首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Members of the Watanabea clade of Trebouxiophyceae are genetically diverse and widely distributed in all kinds of habitats, especially in most terrestrial habitats. Ten new strains of terrestrial algae isolated from the tropical rainforest in China, and four published strains were investigated in this study. Morphological observation and molecular phylogenetic analyses based on the 18S, ITS, rbcL, and tufA genes were used to identify the new strains. Four previously described species were reinvestigated to supplement molecular data and autospores’ morphological photographs. The phylogenetic analyses based on 18S only, the concatenated dataset of 18S and ITS, as well as the concatenated dataset of rbcL and tufA, showed the same phylogenetic positions and relationships of these new strains. According to the phylogenetic analysis and morphological comparisons results, we described these 10 strains as four new members within the Watanabea clade, Polulichloris yunnanensis sp. nov., Polulichloris ovale sp. nov., Massjukichlorella orientale sp. nov., and Massjukichlorella minus sp. nov., and two known species, Massjukichlorella epiphytica, and Mysteriochloris nanningensis. Additionally, we provide strong evidence proving that Phyllosiphon, Mysteriochloris, Polulichloris, and Desertella all reproduce through unequal sized autospores.  相似文献   

2.
Proctonotidae and Madrellidae are families that belong to the suborder Cladobranchia. Historically, both have been the subjects of taxonomic confusion. Thus, Proctonotidae Gray, 1853, was subsequently named as Zephyrinidae Iredale and O'Donoghue, 1923 and Janolidae Pruvot‐Fol, 1933, but currently both are considered as synonyms of Proctonotidae. On the other hand, Alder and Hancock (1864) erected the genus Madrella in Proctonotidae. Here, we completed a detailed morphological and molecular study of four apparently undescribed species of Madrellidae and Proctonotidae from the Indo‐Pacific. We performed a maximum likelihood and Bayesian inference phylogenetic analyses using two mitochondrial and one nuclear genes to improve the understanding of the families. Prompted by our results, Janolidae is removed from synonymy with Proctonotidae. Within Janolidae, there are two well‐supported clades. One includes species with smooth cerata that are found in the Atlantic and eastern Pacific Oceans. The taxa in this clade include the type species of Antiopella and several other species. We resurrect Antiopella as the valid name for this clade. The sister clade to Antiopella includes a variety of taxa with species that have been traditionally included in Janolus Bergh, 1884 and Bonisa Gosliner, 1981. Further systematic revision requires more comprehensive taxon sampling. The new species discovered have clear morphological differences and strong molecular support. They include Madrella amphora Pola and Gosliner sp. nov. , Janolus tricellariodes Pola and Gosliner sp. nov. , Janolus flavoanulatus Pola and Gosliner sp. nov., and Janolus incrustans Pola and Gosliner sp. nov.  相似文献   

3.
The paraphyletic diatom genus Nitzschia comprises over 1000 morphologically distinct pennate taxa, known from the benthos and plankton of freshwater, brackish, and marine environments. The principal diagnostic characters for delimitation of Nitzschia species include valve shape, the position and structure of the raphe, presence/absence and shape of the proximal raphe endings and terminal raphe fissures, areola structure, and specific morphometric features such as cell size, and stria and fibula density. In this study, we isolated 12 diatom strains into culture from samples collected at the surface or greater depths of the southeastern Adriatic Sea. Morphological analyses included LM, SEM, and TEM observations, which, along with specific morphometric features, allowed us to distinguish three new Nitzschia species. These findings were congruent with the results of phylogenetic analyses performed on nuclear‐encoded SSU (18S) rDNA and chloroplast‐encoded rbcL and psbC genes. One of the new species (Nitzschia dalmatica sp. nov.) formed a lineage within a clade of Bacillariaceae containing members of the Nitzschia sect. Dubiae, which was sister to Psammodictyon. A second lineage was part of a novel clade that is significantly distinct from other Nitzschia species sequenced so far and includes Nitzschia adhaerens sp. nov. and N. cf. adhaerens. A further new species was found, Nitzschia inordinata sp. nov., which appeared as the sister group to the N. adhaerens clade and the conopeoid Nitzschia species in our phylogenetic trees. Our findings contribute to the overall diversity of genus Nitzschia, especially in identifying some deep branches within the Bacillariaceae, and highlight under‐scoring of this genus in marine plankton.  相似文献   

4.
We taxonomically examined an algal strain (Ki‐4) isolated from a dry asphalt surface in mid‐summer of 2003. The vegetative cells were solitary, covered by a cell wall ornamented with meridional ribs, and contained hollow spherical chloroplasts and a pyrenoid. The cells exhibited a high tolerance to unfavorable photo‐oxidative stress conditions, and in culture developed a reddish coloration due to the accumulation of a water‐soluble astaxanthin‐binding protein, which was identified as a novel protein in organisms. 18S rDNA and ITS2 sequence analyses revealed that Ki‐4 belongs to Coelastrella sensu lato (Scenedesmaceae), but was taxonomically distinct from other members of the genus. On the basis of its phylogenetic position and morphological features, including the structures of cell wall ribs, we identify Ki‐4 as a new algal species in the genus Coelastrella, for which we propose the name Coelastrella astaxanthina sp. nov.  相似文献   

5.
Recent molecular analyses of Dictyosphaerium strains revealed a polyphyletic origin of this morphotype within the Chlorellaceae. The type species Dictyosphaerium ehrenbergianum Nägeli formed an independent lineage within the Parachlorella clade, assigning the genus to this clade. Our study focused on three different Dictyosphaerium species to resolve the phylogenetic position of remaining species. We used combined analyses of morphology; molecular data based on SSU and internally transcribed spacer region (ITS) rRNA sequences; and the comparison of the secondary structure of the SSU, ITS‐1, and ITS‐2 for species and generic delineation. The phylogenetic analyses revealed two lineages without generic assignment and two distinct clades of Dictyosphaerium‐like strains within the Parachlorella clade. One clade comprises the lineages with the epitype strain of D. ehrenbergianum Nägeli and two additional lineages that are described as new species (Dictyosphaerium libertatis sp. nov. and Dictyosphaerium lacustre sp. nov.). An emendation of the genus Dictyosphaerium is proposed. The second clade comprises the species Dictyosphaerium sphagnale Hindák and Dictyosphaerium pulchellum H. C. Wood. On the basis of phylogenetic analyses, complementary base changes, and morphology, we describe Mucidosphaerium gen. nov with the four species Mucidosphaerium sphagnale comb. nov., Mucidosphaerium pulchellum comb. nov., Mucidosphaerium palustre sp. nov., and Mucidosphaerium planctonicum sp. nov.  相似文献   

6.
Two new species of Gracilariopsis from the Indian Ocean are proposed—Gracilariopsis (Gp.) mclachlanii Buriyo, Bellorin et M. C. Oliveira sp. nov. from Tanzania and Gracilariopsis persica Bellorin, Sohrabipour et E. C. Oliveira sp. nov. from Iran—based on morphology and DNA sequence data (rbcL gene and SSU rDNA). Both species fit the typical features of Gracilariopsis: axes cylindrical throughout, freely and loosely ramified up to four orders, with an abrupt transition in cell size from medulla to cortex, cystocarps lacking tubular nutritive cells and superficial spermatangia. Nucleotide sequence comparisons of rbcL and SSU rDNA placed both species into the Gracilariopsis clade as distinct species from all the accepted species for this genus, forming a deeply divergent lineage together with some species from the Pacific. The new species are very difficult to distinguish on morphological grounds from other species of Gracilariopsis, stressing the importance of homologous molecular marker comparisons for the species recognition in this character‐poor genus.  相似文献   

7.
We used phylogenetic analyses based on multiple gene sequences (partial nr SSU and LSU rDNA, partial pt LSU rDNA, psaA and rbcL) from 148 strains (including three outgroups) and scale ultrastructure to examine phylogenetic relationships among species of the colonial genera Synura and Tessellaria. The phylogenetic tree based on the combined dataset was congruent with ultrastructural characteristics of the scales. Synura was divided into three major clades, two including species in section Synura, and one representing section Peterseniae. One clade, consisting of seven strains of S. uvella (section Synura), diverged at the base of the genus. The second clade consisted of the remaining species belonging to the section Synura. The third clade, containing organisms in the section Peterseniae and characterized by scales possessing a keel, was monophyletic with strong support values. Based on our findings, S. uvella needs to be in a separate section from other spine-bearing species, and we therefore propose new sectional ranks; Synura, Peterseniae, Curtispinae (presence of body scales with slender spines, tubular scales and caudal scales). We further propose four new species based on phylogenetic analyses and unique scale characters: S. longitubularis sp. nov., S. sungminbooi sp. nov., S. soroconopea sp. nov. and S. lanceolata sp. nov. Lastly, we propose a new genus name, Neotessella, to replace the invalid use of the name Tessellaria.  相似文献   

8.
9.
On the basis of comparative morphology and phylogenetic analyses of rbcL and LSU rDNA sequence data, a new genus, Gayliella gen. nov., is proposed to accommodate the Ceramium flaccidum complex (C. flaccidum, C. byssoideum, C. gracillimum var. byssoideum, and C. taylorii), C. fimbriatum, and a previously undescribed species from Australia. C. transversale is reinstated and recognized as a distinct species. Through this study, G. flaccida (Kützing) comb. nov., G. transversalis (Collins et Hervey) comb. nov., G. fimbriata (Setchell et N. L. Gardner) comb. nov., G. taylorii comb. nov., G. mazoyerae sp. nov., and G. womersleyi sp. nov. are based on detailed comparative morphology. The species referred to as C. flaccidum and C. dawsonii from Brazil also belong to the new genus. Comparison of Gayliella with Ceramium shows that it differs from the latter by having an alternate branching pattern; three cortical initials per periaxial cell, of which the third is directed basipetally and divides horizontally; and unicellular rhizoids produced from periaxial cells. Our phylogenetic analyses of rbcL and LSU rDNA gene sequence data confirm that Gayliella gen. nov. represents a monophyletic clade distinct from most Ceramium species including the type species, C. virgatum. We also transfer C. recticorticum to the new genus Gayliella.  相似文献   

10.
The diatom genus Chaetoceros is one of the most abundant and diverse phytoplankton in marine and brackish waters worldwide. Within this genus, Chaetoceros socialis has been cited as one of the most common species. However, recent studies from different geographic areas have shown the presence of pseudo‐cryptic diversity within the C. socialis complex. Members of this complex are characterized by curved chains (primary colonies) aggregating into globular clusters, where one of the four setae of each cell curves toward the center of the cluster and the other three orient outwards. New light and electron microscopy observations as well as molecular data on marine planktonic diatoms from the coastal waters off Chile revealed the presence of two new species, Chaetoceros sporotruncatus sp. nov. and C. dichatoensis. sp. nov. belonging to the C. socialis complex. The two new species are similar to other members of the complex (i.e., C. socialis and C. gelidus) in the primary and secondary structure of the colony, the orientation pattern of the setae, and the valve ultrastructure. The only morphological characters that can be used to differentiate the species of this complex are aspects related to resting spore morphology. The two newly described species are closely related to each other and form a sister clade to C. gelidus in molecular phylogenies. We also provide a phylogenetic status along with the morphological characterization of C. radicans and C. cintus, which are genetically related to the C. socialis complex.  相似文献   

11.
The freshwater red algal genus Batrachospermum has been shown to be paraphyletic since the first molecular studies of the Batrachospermales. Previous research, along with this study, provides strong support for the clade Batrachospermum section Helminthoidea. This study has found that heterocortication, the presence of both cylindrical and bulbous cells on the main axis, is an underlying synapomorphy of this clade. Based on support from DNA sequences of the rbcL gene, the COI barcode region and the rDNA ITS 1 and 2, along with morphological studies, the new genus Sheathia is proposed. Seven heterocorticate species were recognized from the molecular clades. Sheathia boryana and S. exigua sp. nov. appear to be restricted to Europe, whereas S. confusa occurs in Europe and New Zealand. Sheathia involuta is widespread in the USA and reported for the first time from Europe. Sheathia americana sp. nov., has been collected in the USA and Canada, and S. heterocortica and S. grandis sp. nov. have been collected only in the USA. Sheathia confusa and S. grandis can be distinguished based on morphological characters, whereas DNA sequence data are required to conclusively distinguish the other species. Sheathia fluitans and S. carpoinvolucra also are placed within this genus based on the presence of heterocortication. These data also hint at greater diversity among non‐heterocorticate Sheathia than is recognized by the single species name S. arcuata.  相似文献   

12.
We describe three new species of the genus Gromia from bathyal and abyssal depths in the Weddell Sea. The new species are characterized by a combination of morphological and molecular criteria. All three species possess a distinct oral capsule and a layer of ‘honeycomb membranes’, which form the inner part of the organic test wall. Both these features are typical of gromiids. Their identification as gromiids is confirmed by analyses of partial small subunit ribosomal DNA (SSU rDNA) gene sequences. Gromia marmorea sp. nov. is a rounded species with a prominent oral capsule and a characteristically mottled appearance. In Gromia melinus sp. nov. , the test surface exhibits a polygonal pattern of ridges, with a layer of clay particles coating the surface between the ridges. Gromia winnetoui sp. nov. represents an elongate morphotype in which the organic test is enclosed within an agglutinated case, a feature previously unknown in gromiids. Phylogenetic analysis using the maximum‐likelihood method revealed that all three species form distinct clades, reflecting the morphological differences among Weddell Sea species, as well as between deep‐water Southern Ocean Gromia and previously described gromiids. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 157 , 451–469.  相似文献   

13.
The current study focuses on four species from the primarily marine diatom genus Craspedostauros that were observed growing attached to numerous sea turtles and sea turtle‐associated barnacles from Croatia and South Africa. Three of the examined taxa, C. danayanus sp. nov., C. legouvelloanus sp. nov., and C. macewanii sp. nov., are described based on morphological and, whenever possible, molecular characteristics. The new taxa exhibit characters not previously observed in other members of the genus, such as the presence of more than two rows of cribrate areolae on the girdle bands, shallow perforated septa, and a complete reduction of the stauros. The fourth species, C. alatus, itself recently described from museum sea turtle specimens, is reported for the first time from loggerhead sea turtles rescued in Europe. A 3‐gene phylogenetic analysis including DNA sequence data for three sea turtle‐associated Craspedostauros species and other marine and epizoic diatom taxa indicated that Craspedostauros is monophyletic and sister to Achnanthes. This study, being based on a large number of samples and animal specimens analyzed and using different preservation and processing methods, provides new insights into the ecology and biogeography of the genus and sheds light on the level of intimacy and permanency in the host–epibiont interaction within the epizoic Craspedostauros species.  相似文献   

14.
The dinoflagellate genus Chytriodinium, an ectoparasite of copepod eggs, is reported for the first time in the North and South Atlantic Oceans. We provide the first large subunit rDNA (LSU rDNA) and Internal Transcribed Spacer 1 (ITS1) sequences, which were identical in both hemispheres for the Atlantic Chytriodinium sp. The first complete small subunit ribosomal DNA (SSU rDNA) of the Atlantic Chytriodinium sp. suggests that the specimens belong to an undescribed species. This is the first evidence of the split of the Gymnodinium clade: one for the parasitic forms of Chytriodiniaceae (Chytriodinium, Dissodinium), and other clade for the free‐living species.  相似文献   

15.
Two new species of the genus Corollospora, namely, C. anglusa sp. nov. with its anamorph Varicosporina anglusa sp. nov. and C. portsaidica sp. nov., which were isolated from the coast of the Mediterranean Sea in Egypt, are described in this article based on morphological and molecular evidence. The two new species have one-septate ascospores. Corollospora anglusa resembles C. gracilis by having narrow one-septate hyaline ascospores; however, they differ in ascomata and ascospore dimensions and in pure culture characteristics. Single-ascospore culture of C. anglusa produces the conidia of its anamorph, whereas an anamorph has not been reported for C. gracilis. Varicosporina anglusa differs from the other two known Varicosporina species by having conidial branches that are filamentous, rectangularly branched, hypha like, and disarticulated into two- or one-celled fragments. Corollospora portsaidica is morphologically similar to C. cinnamomea, but the two species differ in the dimensions, shape, and ornamentation of the ascospores. The new Corollospora species were confirmed to be divergent from other similar Corollospora species based on phylogenetic analyses of partial sequences of the LSU rDNA region.  相似文献   

16.
Vasseuromys is a species‐rich genus of small‐ to medium‐sized glirids spanning the latest Oligocene to late Miocene of Europe and western Asia. Despite extensive discoveries over the past 50 years, little phylogenetic work has been done on Vasseuromys. This study presents the first phylogenetic analysis of the genus that includes all the described species and a new taxon Vasseuromys tectus sp. nov. from the late Miocene of eastern Europe, providing the first insights into the evolutionary relationships within the clade. Results suggest that the genus is clearly paraphyletic. Two strongly supported genus‐level clades are recognized within ‘Vasseuromys’: a restricted Vasseuromys clade (containing the three species, V. pannonicus, V. rugosus and V. tectus) and the Glirulus clade that includes ‘Vasseuromysduplex. The remaining ‘Vasseuromys’ species are found to constitute a set of paraphyletic taxa, with the polyphyletic ‘Ramys’ nested within it. The genus Gliruloides is synonymized with Glirulus. Vasseuromys tectus sp. nov. is the most derived member of the genus in having a greater number of cheek teeth ridges including constantly present anterotrope, centrotrope, second prototrope on M1–2, third metatrope on M2, two to three posterotropids on p4 and strong ectolophids on lower molars. The results of the study confirm a European origin for Vasseuromys while suggesting that the late Miocene species of the genus dispersed from the east in the early Turolian.  相似文献   

17.
A new flagellate of the Raphidophyceae, Chlorinimonas sublosa gen. et sp. nov., collected from Wakayama Prefecture, Japan is described based on morphological observations, microspectrophotometry of chloroplasts, and phylogenetic analysis of SSU rDNA sequences. The cell was usually elliptical, sometimes spherical, oval or slender, and possessed two subequal heterodynamic flagella emerging from a subapical pit. Greenish yellow discoidal chloroplasts, 15–25 per cell, were situated at the periphery of the cell. The alga is very similar to the genus Heterosigma, but distinct in that there is no invagination of thylakoids into the pyrenoids and no typical girdle lamella in the chloroplast, and the chloroplasts are greenish yellow. Phylogenetic analysis of SSU rDNA revealed that this alga forms a sister clade with the clade of Chattonella and Heterosigma. Based on these results, we propose a new genus Chlorinimonas with Chlorinimonas sublosa as the type species. In addition, this paper is the first report of molecular data covering all genera of the Raphidophyceae. The phylogenetic analysis suggests that the intrusion to freshwater habitat has occurred only once in the Raphidophyceae.  相似文献   

18.
19.
Seven new species of Penicillium Link ex Fries and a new variety of Penicillium novae-caledoniae Smith are described and illustrated. Four of them have been recovered from the air in Madrid, Spain, one from beech leaves litter in a beech forest near Nancy, France, two from sandy soils in Madrid, and one from an andosol in the Spanish Province of Navarra. They clearly differ from all species of the genus described so far and are, therefore, described and proposed as new taxa: Penicillium turolense sp. nov., Penicillium murcianum sp. nov., Penicillium ovetense sp. nov., Penicillium asturianum sp. nov., Penicillium onobense sp. nov., Penicillium castellonense sp. nov., Penicillium aragonense sp. nov., and Penicillium novae-caledoniae Smith, var. album var. nov.  相似文献   

20.
A new genus of sand‐dwelling photosynthetic dinoflagellate, Testudodinium Horiguchi, Tamura, Katsumata et A. Yamaguchi is proposed based on Testudodinium testudo (Herdman) Horiguchi, Tamura, Katsumata, et A. Yamaguchi comb. nov. (Basionym: Amphidinium testudo Herdman) and a new species in this new genus, Testudodinium maedaense Katsumata et Horiguchi sp. nov. is described. Amphidinium corrugatum is also transferred to this genus, making a new combination T. corrugatum (Larsen et Patterson) Horiguchi, Tamura et A. Yamaguchi. These three species are similar to the members of the genus Amphidinium in having an extremely small episome and a dorsoventrally flattened cell body. They are, however, distinguished from the genus Amphidinium seusu stricto by the possession of a distinct longitudinal furrow in the middle of ventral side of the episome. Phylogenetic trees based on small subunit (SSU) rDNA revealed that all three of these Testudodinium species formed a robust clade and, although statistical support is not high, the tree suggests Testudodinium clade is not closely related to Amphidinium seusu stricto clade. The morphological differences together with molecular data support the establishment of a new genus for A. testudo and its related species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号