individuals can also influence predator–prey dynamics when different genotypes experience different predation-associated mortalities. Despite the growing number of studies in this field, there is no synthesis identifying the overall importance of the interactions between predation and individual heterogeneity and their role in shaping the dynamics of free-ranging populations of vertebrates. We aim to fill this gap with a review that examines how individual variability in prey susceptibility, in predation costs, in predator selectivity, and in predatory performance, might influence prey population dynamics. Based on this review, it is clear that (1) predation risk and costs experienced by free-ranging prey are associated with their phenotypic attributes, (2) many generalist predator populations consist of individual specialists with part of the specialization associated with their phenotypes, and (3) a complete understanding of the population dynamic consequences of predation may require information on individual variability in prey selection and prey vulnerability. Altogether, this work (1) highlights the importance of maintaining long-term, detailed studies of individuals of both predators and prey in contrasting ecological conditions, and (2) advocates for a better use of available information to account for interactive effects between predators and their prey when modelling prey population dynamics.  相似文献   

20.
Norman Owen‐Smith 《Oikos》2008,117(4):602-610
The consequences of predation for prey population dynamics depend on the extent to which this mortality is predisposed by malnutrition or senescence, or additive in the sense that animals that would otherwise not have died at that time were killed. In places lacking effective predators, few adult ungulates die during the summer or wet season months when food is plentifully available. Hence the seasonal distribution of predator kills as well as the age and sex classes of the prey indicates the extent to which malnutrition contributes to mortality as well as other influences on vulnerability. Using records of animal deaths assembled over 35 years in South Africa's Kruger National Park, these patterns were investigated for 12 ungulate species forming the prey of lions, and for three other large predators with respect to one prey species. Buffalo, kudu and giraffe were more strongly represented in kills made during the late dry season, while wildebeest and zebra made relatively greater contributions during the wet season. Impala, waterbuck, warthog and rarer antelope species became more prominent in kills during transitional periods between seasons. Five prey species showed an elevation in representation of males in lion kills during the mating season, as well as impala for all predator species. Females were more prominently represented in kills during the time of late gestation and parturition for three prey species. Hence reproductive activities as well as changing vegetation cover and food resources affected vulnerability to predation. Shifts in susceptibility to predation over the seasonal cycle corresponded with rainfall‐related variation in the annual representation of these ungulate species in lion kills. The availability of vulnerable prey species, age and sex classes at different stages of the seasonal cycle helps maintain a high abundance of lions. These factors contribute to the strong additive impact that predation has had on the abundance of some of these ungulate populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号