首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
陆静  陈赢男  尹佟明 《植物学报》2021,56(1):90-103
雌雄异株植物是研究性别决定遗传机制及性染色体起源与进化的理想材料,而克隆性别决定基因是解析性别决定遗传机制的关键。木本植物中有丰富的雌雄异株植物,且包括2种相反的性别决定系统:XY型(雌株为同配型的XX,雄株为异配型的XY)和ZW型(雌株为异配型的ZW,雄株为同配型的ZZ)。此外,不同性别植株的经济价值也有所不同。在木...  相似文献   

3.
    
The size advantage hypothesis (SAH) predicts that the rate of increase in male and female fitness with size (the size advantage) drives the evolution of sequential hermaphroditism or sex change. Despite qualitative agreement between empirical patterns and SAH, only one comparative study tested SAH quantitatively. Here, we perform the first comparative analysis of sex change in Labridae, a group of hermaphroditic and dioecious (non–sex changer) fish with several model sex‐changing species. We also estimate, for the first time, rates of evolutionary transitions between sex change and dioecy. Our analyses support SAH and indicate that the evolution of hermaphroditism is correlated to the size advantage. Furthermore, we find that transitions from sex change to dioecy are less likely under stronger size advantage. We cannot determine, however, how the size advantage affects transitions from dioecy to sex change. Finally, contrary to what is generally expected, we find that transitions from dioecy to sex change are more likely than transitions from sex change to dioecy. The similarity of sexual differentiation in hermaphroditic and dioecious labrids might underlie this pattern. We suggest that elucidating the developmental basis of sex change is critical to predict and explain patterns of the evolutionary history of sequential hermaphroditism.  相似文献   

4.
    
How do separate sexes originate and evolve? Plants provide many opportunities to address this question as they have diverse mating systems and separate sexes (dioecy) that evolved many times independently. The classic “two-factor” model for evolution of separate sexes proposes that males and females can evolve from hermaphrodites via the spread of male and female sterility mutations that turn hermaphrodites into females and males, respectively. This widely accepted model was inspired by early genetic work in dioecious white campion (Silene latifolia) that revealed the presence of two sex-determining factors on the Y-chromosome, though the actual genes remained unknown. Here, we report identification and functional analysis of the putative sex-determining gene in S. latifolia, corresponding to the gynoecium suppression factor (GSF). We demonstrate that GSF likely corresponds to a Y-linked CLV3-like gene that is specifically expressed in early male flower buds and encodes the protein that suppresses gynoecium development in S. latifolia. Interestingly, GSFY has a dysfunctional X-linked homolog (GSFX) and their synonymous divergence (dS = 17.9%) is consistent with the age of sex chromosomes in this species. We propose that female development in S. latifolia is controlled via the WUSCHEL-CLAVATA feedback loop, with the X-linked WUSCHEL-like and Y-linked CLV3-like genes, respectively. Evolution of dioecy in the S. latifolia ancestor likely involved inclusion of ancestral GSFY into the nonrecombining region on the nascent Y-chromosome and GSFX loss of function, which resulted in disbalance of the WUSCHEL-CLAVATA feedback loop between the sexes and ensured gynoecium suppression in males.  相似文献   

5.
    
Unisexual flowers have evolved repeatedly in the angiosperms. In Poaceae, multiple transitions from bisexual to unisexual flowers are hypothesized. There appear to be at least three distinct developmental mechanisms for unisexual flower formation as found in members of three subfamilies (Ehrhartoideae, Panicoideae, Pharoideae). In this study, unisexual flower development is described for the first time in subfamily Chloridoideae, as exemplified by Bouteloua dimorpha. Scanning electron microscopy (SEM) and anatomy were used to characterize the development of male (staminate) and female (pistillate) flowers, spikelets, and inflorescences. We found the developmental pathway for staminate flowers in B. dimorpha to be distinct from that described in the other three subfamilies, showing gynoecial arrest occurs at a different stage with possible loss of some cellular contents. However, pistillate flowers of B. dimorpha had some similarity to those described in other unisexual-flowered grasses, with filament and anther differentiation in abortive stamens. Comparing our findings with previous reports, unisexual flowers seem to have evolved independently in the four examined grass subfamilies. This analysis suggests the action of different genetic mechanisms, which are consistent with previous observations that floral unisexuality is a homoplasious condition in angiosperms.  相似文献   

6.
* Here, we evaluate the role of pollen limitation and selfing in the maintenance of labile sex expression in subdioecious plant species. * We used a literature survey to explore which factors correlated with a significant occurrence of hermaphrodites in dioecious species. We developed models to explore the selective maintenance of labile sex expression. The models had similar ecological assumptions but differed in the genetic basis of sex lability. * We found that a significant frequency of hermaphrodites was associated with animal pollination, and that hermaphrodites were 'inconstant' males with perfect flowers, suggesting evolution through the gynodioecious pathway. Models showed that a modifier converting pure males into inconstant males could be maintained under a wide range of reduction in both male and female fitness. Pollen limitation and self-fertilization facilitated invasion of the modifier. Depending on the genetics of sex determination, we found pure dioecy, stable subdioecy (trioecy), and situations where inconstant males coexisted with either pure females or pure males. Under selfing and pollen limitation, certain conditions selected for inconstant males which will drive populations to extinction. * We discuss our results in relation to the evolution towards, and the breakdown of, dioecy, and the ecological and evolutionary implications of labile sex expression.  相似文献   

7.
    
Dioecy, the presence of separate sexes on distinct individuals, has evolved repeatedly in multiple plant lineages. However, the specific mechanisms by which sex systems evolve and their commonalities among plant species remain poorly understood. With both XY and ZW sex systems, the family Salicaceae provides a system to uncover the evolutionary forces driving sex chromosome turnovers. In this study, we performed a genome-wide association study to characterize sex determination in two Populus species, P. euphratica and P. alba. Our results reveal an XY system of sex determination on chromosome 14 of P. euphratica, and a ZW system on chromosome 19 of P. alba. We further assembled the corresponding sex-determination regions, and found that their sex chromosome turnovers may be driven by the repeated translocations of a Helitron-like transposon. During the translocation, this factor may have captured partial or intact sequences that are orthologous to a type-A cytokinin response regulator gene. Based on results from this and other recently published studies, we hypothesize that this gene may act as a master regulator of sex determination for the entire family. We propose a general model to explain how the XY and ZW sex systems in this family can be determined by the same RR gene. Our study provides new insights into the diversification of incipient sex chromosomes in flowering plants by showing how transposition and rearrangement of a single gene can control sex in both XY and ZW systems.  相似文献   

8.
9.
    
Dissecting the genetic mechanisms underlying dioecy (i.e., separate female and male individuals) is critical for understanding the evolution of this pervasive reproductive strategy. Nonetheless, the genetic basis of sex determination remains unclear in many cases, especially in systems where dioecy has arisen recently. Within the economically important plant genus Solanum (∼2,000 species), dioecy is thought to have evolved independently at least 4 times across roughly 20 species. Here, we generate the first genome sequence of a dioecious Solanum and use it to ascertain the genetic basis of sex determination in this species. We de novo assembled and annotated the genome of Solanum appendiculatum (assembly size: ∼750 Mb scaffold N50: 0.92 Mb; ∼35,000 genes), identified sex-specific sequences and their locations in the genome, and inferred that males in this species are the heterogametic sex. We also analyzed gene expression patterns in floral tissues of males and females, finding approximately 100 genes that are differentially expressed between the sexes. These analyses, together with observed patterns of gene-family evolution specific to S. appendiculatum, consistently implicate a suite of genes from the regulatory network controlling pectin degradation and modification in the expression of sex. Furthermore, the genome of a species with a relatively young sex-determination system provides the foundational resources for future studies on the independent evolution of dioecy in this clade.  相似文献   

10.
    
Ovule development, megasporogenesis, and megagametogenesis were studied in six cryptically dioecious species of Consolea. All species showed uniform development typical for the Opuntioideae. Ovule development proceeds acropetally, but shows developmental asynchrony across floral morphs. At anthesis, female morph ovules are functional and available for fertilization, whereas staminate flower ovules are senescing and incapable of being fertilized. In occasional plants of some species, staminate flowers may reach anthesis with a few functional apical ovules capable of seed formation. Such plants are described as inconstant/leaky males. Ovule fertility differences across morphs are interpreted as resulting from heterochronic ovule development and senescence, although variation in embryo sac longevity cannot be ruled out. Significantly, ovule abortion follows a common pattern and timing in staminate flowers of both male morphs in all species. Thus, on the basis of this uniformity, a common origin for the cryptically dioecious breeding system in Consolea is hypothesized. Furthermore, staminate expression in Consolea appears to be controlled by a common, genetically determined heterochronic ovule developmental programme affecting the relative timing of ovule receptivity and flower opening. This is the first report of heterochrony as a mechanism of male sex determination.  © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society , 2008, 156 , 305–326.  相似文献   

11.
    
A unique feature of sex in Crassostrea oysters is the coexistence of protandric sex change, dioecy, and hermaphroditism. To determine whether such a system is genetically controlled, we analyzed sex ratios in 86 pair-mated families of the Pacific oyster, Crassostrea gigas Thunberg. The overall female ratios of one-, two-, and three-year-old oysters were 37%, 55%, and 75%, respectively, suggesting that a significant proportion of oysters matured first as males and changed to females in later years. Detailed analysis of sex ratios in factorial and nested crosses revealed significant paternal effects, which corresponded to two types of sires. No major maternal effects on sex were observed. Major genetic control of sex was further indicated by the distribution of family sex ratios in two to four apparently discreet groups. These and other data from the literature are compatible with a single-locus model of primary sex determination with a dominant male allele (M) and a protandric female allele (F), so that MF are true males and FF are protandric females that are capable of sex change. The rate of sex change of FF individuals may be influenced by secondary genes and/or environmental factors. Strong maternal and weak paternal effects on sexual maturation or time of spawning were also suggested.  相似文献   

12.
三种模式植物性别决定的研究进展(综述)   总被引:1,自引:0,他引:1  
综述白麦瓶草、玉米和黄瓜等模式植物性别决定的研究进展,并展望今后研究方向。  相似文献   

13.
Dioecy is unusually common in the Hawaiian Islands, yet little is known about the evolutionary biology of this breeding system. A native shrub, Wikstroemia, has an unusually diverse array of breeding systems: two forms of dioecy, cryptic and morphological dioecy, as well as hermaphroditism (perfect flowers). The existence of two forms of dioecy is significant for three reasons: 1) the presence of cryptic unisexuals that are functionally unisexual, but retain the appearance of hermaphroditism in both sexes, is strong evidence for the ancestral status of hermaphroditism; 2) the production of nonfunctional pollen, by female cryptic unisexuals, is a new instance of a phenomenon which has previously been reported for a few other species; 3) the two forms of dioecy are morphological markers which are useful in hybridization studies for tracing the genetic basis of their inheritance. Crosses were made between cryptically unisexual individuals (C), between morphologically unisexual individuals (M), and between the two types of unisexuality. The offspring of crosses between individuals with the same sex type usually resulted in offspring with that sex type, but most of the progeny of between-sex type crosses were, unexpectedly, perfect-flowered hermaphrodites. These results show that genetic control of sex determination is not homologous in all populations, suggesting that dioecy has evolved at least twice in Hawaiian Wikstroemia. The genetic data further suggest that males are the heterozygous sex.  相似文献   

14.
15.
开花植物具有多样性的生殖系统,其中单性花的形成是促进异交、避免自交衰退、保持遗传多样性的重要途径。单性花物种分布于被子植物不同进化分支上的事实表明,物种的雌雄异花性可能是通过不同的机制进化形成的。本文从花发育、性染色体、植物激素和环境因素四个方面,阐述了被子植物性别分化调控机制的研究进展。  相似文献   

16.
    
Unisexual vertebrates typically form through hybridization events between sexual species in which reproductive mode transitions occur in the hybrid offspring. This evolutionary history is thought to have important consequences for the ecology of unisexual lineages and their interactions with congeners in natural communities. However, these consequences have proven challenging to study owing to uncertainty about patterns of population genetic diversity in unisexual lineages. Of particular interest is resolving the contribution of historical hybridization events versus post formational mutation to patterns of genetic diversity in nature. Here we use restriction site associated DNA genotyping to evaluate genetic diversity and demographic history in Aspidoscelis laredoensis, a diploid unisexual lizard species from the vicinity of the Rio Grande River in southern Texas and northern Mexico. The sexual progenitor species from which one or more lineages are derived also occur in the Rio Grande Valley region, although patterns of distribution across individual sites are quite variable. Results from population genetic and phylogenetic analyses resolved the major axes of genetic variation in this species and highlight how these match predictions based on historical patterns of hybridization. We also found discordance between results of demographic modelling using different statistical approaches with the genomic data. We discuss these insights within the context of the ecological and evolutionary mechanisms that generate and maintain lineage diversity in unisexual species. As one of the most dynamic, intriguing, and geographically well investigated groups of whiptail lizards, these species hold substantial promise for future studies on the constraints of diversification in unisexual vertebrates.  相似文献   

17.
    
Understanding the driving forces and molecular processes underlying dioecy and sex chromosome evolution, leading from hermaphroditism to the occurrence of male and female individuals, is of considerable interest in fundamental and applied research. The genus Phoenix, belonging to the Arecaceae family, consists uniquely of dioecious species. Phylogenetic data suggest that the genus Phoenix has diverged from a hermaphroditic ancestor which is also shared with its closest relatives. We have investigated the cessation of recombination in the sex‐determination region within the genus Phoenix as a whole by extending the analysis of Pdactylifera SSR sex‐related loci to eight other species within the genus. Phylogenetic analysis of a date palm sex‐linked PdMYB1 gene in these species has revealed that sex‐linked alleles have not clustered in a species‐dependent way but rather in X and Y‐allele clusters. Our data show that sex chromosomes evolved from a common autosomal origin before the diversification of the extant dioecious species.  相似文献   

18.
  总被引:3,自引:0,他引:3  
Documenting the floral biology and breeding system of species throughout the Rubiaceae family provides data on the number of times heterostyly and dioecy may have evolved in this large family. The objectives of this paper are to quantify (a) whether Chassalia corallioides , a small tree endemic to La Reunion Island in the Indian Ocean, is another example of the evolution of dioecy from distyly and (b) whether reproductive traits linked to male and female function vary over the ecological distribution of this species. Quantification of pollen production and fruit set following controlled and natural pollinations demonstrate that this species is dioecious. Male flowers have longer corolla tubes than female flowers. Female flowers have long styles with stigmas placed above the anthers whereas males have short styles with stigmas placed below the anthers. Stigmas and anthers are reciprocally placed in each morph, illustrating that the species is morphologically heterostylous. Both fecundity and flower size are negatively correlated with altitude. In male plants, corollas are shorter and wider and anthers are placed closer to the mouth of the corolla tube with increasing altitude. Male plants flowered more often than female plants, the likely cause of the male biased sex ratio in each of the two years studied. The evolution of dioecy in relation to the island biogeography of the region and the diversification of the genus Chassalia is discussed.  相似文献   

19.
  总被引:2,自引:0,他引:2  
Floral organ identity B class genes are generally recognized as being required for development of petals and stamens in angiosperm flowers. Spinach flowers are distinguished in their complete absence of petals in both sexes, and the absence of a developed stamen whorl in female flowers. As such, we hypothesized that differential expression of B class floral identity genes is integral to the sexual dimorphism in spinach flowers. We isolated two spinach orthologs of Arabidopsis B class genes by 3 and 5 RACE. Homology assignments were tested by comparisons of percent amino acid identities, searches for diagnostic consensus amino acid residues, conserved motifs, and phylogenetic groupings. In situ hybridization studies demonstrate that both spinach B class genes are expressed throughout the male floral meristem in early stages, and continue to be expressed in sepal primordia in reduced amounts at later stages of development. They are also highly expressed in the third whorl primordia when they arise and continue to be expressed in these tissues through the development of mature anthers. In contrast, neither gene can be detected in any stage in female flowers by in situ analyses, although northern blot experiments indicate low levels of SpAP3 within the inflorescence. The early, strong expressions of both B class floral identity genes in male floral primordia and their absence in female flowers demonstrate that B class gene expression precedes the origination of third whorl primordia (stamen) in males and is associated with the establishment of sexual floral dimorphism as it initiates in the first (sepal) whorl. These observations suggest that regulation of B class floral identity genes has a role in the development of sexual dimorphism and dioecy in spinach rather than being a secondary result of organ abortion.Electronic Supplementary Material Supplementary material is available for this article at Edited by G. Jürgens  相似文献   

20.
人类性别决定和性别分化研究进展   总被引:3,自引:0,他引:3  
SRY基因在人类性别分化中起着关键作用,目前研究认为SRY仅是涉及性别决定过程的基因之一,其他基因和SRY相关基因SOX9,抗副中肾激素基因AMH,编码缁类因子的基因SF1,X-连锁的DAX基因,wilm‘s肿瘤抑制基因WT1等基因都参与了人类性腺分化和发育,本文拟就人类性别决定基因的研究进展及其与人类性别分化的关系作一综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号