首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Symbiotic bacteria often play an essential nutritional role for insects, thereby allowing them to exploit novel food sources and expand into otherwise inaccessible ecological niches. Although many insects are inhabited by complex microbial communities, most studies on insect mutualists so far have focused on single endosymbionts and their interactions with the host. Here, we provide a comprehensive characterization of the gut microbiota of the red firebug (Pyrrhocoris apterus, Hemiptera, Pyrrhocoridae), a model organism for physiological and endocrinological research. A combination of several culture‐independent techniques (454 pyrosequencing, quantitative PCR and cloning/sequencing) revealed a diverse community of likely transient bacterial taxa in the mid‐gut regions M1, M2 and M4. However, the completely anoxic M3 region harboured a distinct microbiota consisting of facultative and obligate anaerobes including Actinobacteria (Coriobacterium glomerans and Gordonibacter sp.), Firmicutes (Clostri‐dium sp. and Lactococcus lactis) and Proteobacteria (Klebsiella sp. and a previously undescribed Rickettsiales bacterium). Characterization of the M3 microbiota in different life stages of P. apterus indicated that the symbiotic bacterial community is vertically transmitted and becomes well defined between the second and third nymphal instar, which coincides with the initiation of feeding. Comparing the mid‐gut M3 microbial communities of P. apterus individuals from five different populations and after feeding on three different diets revealed that the community composition is qualitatively and quantitatively very stable, with the six predominant taxa being consistently abundant. Our findings suggest that the firebug mid‐gut microbiota constitutes a functionally important and possibly coevolved symbiotic community.  相似文献   

2.
The phenological synchrony between the emergence of overwintering herbivorous insects and the budding of host plants is considered a crucial factor in the population dynamics of herbivores. However, the mechanisms driving the interactions between the host plant, herbivores, and their pathogens are often obscure. In the current study, an artificially induced phenological asynchrony was used to investigate how the asynchrony between silver birch Betula pendula and gypsy moth Lymantria dispar affects the immunity of the insect to bacteria, its susceptibility to the entomopathogenic bacteria Bacillus thuringiensis, and the diversity in its midgut microbiota. The lysozyme‐like activity in both the midgut and hemolymph plasma and the nonspecific esterase activity and antimicrobial peptide gene expression in the midgut were studied in both noninfected and B. thuringiensis‐infected larvae. Our results provide the first evidence that phenologically asynchronous larvae are less susceptible to B. thuringiensis infection than phenologically synchronous larvae, and our results show that these effects are related to the high basic levels and B. thuringiensis‐induced levels of lysozyme‐like activities. Moreover, a 16S rRNA analysis revealed that dramatic decreases in the diversity of the larval gut bacterial consortia occurred under the effect of asynchrony. Larvae infected with B. thuringiensis presented decreased microbiota diversity if the larvae were reared synchronously with the host plant but not if they were reared asynchronously. Our study demonstrates the significant effect of phenological asynchrony on innate immunity‐mediated interactions between herbivores and entomopathogenic bacteria and highlights the role of nonpathogenic gut bacteria in these interactions.  相似文献   

3.
Evolutionary radiations have been well documented in plants and insects, and natural selection may often underly these radiations. If radiations are adaptive, the diversity of species could be due to ecological speciation in these lineages. Agromyzid flies exhibit patterns of repeated host‐associated radiations. We investigated whether host‐associated population divergence and evidence of divergent selection exist in the leaf miner Phytomyza glabricola on its sympatric host plants, the holly species, Ilex coriacea and I. glabra. Using AFLPs and nuclear sequence data, we found substantial genetic divergence between host‐associated populations of these flies throughout their geographic range. Genome scans using the AFLP data identified 13 loci under divergent selection, consistent with processes of ecological speciation. EF‐1α data suggest that I. glabra is the original host of P. glabricola and that I. coriacea is the novel host, but the AFLP data are ambiguous with regard to directionality of the host shift.  相似文献   

4.
Pollination in gymnosperms is usually accomplished by means of wind, but some groups are insect‐pollinated. We show that wind and insect pollination occur in the morphologically uniform genus Ephedra (Gnetales). Based on field experiments over several years, we demonstrate distinct differences between two Ephedra species that grow in sympatry in Greece in pollen dispersal and clump formation, insect visitations and embryo formation when insects are denied access to cones. Ephedra distachya, nested in the core clade of Ephedra, is anemophilous, which is probably the prevailing state in Ephedra. Ephedra foeminea, sister to the remaining species of the genus, is entomophilous and pollinated by a range of diurnal and nocturnal insects. The generalist entomophilous system of E. foeminea, with distinct but infrequent insect visitations, is in many respects similar to that reported for Gnetum and Welwitschia and appears ancestral in Gnetales. The Ephedra lineage is well documented already from the Early Cretaceous, but the diversity declined dramatically during the Late Cretaceous, possibly to near extinction around the Cretaceous–Palaeogene boundary. The clade imbalance between insect‐ and wind‐pollinated lineages is larger than expected by chance and the shift in pollination mode may explain why Ephedra escaped extinction and began to diversify again.  相似文献   

5.
The factors explaining host‐associated differentiation (HAD) have not yet been fully characterized, especially in agricultural systems. It is thought that certain characteristics within a system may increase the probability for HAD to occur. These characteristics include relatively long‐standing evolutionary relationships between insects and their host plants, endophagy, and allochrony in host‐plant phenologies. We assessed the status of these characteristics as well as the presence of HAD in the cranberry fruitworm, Acrobasis vaccinii Riley (Lepidoptera: Pyralidae), a pest associated with blueberry and cranberry in eastern North America. We reveal the occurrence of two distinct populations of A. vaccinii that are allochronically isolated by the phenological stage of their respective host plants (cranberries or blueberries). Laboratory‐reared A. vaccinii adults collected from blueberries emerge at least 1 week earlier than adults from cranberries and the antennal sensitivity of adults to host‐plant volatiles differs between A. vaccinii collected from blueberry and cranberry. Despite finding characteristics indicative of HAD, we did not detect a genetic signature of HAD in A. vaccinii. These findings suggest that HAD may occur through behavioral and phenological mechanisms before there is sufficient genetic variation to be detected.  相似文献   

6.
The evolutionary and ecological success of many insects is attributed to mutualistic partnerships with bacteria that confer hosts with novel traits including food digestion, nutrient supplementation, detoxification of harmful compounds and defence against natural enemies. Dysdercus fasciatus firebugs (Hemiptera: Pyrrhocoridae), commonly known as cotton stainers, possess a simple but distinctive gut bacterial community including B vitamin‐supplementing Coriobacteriaceae symbionts. In addition, their guts are often infested with the intestinal trypanosomatid parasite Leptomonas pyrrhocoris (Kinetoplastida: Trypanosomatidae). In this study, using experimental bioassays and fluorescence in situ hybridization (FISH), we report on the protective role of the D. fasciatus gut bacteria against L. pyrrhocoris. We artificially infected 2nd instars of dysbiotic and symbiotic insects with a parasite culture and measured parasite titres, developmental time and survival rates. Our results show that L. pyrrhocoris infection increases developmental time and slightly modifies the quantitative composition of the gut microbiota. More importantly, we found significantly higher parasite titres and a tendency towards lower survival rates in parasite‐infected dysbiotic insects compared to symbiotic controls, indicating that the gut bacteria successfully interfere with the establishment or proliferation of L. pyrrhocoris. The colonization of symbiotic bacteria on the peritrophic matrix along the gut wall, as revealed by FISH, likely acts as a barrier blocking parasite attachment or entry into the hemolymph. Our findings show that in addition to being nutritionally important, D. fasciatus’ gut bacteria complement the host's immune system in preventing parasite invasions and that a stable gut microbial community is integral for the host's health.  相似文献   

7.
The animal gut is a habitat for diverse communities of microorganisms (microbiota). Honeybees and bumblebees have recently been shown to harbour a distinct and species poor microbiota, which may confer protection against parasites. Here, we investigate diversity, host specificity and transmission mode of two of the most common, yet poorly known, gut bacteria of honeybees and bumblebees: Snodgrassella alvi (Betaproteobacteria) and Gilliamella apicola (Gammaproteobacteria). We analysed 16S rRNA gene sequences of these bacteria from diverse bee host species across most of the honeybee and bumblebee phylogenetic diversity from North America, Europe and Asia. These focal bacteria were present in 92% of bumblebee species and all honeybee species but were found to be absent in the two related corbiculate bee tribes, the stingless bees (Meliponini) and orchid bees (Euglossini). Both Snodgrassella alvi and Gilliamella apicola phylogenies show significant topological congruence with the phylogeny of their bee hosts, albeit with a considerable degree of putative host switches. Furthermore, we found that phylogenetic distances between Gilliamella apicola samples correlated with the geographical distance between sampling locations. This tentatively suggests that the environmental transmission rate, as set by geographical distance, affects the distribution of G. apicola infections. We show experimentally that both bacterial taxa can be vertically transmitted from the mother colony to daughter queens, and social contact with nest mates after emergence from the pupa greatly facilitates this transmission. Therefore, sociality may play an important role in vertical transmission and opens up the potential for co‐evolution or at least a close association of gut bacteria with their hosts.  相似文献   

8.
The importance and prevalence of phylogenetic tracking between hosts and dependent organisms caused by co‐evolution and shifting between closely related host species have been debated for decades. Most studies of phylogenetic tracking among phytophagous insects and their host plants have been limited to insects feeding on a narrow range of host species. However, narrow host ranges can confound phylogenetic tracking (phylogenetic tracking hypothesis) with host shifting between hosts of intermediate relationship (intermediate hypothesis). Here, we investigated the evolutionary history of the Enchenopa binotata complex of treehoppers. Each species in this complex has high host fidelity, but the entire complex uses hosts across eight plant orders. The phylogenies of E. binotata were reconstructed to evaluate whether (1) tracking host phylogeny; or (2) shifting between intermediately related host plants better explains the evolutionary history of E. binotata. Our results suggest that E. binotata primarily shifted between both distant and intermediate host plants regardless of host phylogeny and less frequently tracked the phylogeny of their hosts. These findings indicate that phytophagous insects with high host fidelity, such as E. binotata, are capable of adaptation not only to closely related host plants but also to novel hosts, likely with diverse phenology and defense mechanisms.  相似文献   

9.
Host‐associated differentiation (HAD) is the occurrence of genetically distinct, host‐associated lineages. Most of the cases of HAD in phytophagous insects have been documented in specialist insects inhabiting feral ecosystems or in generalist parthenogens in agroecosystems. Herein we report HAD in the cotton fleahopper, Pseudatomoscelis seriatus (Reuter) (Hemiptera: Miridae), a native, generalist, non‐parthenogenetic insect feeding on native wild hosts [horsemint, Monarda punctata L. (Lamiaceae) and woolly croton, Croton capitatus Michx. (Euphorbiaceae)] and on cotton [Gossypium hirsutum L. (Malvaceae)] in the USA. Examination of genome‐wide genetic variation with AFLP markers and Bayesian analyses of P. seriatus associated with three different host plant species at five locations in Texas revealed a geographic pattern of HAD. The geographic pattern of HAD corresponded with differences in precipitation among the locations studied. In three locations, two distinct lineages of P. seriatus were found in association with horsemint and cotton/woolly croton, whereas in two other locations, populations associated with the different host plants studied were panmictic. We suggest that precipitation differences among locations translate into heterogeneity in vegetation distribution, composition, and phenology, which altogether may contribute to the observed geographic pattern of HAD.  相似文献   

10.
Virus infection may change not only the host‐plant phenotypic (morphological and physiological) characteristics, but can also modify the behavior of their insect vector in a mutualistic or rather antagonistic manner, to promote their spread to new hosts. Viruses differ in their modes of transmission and depend on vector behavior for successful spread. Here, we investigated the effects of the semi‐persistently transmitted Tomato chlorosis virus (ToCV, Crinivirus) and the persistent circulative Tomato severe rugose virus (ToSRV, Begomovirus) on alighting preferences and arrestment behavior of their whitefly vector Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Middle East Asia Minor 1 (MEAM1) on tomato plants (Solanum lycopersicum L. cv. Santa Clara, Solanaceae). The vector alighting preferences between infected and uninfected plants in choice assays were apparently influenced by the presence of ToCV and ToSRV in the whiteflies or by their previous exposure to infected plants. The observed changes in vector behavior do not seem to benefit the spread of ToCV: non‐viruliferous insects clearly preferred mock‐inoculated plants, whereas ToCV‐viruliferous insects landed on mock‐inoculated and ToCV‐infected plants, indicating a partial change in insect behavior – ToCV was able to directly affect the preference of its vector B. tabaci, but this change in insect behavior did not affect the virus spread because viruliferous insects landed on mock‐inoculated and infected plants indistinctly. In contrast, ToSRV‐viruliferous insects preferred to land on mock‐inoculated plants, a behavior that increases the probability of spread to new host plants. In the arresting behavior assay, the majority of the insects remained on mock‐inoculated plants when released on them. A greater number of insects moved toward mock‐inoculated plants when initially released on ToCV‐ or ToSRV‐infected plants, suggesting that these viruses may repel or reduce the nutritional quality of the host plants for B. tabaci MEAM1.  相似文献   

11.
Understanding the mechanisms by which organisms respond to environmental change is critical to conservation biology. Recent research indicates that the gut microbiome may mediate mammalian responses to the environment and can be used as a biomarker to understand host ecological strategies. Here, we explore the relationship between the gut microbiome, host dietary niche, and potential resilience to habitat alteration using two closely related, sympatric non-human primate species: the tufted gray langur (Semnopithecus priam) and the purple-faced langur (Semnopithecus vetulus). The gray langur is suspected to be a habitat generalist less perturbed by anthropogenic disturbance, while the purple-faced langur is suspected to be a specialist more sensitive to disturbance. To test these characterizations, we assessed the gut microbiome using 16S rRNA gene amplicon sequencing of fecal samples collected from Kaludiyapokuna Forest Reserve, Sri Lanka (gray langur n = 50 samples, purple-faced langur n = 7 samples). Our results demonstrate that despite strong gut microbial similarities, gray langurs had a more diverse gut microbiome that harbored Prevotella and Akkermansia, taxa involved in starch degradation, while the purple-faced langur gut microbiome harbored Roseburia, Clostridium, and Ruminococcus, taxa involved in processing plant structural carbohydrates. Compared to related species in other locations, both Sri Lankan langurs harbored more pathogenic bacteria. These differences suggest that gray langurs have more generalist diets, making them more resilient to anthropogenic change, but also indicate that they are not impervious to human encroachment. Our findings suggest that microbiome analyses are an important tool for langur ecology and conservation, and should be integrated into ongoing studies.  相似文献   

12.
While the host plant use of insect herbivores is important for understanding their interactions and coevolution, field evidence of these preferences is limited for generalist species. Molecular diet analysis provides an effective option for gaining such information, but data from field‐sampled individuals are often greatly affected by the local composition of their host plants. The polyphagous mirid bug Apolygus lucorum (Meyer‐Dür) seasonally migrates across the Bohai Sea, and molecular analysis of migrant bugs collected on crop‐free islands can be used to estimate the host plant use of A. lucorum across the large area (northern China) from where these individuals come. In this study, the host plant use of A. lucorum adults was determined by identifying plant DNA using a three‐locus DNA barcode (rbcL, trnH‐psbA, and ITS) in the gut of migrant individuals collected on Beihuang Island. We successfully identified the host plant families of A. lucorum adults, and the results indicated that captured bugs fed on at least 17 plant families. In addition, gut analyses revealed that 35.9% of A. lucorum individuals fed on multiple host plants but that most individuals (64.1%) fed on only one plant species. Cotton, Gossypium hirsutum L., DNA was found in 35.8% of the A. lucorum bugs examined, which was much higher than the percentage of bugs in which other host plants were found. Our work provides a new understanding of multiple host plant use by A. lucorum under natural conditions, and these findings are available for developing effective management strategies against this polyphagous pest species.  相似文献   

13.
The sugarcane borer, Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae), is one of the main lepidopteran pests of sugarcane and maize. The association of insects with different environments and/or host plants may occur by adaptation and this can generate host races. Adaptation may produce phenotypic or genotypic variation, which results in the differences in bioecological characteristics such as reproductive compatibility that reduces gene flow among populations. The objective of this study was to determine the reproductive compatibility of three population combinations collected in various geographic locations and from different host plants, thereby determining the influence of geographic distance and/or insect plant association. Interpopulation crosses of D. saccharalis populations from Tucumán (maize and sugarcane) and Jujuy (sugarcane) provided evidence of pre‐zygotic and post‐zygotic incompatibility. The results indicate that gene flow barriers are influenced by the host plant. However, populations from various locations revealed that geographical location is the main factor influencing gene flow among populations of D. saccharalis.  相似文献   

14.
Specialization on different host plants can promote evolutionary diversification of herbivorous insects. Work on pea aphids (Acyrthosiphon pisum) has contributed significantly to the understanding of this process, demonstrating that populations associated with different host plants exhibit performance trade‐offs across hosts, show adaptive host choice and genetic differentiation and possess different communities of bacterial endosymbionts. Populations specialized on different secondary host plants during the parthenogenetic summer generations are also described for the black bean aphid (Aphis fabae complex) and are usually treated as different (morphologically cryptic) subspecies. In contrast to pea aphids, however, host choice and mate choice are decoupled in black bean aphids, because populations from different summer hosts return to the same primary host plant to mate and lay overwintering eggs. This could counteract evolutionary divergence, and it is currently unknown to what extent black bean aphids using different summer hosts are indeed differentiated. We addressed this question by microsatellite genotyping and endosymbiont screening of black bean aphids collected in summer from the goosefoot Chenopodium album (subspecies A. f. fabae) and from thistles of the genus Cirsium (subspecies A. f. cirsiiacanthoides) across numerous sites in Switzerland and France. Our results show clearly that aphids from Cirsium and Chenopodium exhibit strong and geographically consistent genetic differentiation and that they differ in their frequencies of infection with particular endosymbionts. The dependence on a joint winter host has thus not prevented the evolutionary divergence into summer host‐adapted populations that appear to have evolved mechanisms of reproductive isolation within a common mating habitat.  相似文献   

15.
The epidemiology of vector transmitted plant diseases is highly influenced by dispersal and the host‐plant range of the vector. Widening the vector's host range may increase transmission potential, whereas specialization may induce specific disease cycles. The process leading to a vector's host shift and its epidemiological outcome is therefore embedded in the frameworks of sympatric evolution vs. immigration of preadapted populations. In this study, we analyse whether a host shift of the stolbur phytoplasma vector, Hyalesthes obsoletus from field bindweed to stinging nettle in its northern distribution range evolved sympatrically or by immigration. The exploitation of stinging nettle has led to outbreaks of the grapevine disease bois noir caused by a stinging nettle‐specific phytoplasma strain. Microsatellite data from populations from northern and ancestral ranges provide strong evidence for sympatric host‐race evolution in the northern range: Host‐plant associated populations were significantly differentiated among syntopic sites (0.054 < FHT < 0.098) and constant over 5 years. While gene flow was asymmetric from the old into the predicted new host race, which had significantly reduced genetic diversity, the genetic identity between syntopic host‐race populations in the northern range was higher than between these populations and syntopic populations in ancestral ranges, where there was no evidence for genetic host races. Although immigration was detected in the northern field bindweed population, it cannot explain host‐race diversification but suggests the introduction of a stinging nettle‐specific phytoplasma strain by plant‐unspecific vectors. The evolution of host races in the northern range has led to specific vector‐based bois noir disease cycles.  相似文献   

16.
Divergent selection between environments can result in changes to the behavior of an organism. In many insects, volatile compounds are a primary means by which host plants are recognized and shifts in plant availability can result in changes to host preference. Both the plant substrate and microorganisms can influence this behavior, and host plant choice can have an impact on the performance of the organism. In Drosophila mojavensis, four geographically isolated populations each use different cacti as feeding and oviposition substrates and identify those cacti by the composition of the volatile odorants emitted. Behavioral tests revealed D. mojavensis populations vary in their degree of preference for their natural host plant. Females from the Mojave population show a marked preference for their host plant, barrel cactus, relative to other cactus choices. When flies were given a choice between cacti that were not their host plant, the preference for barrel and organ pipe cactus relative to agria and prickly pear cactus was overall lower for all populations. Volatile headspace composition is influenced by the cactus substrate, microbial community, and substrate‐by‐microorganism interactions. Differences in viability, developmental time, thorax length, and dry body weight exist among populations and depend on cactus substrate and population‐by‐cactus interactions. However, no clear association between behavioral preference and performance was observed. This study highlights a complex interplay between the insect, host plant, and microbial community and the factors mediating insect host plant preference behavior.  相似文献   

17.
The gut microbiota plays an important role in pheromone production, pesticide degradation, vitamin synthesis, and pathogen prevention in the host animal. Therefore, similar to gut morphology and digestive enzyme activity, the gut microbiota may also get altered under plant defensive compound-induced stress. To test this hypothesis, Dendrolimus superans larvae were fed either aconitine- or nicotine-treated fresh leaves of Larix gmelinii, and Lymantria dispar larvae were fed either aconitine- or nicotine-treated fresh leaves of Salix matsudana. Subsequently, the larvae were sampled 72hr after diet administration and DNA extracted from larval enteric canals were employed for gut microbial 16S ribosomal RNA gene sequencing (338 F and 806 R primers). The sequence analysis revealed that dietary nicotine and aconitine influenced the dominant bacteria in the larval gut and determined their abundance. Moreover, the effect of either aconitine or nicotine on D. superans and L. dispar larvae had a greater dependence on insect species than on secondary plant metabolites. These findings further our understanding of the interaction between herbivores and host plants and the coevolution of plants and insects.  相似文献   

18.
Cotesia kariyai Watanabe (Hymenoptera: Braconidae) is a specialist larval parasitoid of Mythimna separata Walker (Lepidoptera: Noctuidae). Cotesia kariyai wasps use herbivore‐induced plant volatiles (HIPVs) to locate hosts. However, complex natural habitats are full of volatiles released by both herbivorous host‐ and non‐host‐infested plants at various levels of intensity. Therefore, the presence of non‐hosts may affect parasitoid decisions while foraging. Here, the host‐finding efficiency of naive C. kariyai from HIPVs influenced by host‐ and non‐host‐infested maize [Zea mays L. (Poaceae)] plants was investigated with a four‐arm olfactometer. Ostrinia furnacalis Guenée (Lepidoptera: Crambidae) was selected as a non‐host species. One unit (1 U) of host‐ or non‐host‐infested plant was prepared by infesting a potted plant with five host or seven non‐host larvae. In two‐choice bioassays, host‐infested plants fed upon by different numbers of larvae, and various units of host‐ and non‐host‐infested plants (infestation units; 1 U, 2 U, and 3 U) were arranged to examine the effects of differences in volatile quantity and quality on the olfactory responses of C. kariyai with the assumption that volatile quantity and quality changes with differences in numbers of insects and plants. Cotesia kariyai was found to perceive quantitative differences in volatiles from host‐infested plants, preferring larger quantities of volatiles from larger numbers of larvae or plants. Also, the parasitoids discriminated between healthy plants, host‐infested plants, and non‐host‐infested plants by recognising volatiles released from those plants. Cotesia kariyai showed a reduced preference for host‐induced volatiles, when larger numbers of non‐host‐infested plants were present. Therefore, quantitative and qualitative differences in volatiles from host‐ and non‐host‐infested plants appear to affect the decision of C. kariyai during host‐habitat searching in multiple tritrophic systems.  相似文献   

19.
Gut bacteria aid their host in digestion and pathogen defense, and bacterial communities that differ in diversity or composition may vary in their ability to do so. Typically, the gut microbiomes of animals living in social groups converge as members share a nest environment and frequently interact. Social insect colonies, however, consist of individuals that differ in age, physiology, and behavior, traits that could affect gut communities or that expose the host to different bacteria, potentially leading to variation in the gut microbiome within colonies. Here we asked whether bacterial communities in the abdomen of Temnothorax nylanderi ants, composed largely of the gut microbiome, differ between different reproductive and behavioral castes. We compared microbiomes of queens, newly eclosed workers, brood carers, and foragers by high‐throughput 16S rRNA sequencing. Additionally, we sampled individuals from the same colonies twice, in the field and after 2 months of laboratory housing. To disentangle the effects of laboratory environment and season on microbial communities, additional colonies were collected at the same location after 2 months. There were no large differences between ant castes, although queens harbored more diverse microbial communities than workers. Instead, we found effects of colony, environment, and season on the abdominal microbiome. Interestingly, colonies with more diverse communities had produced more brood. Moreover, the queens' microbiome composition was linked to egg production. Although long‐term coevolution between social insects and gut bacteria has been repeatedly evidenced, our study is the first to find associations between abdominal microbiome characteristics and colony productivity in social insects.  相似文献   

20.
Animal–bacterial symbioses are highly dynamic in terms of multipartite interactions, both between the host and its symbionts as well as between the different bacteria constituting the symbiotic community. These interactions will be reflected by the titres of the individual bacterial taxa, for example via host regulation of bacterial loads or competition for resources between symbionts. Moreover, different host tissues represent heterogeneous microhabitats for bacteria, meaning that host‐associated bacteria might establish tissue‐specific bacterial communities. Wolbachia are widespread endosymbiotic bacteria, infecting a large number of arthropods and filarial nematodes. However, relatively little is known regarding direct interactions between Wolbachia and other bacteria. This study represents the first quantitative investigation of tissue‐specific Wolbachia–microbiota interactions in the terrestrial isopod Armadillidium vulgare. To this end, we obtained a more complete picture of the Wolbachia distribution patterns across all major host tissues, integrating all three feminizing Wolbachia strains (wVulM, wVulC, wVulP) identified to date in this host. Interestingly, the different Wolbachia strains exhibited strain‐specific tissue distribution patterns, with wVulM reaching lower titres in most tissues. These patterns were consistent across different host genetic backgrounds and might reflect different co‐evolutionary histories between the Wolbachia strains and A. vulgare. Moreover, Wolbachia‐infected females carried higher total bacterial loads in several, but not all, tissues, irrespective of the Wolbachia strain. Taken together, this quantitative approach indicates that Wolbachia is part of a potentially more diverse bacterial community, as exemplified by the presence of highly abundant bacterial taxa in the midgut caeca of several A. vulgare populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号