首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cysteine desulfurase enzymes NifS and IscS provide sulfur for the biosynthesis of Fe/S proteins. NifU and IscU have been proposed to serve as template or scaffold proteins in the initial Fe/S cluster assembly events, but the mechanism of sulfur transfer from NifS or IscS to NifU or IscU has not been elucidated. We have employed [(35)S]cysteine radiotracer studies to monitor sulfur transfer between IscS and IscU from Escherichia coli and have used direct binding measurements to investigate interactions between the proteins. IscS catalyzed transfer of (35)S from [(35)S]cysteine to IscU in the absence of additional thiol reagents, suggesting that transfer can occur directly and without involvement of an intermediate carrier. Surface plasmon resonance studies and isothermal titration calorimetry measurements further revealed that IscU binds to IscS with high affinity (K(d) approximately 2 microm) in support of a direct transfer mechanism. Transfer was inhibited by treatment of IscU with iodoacetamide, and (35)S was released by reducing reagents, suggesting that transfer of persulfide sulfur occurs to cysteinyl groups of IscU. A deletion mutant of IscS lacking C-terminal residues 376-413 (IscSDelta376-413) displayed cysteine desulfurase activity similar to the full-length protein but exhibited lower binding affinity for IscU, decreased ability to transfer (35)S to IscU, and reduced activity in assays of Fe/S cluster assembly on IscU. The findings with IscSDelta376-413 provide additional support for a mechanism of sulfur transfer involving a direct interaction between IscS and IscU and suggest that the C-terminal region of IscS may be important for binding IscU.  相似文献   

2.
Bonomi F  Iametti S  Morleo A  Ta D  Vickery LE 《Biochemistry》2011,50(44):9641-9650
The scaffold protein IscU and molecular chaperones HscA and HscB play central roles in biological assembly of iron-sulfur clusters and maturation of iron-sulfur proteins. However, the structure of IscU-FeS complexes and the molecular mechanism whereby the chaperones facilitate cluster transfer to acceptor proteins are not well understood. We have prepared amino acid substitution mutants of Escherichia coli IscU in which potential ligands to the FeS cluster (Cys-37, Cys-63, His-105, and Cys-106) were individually replaced with alanine. The properties of the IscU-FeS complexes formed were investigated by measuring both their ability to transfer preformed FeS clusters to apo-ferredoxin and the activity of the IscU proteins in catalyzing cluster assembly on apo-ferredoxin using inorganic iron with inorganic sulfide or with IscS and cysteine as a sulfur source. The ability of the HscA/HscB chaperone system to accelerate ATP-dependent cluster transfer from each IscU substitution mutant to apo-ferredoxin was also determined. All of the mutants formed FeS complexes with a stoichiometry similar to the wild-type holo-protein, i.e., IscU(2)[2Fe2S], raising the possibility that different cluster ligation states may occur during iron-sulfur protein maturation. Spectroscopic properties of the mutants and the kinetics of transfer of performed IscU-FeS clusters to apo-ferredoxin indicate that the most stable form of holo-IscU involves iron coordination by Cys-63 and Cys-106. Results of studies on the ability of mutants to catalyze formation of holo-ferredoxin using iron and different sulfur sources were consistent with proposed roles for Cys-63 and Cys-106 in FeS cluster binding and also indicated an essential role for Cys-106 in sulfide transfer to IscU from IscS. Measurements of the ability of the chaperones HscA and HscB to facilitate cluster transfer from holo-IscU to apo-ferredoxin showed that only IscU(H105A) behaved similarly to wild-type IscU in exhibiting ATP-dependent stimulation of cluster transfer. IscU(C63A) and IscU(C106A) displayed elevated rates of cluster transfer in the ±ATP whereas IscU(C37A) exhibited low rates of cluster transfer ±ATP. In interpreting these findings, we propose that IscU(2)[2Fe2S] is able undergo structural isomerization to yield conformers having different cysteine residues bound to the cluster. On the basis of the crystal structure of HscA complexed with an IscU-derived peptide, we propose that the chaperone binds and stabilizes an isomer of IscU(2)[2Fe2S] in which the cluster is bound by cysteine residues 37 and 63 and that the [2Fe2S] cluster, being held less tightly than that coordinated by Cys-63 and Cys-106 in free IscU(2)[2Fe2S], is more readily transferred to acceptor proteins such as apo-ferredoxin.  相似文献   

3.
Cysteine desulfurase plays a principal role in the assembly of iron-sulfur clusters by mobilizing the sulfur atom of L-cysteine. The active site cysteine residue of the enzyme attacks the sulfur atom of L-cysteine to form a cysteine persulfide residue, and the substrate-derived sulfur atom of this residue is incorporated into iron-sulfur clusters. Escherichia coli has three cysteine desulfurases named IscS, CsdB and CSD. We found that each of them facilitates the formation of the iron-sulfur cluster of ferredoxin in vitro. Since IscU, an iron-sulfur protein of E. coli, is believed to function as a scaffold for the cluster assembly in vivo, we examined whether IscS, CsdB and CSD interact with IscU to deliver the sulfur atom to IscU. By surface plasmon resonance analysis, we found that only IscS interacts with IscU. We isolated the IscS/IscU complex, determined the residues involved in the formation of the complex, and obtained data suggesting that the sulfur transfer from IscS to IscU is initiated by the attack of Cys63 of IscU on the S gamma atom of the cysteine persulfide residue transiently produced on IscS.  相似文献   

4.
Zeng J  Zhang Y  Liu Y  Zhang X  Xia L  Liu J  Qiu G 《Biotechnology letters》2007,29(12):1983-1990
Iron–sulfur clusters are one of the most common types of redox center in nature. Three proteins of IscS (a cysteine desulfurase), IscU (a scaffold protein) and IscA (an iron chaperon) encoded by the operon iscSUA are involved in the iron–sulfur cluster assembly in Acidithiobacillus ferrooxidans. In this study the gene of IscS from A. ferrooxidans ATCC 23270 was cloned and expressed in Escherichia coli, the protein was purified by one-step affinity chromatography to homogeneity. The molecular mass of recombinant IscS was 46 kDa by SDS-PAGE. The IscS was a pyridoxal phosphate-containing protein, that catalyzed the elimination of S from l-cysteine to yield l-alanine and elemental sulfur or H2S, depending on whether or not a reducing agent was added to the reaction mixture. Jia Zeng and Yanfei Zhang contributed equally to this work.  相似文献   

5.
Biological assembly of iron–sulfur (Fe–S) clusters is mediated by complex systems consisting of multiple proteins. Escherichia coli possesses two distinct systems called the ISC and SUF machineries encoded by iscSUA‐hscBA‐fdx‐iscX and sufABCDSE respectively. Deletion of both pathways results in absence of the biosynthetic apparatus for Fe–S clusters, and consequent lethality, which has hampered detailed genetic studies. Here we report that modification of the isoprenoid biosynthetic pathway can offset the indispensability of the Fe–S cluster biosynthetic systems and show that the resulting Δisc Δsuf double mutants can grow without detectable Fe–S cluster‐containing proteins. We also constructed a series of mutants in which each isc gene was disrupted in the deletion background of sufABCDSE. Phenotypic analysis of the mutants revealed that Fdx, an essential electron‐transfer Fe–S protein in the ISC machinery, is dispensable under anaerobic conditions, which is similar to the situation with IscA. Furthermore, we found that several suppressor mutations in IscU, an Fe–S scaffold protein responsible for the de novo Fe–S cluster assembly, could bypass the essential role of the chaperone system HscA and HscB. These findings pave the way toward a detailed molecular analysis to understand the mechanisms involved in Fe–S cluster biosynthesis.  相似文献   

6.
The biosynthesis of iron–sulfur (Fe–S) clusters in Bacillus subtilis is mediated by the SUF‐like system composed of the sufCDSUB gene products. This system is unique in that it is a chimeric machinery comprising homologues of E. coli SUF components (SufS, SufB, SufC and SufD) and an ISC component (IscU). B. subtilis SufS cysteine desulfurase transfers persulfide sulfur to SufU (the IscU homologue); however, it has remained controversial whether SufU serves as a scaffold for Fe–S cluster assembly, like IscU, or acts as a sulfur shuttle protein, like E. coli SufE. Here we report that reengineering of the isoprenoid biosynthetic pathway in B. subtilis can offset the indispensability of the sufCDSUB operon, allowing the resultant Δsuf mutants to grow without detectable Fe–S proteins. Heterologous bidirectional complementation studies using B. subtilis and E. coli mutants showed that B. subtilis SufSU is interchangeable with E. coli SufSE but not with IscSU. In addition, functional similarity in SufB, SufC and SufD was observed between B. subtilis and E. coli. Our findings thus indicate that B. subtilis SufU is the protein that transfers sulfur from SufS to SufB, and that the SufBCD complex is the site of Fe–S cluster assembly.  相似文献   

7.
Smith AD  Frazzon J  Dean DR  Johnson MK 《FEBS letters》2005,579(23):5236-5240
The role of the three conserved cysteine residues on Azotobacter vinelandii IscU in accepting sulfane sulfur and forming a covalent complex with IscS has been evaluated using electrospray-ionization mass spectrometry studies of variants involving individual cysteine-to-alanine substitutions. The results reveal that IscS can transfer sulfur to each of the three alanine-substituted forms of IscU to yield persulfide or polysulfide species, and formation of a heterodisulfide covalent complex between IscS and Cys(37) on IscU. It is concluded that S transfer from IscS to IscU does not involve a specific cysteine on IscU or the formation of an IscS-IscU heterodisulfide complex.  相似文献   

8.
Cysteine desulphurases are primary sources of sulphur that can eventually be used for Fe/S biogenesis or thiolation of various cofactors and tRNA. Escherichia coli contains three such enzymes, IscS, SufS and CsdA. The importance of IscS and SufS in Fe/S biogenesis is well established. The physiological role of CsdA in contrast remains uncertain. We provide here additional evidences for a functional redundancy between the three cysteine desulphurases in vivo. In particular, we show that a deficiency in isoprenoid biosynthesis is the unique cause of the lethality of the iscS sufS mutant. Moreover, we show that CsdA is engaged in two separate sulphur transfer pathways. In one pathway, CsdA interacts functionally with SufE–SufBCD proteins to assist Fe/S biogenesis. In another pathway, CsdA interacts with CsdE and a newly discovered protein, which we called CsdL, resembling E1‐like proteins found in ubiquitin‐like modification systems. We propose this new pathway to allow synthesis of an as yet to be discovered thiolated compound.  相似文献   

9.
The cysteine desulfurase, IscS, is a highly conserved and essential component of the mitochondrial iron–sulfur cluster (ISC) system that serves as a sulfur donor for Fe–S clusters biogenesis. Fe–S clusters are versatile and labile cofactors of proteins that orchestrate a wide array of essential metabolic processes, such as energy generation and ribosome biogenesis. However, no information regarding the role of IscS or its regulation is available in Leishmania, an evolving pathogen model with rapidly developing drug resistance. In this study, we characterized LdIscS to investigate the ISC system in AmpB-sensitive vs resistant isolates of L. donovani and to understand its regulation. We observed an upregulated Fe–S protein activity in AmpB-resistant isolates but, in contrast to our expectations, LdIscS expression was upregulated in the sensitive strain. However, further investigations showed that LdIscS expression is positively correlated with ROS level and negatively correlated with Fe–S protein activity, independent of strain sensitivity. Thus, our results suggested that LdIscS expression is regulated by ROS level with Fe–S clusters/proteins acting as ROS sensors. Moreover, the direct evidence of a mechanism, in support of our results, is provided by dose-dependent induction of LdIscS-GFP as well as endogenous LdIscS in L. donovani promastigotes by three different ROS inducers: H2O2, menadione, and Amphotericin B. We postulate that LdIscS is upregulated for de novo synthesis or repair of ROS damaged Fe–S clusters. Our results reveal a novel mechanism for regulation of IscS expression that may help parasite survival under oxidative stress conditions encountered during infection of macrophages and suggest a cross talk between two seemingly unrelated metabolic pathways, the ISC system and redox metabolism in L. donovani.  相似文献   

10.
Biosynthesis of iron–sulphur (Fe‐S) proteins is catalysed by multi‐protein systems, ISC and SUF. However, ‘non‐ISC, non‐SUF’ Fe‐S biosynthesis factors have been described, both in prokaryotes and eukaryotes. Here we report in vitro and in vivo investigations of such a ‘non‐ISC, non SUF’ component, the Nfu proteins. Phylogenomic analysis allowed us to define four subfamilies. Escherichia coli NfuA is within subfamily II. Most members of this subfamily have a Nfu domain fused to a ‘degenerate’ A‐type carrier domain (ATC*) lacking Fe‐S cluster co‐ordinating Cys ligands. The Nfu domain binds a [4Fe‐4S] cluster while the ATC* domain interacts with NuoG (a complex I subunit) and aconitase B (AcnB). In vitro, holo‐NfuA promotes maturation of AcnB. In vivo, NfuA is necessary for full activity of complex I under aerobic growth conditions, and of AcnB in the presence of superoxide. NfuA receives Fe‐S clusters from IscU/HscBA and SufBCD scaffolds and eventually transfers them to the ATCs IscA and SufA. This study provides significant information on one of the Fe‐S biogenesis factors that has been often used as a building block by ISC and/or SUF synthesizing organisms, including bacteria, plants and animals.  相似文献   

11.
Recent work on the bacterial iron–sulfur cluster (isc) family of gene products, and eukaryotic homologs, has advanced the molecular understanding of cellular mechanisms of iron–sulfur cluster biosynthesis. Members of the IscS family are pyridoxyl-5′-phosophate dependent proteins that deliver inorganic sulfide during assembly of the [2Fe–2S] cluster on the IscU scaffold protein. Herein it is demonstrated through calorimetry, fluorescence, and protein stability measurements that Thermotoga maritima IscS forms a 1:1 complex with IscU in a concentration-dependent manner (K D varying from 6 to 34 μM, over an IscS concentration range of approximately 2–50 μM). Docking simulations of representative IscU and IscS proteins reveal critical contact surfaces at the N-terminal helix of IscU and a C-terminal loop comprising a chaperone binding domain. Consistent with the isothermal titration calorimetry results described here, an overall dominant contribution of charged surfaces with a change in the molar heat capacity of binding, ΔC p ~ 199.8 kcal K−1 mol−1, is observed that accounts for approximately 10% of the total accessible surface area at the binding interface. Both apo and holo IscUs and homologs were found to bind to IscS in an enthalpically driven reaction with comparable K D values. Both helix and loop regions are highly conserved among phylogenetically diverse organisms from a pool of archael, bacterial, fungal, and mammalian representatives.  相似文献   

12.
Iron sulfur (Fe/S) proteins are ubiquitous and participate in multiple biological processes, from photosynthesis to DNA repair. Iron and sulfur are highly reactive chemical species, and the mechanisms allowing the multiprotein systems ISC and SUF to assist Fe/S cluster formation in vivo have attracted considerable attention. Here, A-Type components of these systems (ATCs for A-Type Carriers) are studied by phylogenomic and genetic analyses. ATCs that have emerged in the last common ancestor of bacteria were conserved in most bacteria and were acquired by eukaryotes and few archaea via horizontal gene transfers. Many bacteria contain multiple ATCs, as a result of gene duplication and/or horizontal gene transfer events. Based on evolutionary considerations, we could define three subfamilies: ATC-I, -II and -III. Escherichia coli, which has one ATC-I (ErpA) and two ATC-IIs (IscA and SufA), was used as a model to investigate functional redundancy between ATCs in vivo. Genetic analyses revealed that, under aerobiosis, E. coli IscA and SufA are functionally redundant carriers, as both are potentially able to receive an Fe/S cluster from IscU or the SufBCD complex and transfer it to ErpA. In contrast, under anaerobiosis, redundancy occurs between ErpA and IscA, which are both potentially able to receive Fe/S clusters from IscU and transfer them to an apotarget. Our combined phylogenomic and genetic study indicates that ATCs play a crucial role in conveying ready-made Fe/S clusters from components of the biogenesis systems to apotargets. We propose a model wherein the conserved biochemical function of ATCs provides multiple paths for supplying Fe/S clusters to apotargets. This model predicts the occurrence of a dynamic network, the structure and composition of which vary with the growth conditions. As an illustration, we depict three ways for a given protein to be matured, which appears to be dependent on the demand for Fe/S biogenesis.  相似文献   

13.
Iron-sulfur cluster is one of the most common prosthetic groups, and it functions in numerous biological processes. However, little is currently known about the mechanisms of iron-sulfur cluster biosynthesis. In this study, we cloned and purified iron-sulfur cluster assembly proteins from Escherichia coli and assembled the cluster in vitro. The results showed that the assembly of iron-sulfur cluster is completed in about 20 min. Although iron or sulfur binds with IscU equivalently, 2-fold amount of iron or cysteine compared with that of IscU is better for the cluster formation, while high concentrations of IscS (IscS/IscU > 1: 10) do not facilitate the cluster formation. Environmental pH plays an important role in iron-sulfur cluster assembly; the cluster was well assembled at pH 7.6–8.0, but was inhibited at pH less than 7.4. On supply of a catalytic amount of IscS (1/50 of IscU) and excess of other substrates, with increasing each of IscU, iron, or cysteine concentration, the iron-sulfur cluster assembly process developed from first order reaction, mixed order reaction to zero order reaction, and up to 64% of apo-IscU was converted to the [2Fe-2S] cluster-bound IscU under the optimal laboratory conditions.  相似文献   

14.
Iron–sulfur (Fe–S) clusters play an essential role in plants as protein cofactors mediating diverse electron transfer reactions. Because they can react with oxygen to form reactive oxygen species (ROS) and inflict cellular damage, the biogenesis of Fe–S clusters is highly regulated. A recently discovered group of 2Fe–2S proteins, termed NEET proteins, was proposed to coordinate Fe–S, Fe and ROS homeostasis in mammalian cells. Here we report that disrupting the function of AtNEET, the sole member of the NEET protein family in Arabidopsis thaliana, triggers leaf‐associated Fe–S‐ and Fe‐deficiency responses, elevated Fe content in chloroplasts (1.2–1.5‐fold), chlorosis, structural damage to chloroplasts and a high seedling mortality rate. Our findings suggest that disrupting AtNEET function disrupts the transfer of 2Fe–2S clusters from the chloroplastic 2Fe–2S biogenesis pathway to different cytosolic and chloroplastic Fe–S proteins, as well as to the cytosolic Fe–S biogenesis system, and that uncoupling this process triggers leaf‐associated Fe–S‐ and Fe‐deficiency responses that result in Fe over‐accumulation in chloroplasts and enhanced ROS accumulation. We further show that AtNEET transfers its 2Fe–2S clusters to DRE2, a key protein of the cytosolic Fe–S biogenesis system, and propose that the availability of 2Fe–2S clusters in the chloroplast and cytosol is linked to Fe homeostasis in plants.  相似文献   

15.
In Escherichia coli, three cysteine desulfurases (IscS, SufS, and CsdA) initiate the delivery of sulfur for various biological processes such as the biogenesis of Fe-S clusters. The sulfur generated as persulfide on a cysteine residue of cysteine desulfurases is further transferred to Fe-S scaffolds (e.g. IscU) or to intermediate cysteine-containing sulfur acceptors (e.g. TusA, SufE, and CsdE) prior to its utilization. Here, we report the structures of CsdA and the CsdA-CsdE complex, which provide insight into the sulfur transfer mediated by the trans-persulfuration reaction. Analysis of the structures indicates that the conformational flexibility of the active cysteine loop in CsdE is essential for accepting the persulfide from the cysteine of CsdA. Additionally, CsdA and CsdE invoke a different binding mode than those of previously reported cysteine desulfurase (IscS) and sulfur acceptors (TusA and IscU). Moreover, the conservation of interaction-mediating residues between CsdA/SufS and CsdE/SufE further suggests that the SufS-SufE interface likely resembles that of CsdA and CsdE.  相似文献   

16.
Agar JN  Krebs C  Frazzon J  Huynh BH  Dean DR  Johnson MK 《Biochemistry》2000,39(27):7856-7862
Iron-sulfur cluster biosynthesis in both prokaryotic and eukaryotic cells is known to be mediated by two highly conserved proteins, termed IscS and IscU in prokaryotes. The homodimeric IscS protein has been shown to be a cysteine desulfurase that catalyzes the reductive conversion of cysteine to alanine and sulfide. In this work, the time course of IscS-mediated Fe-S cluster assembly in IscU was monitored via anaerobic anion exchange chromatography. The nature and properties of the clusters assembled in discrete fractions were assessed via analytical studies together with absorption, resonance Raman, and M?ssbauer investigations. The results show sequential cluster assembly with the initial IscU product containing one [2Fe-2S](2+) cluster per dimer converting first to a form containing two [2Fe-2S](2+) clusters per dimer and finally to a form that contains one [4Fe-4S](2+) cluster per dimer. Both the [2Fe-2S](2+) and [4Fe-4S](2+) clusters in IscU are reductively labile and are degraded within minutes upon being exposed to air. On the basis of sequence considerations and spectroscopic studies, the [2Fe-2S](2+) clusters in IscU are shown to have incomplete cysteinyl ligation. In addition, the resonance Raman spectrum of the [4Fe-4S](2+) cluster in IscU is best interpreted in terms of noncysteinyl ligation at a unique Fe site. The ability to assemble both [2Fe-2S](2+) and [4Fe-4S](2+) clusters in IscU supports the proposal that this ubiquitous protein provides a scaffold for IscS-mediated assembly of clusters that are subsequently used for maturation of apo Fe-S proteins.  相似文献   

17.
Increasing evidence suggests that sulfur in ubiquitous iron-sulfur clusters is derived from L-cysteine via cysteine desulfurases. In Escherichia coli, the major cysteine desulfurase activity for biogenesis of iron-sulfur clusters has been attributed to IscS. The gene that encodes IscS is a member of an operon iscSUA, which also encodes two highly conserved proteins: IscU and IscA. Previous studies suggested that both IscU and IscA may act as the iron-sulfur cluster assembly scaffold proteins. However, recent evidence indicated that IscA is an iron-binding protein that can provide iron for the iron-sulfur cluster assembly in IscU (Ding, H., Harrison, K., and Lu, J. (2005) J. Biol. Chem. 280, 30432-30437). To further elucidate the function of IscA in biogenesis of iron-sulfur clusters, we evaluate the iron-sulfur cluster binding activity of IscA and IscU under physiologically relevant conditions. When equal amounts of IscA and IscU are incubated with an equivalent amount of ferrous iron in the presence of IscS, L-cysteine and dithiothreitol, iron-sulfur clusters are assembled in IscU, but not in IscA, suggesting that IscU is a preferred iron-sulfur cluster assembly scaffold protein. In contrast, when equal amounts of IscA and IscU are incubated with an equivalent amount of ferrous iron in the presence of IscS and dithiothreitol but without L-cysteine, nearly all iron is bound to IscA. The iron binding in IscA appears to prevent the formation of the biologically inaccessible ferric hydroxide under aerobic conditions. Subsequent addition of L-cysteine efficiently mobilizes the iron center in IscA and transfers the iron for the iron-sulfur cluster assembly in IscU. The results suggest an intriguing interplay between IscA and IscU in which IscA acts as an iron chaperon that recruits "free" iron and delivers the iron for biogenesis of iron-sulfur clusters in IscU under aerobic conditions.  相似文献   

18.
19.
Tong WH  Rouault T 《The EMBO journal》2000,19(21):5692-5700
Iron-sulfur (Fe-S) clusters are cofactors found in many proteins that have important redox, catalytic or regulatory functions. In mammalian cells, almost all known Fe-S proteins are found in the mitochondria, but at least one is found in the cytosol. Here we report cloning of the human homologs to IscU and NifU, iron-binding proteins that play a critical role in Fe-S cluster assembly in bacteria. In human cells, alternative splicing of a common pre-mRNA results in synthesis of two proteins that differ at the N-terminus and localize either to the cytosol (IscU1) or to the mitochondria (IscU2). Biochemical analyses demonstrate that IscU proteins specifically associate with IscS, a cysteine desulfurase that is proposed to sequester inorganic sulfur for Fe-S cluster assembly. Protein complexes containing IscU and IscS can be found in the mitochondria as well as in the cytosol, implying that Fe-S cluster assembly takes place in multiple subcellular compartments in mammalian cells. The possible roles of the IscU proteins in mammalian cells and the potential implications of compartmentalization of Fe-S cluster assembly are discussed.  相似文献   

20.
Staphylococcus aureus does not produce the low‐molecular‐weight (LMW) thiol glutathione, but it does produce the LMW thiol bacillithiol (BSH). To better understand the roles that BSH plays in staphylococcal metabolism, we constructed and examined strains lacking BSH. Phenotypic analysis found that the BSH‐deficient strains cultured either aerobically or anaerobically had growth defects that were alleviated by the addition of exogenous iron (Fe) or the amino acids leucine and isoleucine. The activities of the iron–sulfur (Fe–S) cluster‐dependent enzymes LeuCD and IlvD, which are required for the biosynthesis of leucine and isoleucine, were decreased in strains lacking BSH. The BSH‐deficient cells also had decreased aconitase and glutamate synthase activities, suggesting a general defect in Fe–S cluster biogenesis. The phenotypes of the BSH‐deficient strains were exacerbated in strains lacking the Fe–S cluster carrier Nfu and partially suppressed by multicopy expression of either sufA or nfu, suggesting functional overlap between BSH and Fe–S carrier proteins. Biochemical analysis found that SufA bound and transferred Fe–S clusters to apo‐aconitase, verifying that it serves as an Fe–S cluster carrier. The results presented are consistent with the hypothesis that BSH has roles in Fe homeostasis and the carriage of Fe–S clusters to apo‐proteins in S. aureus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号