首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NADH-ubiquinone oxidoreductase (Complex I, EC 1.6.5.3) is the largest complex of the mitochondrial respiratory chain. In eukaryotes, it is composed of more than 40 subunits that are encoded by both the nuclear and mitochondrial genomes. Plant Complex I differs from the enzyme described in other eukaryotes, most notably due to the large number of plant-specific subunits in the membrane arm of the complex. The elucidation of the assembly pathway of Complex I has been a long-standing research aim in cellular biochemistry. We report the study of Arabidopsis mutants in Complex I subunits using a combination of Blue-Native PAGE and immunodetection to identify stable subcomplexes containing Complex I components, along with mass spectrometry analysis of Complex I components in membrane fractions and two-dimensional diagonal Tricine SDS-PAGE to study the composition of the largest subcomplex. Four subcomplexes of the membrane arm of Complex I with apparent molecular masses of 200, 400, 450, and 650 kDa were observed. We propose a working model for the assembly of the membrane arm of Complex I in plants and assign putative roles during the assembly process for two of the subunits studied.  相似文献   

2.
The mitochondrial respiratory chain consists of multi-subunit protein complexes embedded in the inner membrane. Although the majority of subunits are encoded by nuclear genes and are imported into mitochondria, 13 subunits in humans are encoded by mitochondrial DNA. The coordinated assembly of subunits encoded from two genomes is a poorly understood process, with assembly pathway defects being a major determinant in mitochondrial disease. In this study, we monitored the assembly of human respiratory complexes using radiolabeled, mitochondrially encoded subunits in conjunction with Blue Native polyacrylamide gel electrophoresis. The efficiency of assembly was found to differ markedly between complexes, and intermediate complexes containing newly synthesized mitochondrial DNA-encoded subunits could be observed for complexes I, III, and IV. In particular, we detected human cytochrome b as a monomer and as a component of a novel approximately 120 kDa intermediate complex at early chase times before being totally assembled into mature complex III. Furthermore, we show that this approach is highly suited for the rapid detection of respiratory complex assembly defects in fibroblasts from patients with mitochondrial disease and, thus, has potential diagnostic applications.  相似文献   

3.
NADH:ubiquinone oxidoreductase, the respiratory chain complex I of mitochondria, is an assembly of some 25 nuclear-encoded and 7 mitochondrially encoded subunits. The complex has an overall L-shaped structure formed by a peripheral arm and an elongated membrane arm. The peripheral arm containing one FMN and at least three iron-sulphur clusters constitutes the NADH dehydrogenase segment of the electron pathway. The membrane arm with at least one iron-sulphur cluster constitutes the ubiquinone reducing segment. We are studying the assembly of the complex in Neurospora crassa. By disrupting the gene of a nuclear-encoded subunit of the membrane arm a mutant was generated that cannot form complex I. The mutant rather pre-assembles the peripheral arm with all redox groups and the ability to catalyse NADH oxidation by artificial electron acceptors. The final assembly of the membrane arm is blocked in the mutant leading to accumulation of complementary assembly intermediates. One intermediate is associated with a protein that is not present in the fully assembled complex I. The results demonstrate that the two arms of complex I are assembled independently on separate pathways, and gave a first insight into the assembly pathway of the membrane arm. It is also shown for the first time that the obligate aerobic fungus N. crassa can grow and respire without an intact complex I. Gene replacement in this fungus is therefore a tool for investigation of this complex.  相似文献   

4.
The oxidative phosphorylation process is dependent on the assembly of both the respiratory chain that generates the electrochemical potential of the mitochondrial inner membrane and the ATP synthase complex which uses this membrane potential to drive ATP synthesis. The five respiratory enzymes involved in this process, complexes I to V, are composed of multiple subunits, some of which are synthesized on mitochondrial ribosomes, whereas others are a product of the nucleocytoplasmic genetic system. The mitochondrial genome has a limited coding capacity and the co-ordinate expression of all the subunits forming these complexes has been shown to be under nuclear control. Present knowledge of complexes I to V mainly comes from studies of bovine and fungal mitochondria. If beef heart mitochondria represent a choice material for studying the composition and structure of these complexes, Saccharomyces cerevisiae and Neurospora crassa and their numerous respiratory mutants, are ideal organisms for investigating the co-ordination of nuclear and mitochondrial genomes in their assembly. The major reason for the interest in respiratory complexes and ATP synthase from the mitochondrial inner membrane in Homo sapiens and in higher plants is the relationship between enzyme deficiencies and human diseases and ageing on one hand, and such plant phenotypic abnormalities as cytoplasmic male sterility on the other.  相似文献   

5.
Complex I (NADH:ubiquinone oxidoreductase) is the largest multimeric enzyme complex of the mitochondrial respiratory chain, which is responsible for electron transport and the generation of a proton gradient across the mitochondrial inner membrane to drive ATP production. Eukaryotic complex I consists of 14 conserved subunits, which are homologous to the bacterial subunits, and more than 26 accessory subunits. In mammals, complex I consists of 45 subunits, which must be assembled correctly to form the properly functioning mature complex. Complex I dysfunction is the most common oxidative phosphorylation (OXPHOS) disorder in humans and defects in the complex I assembly process are often observed. This assembly process has been difficult to characterize because of its large size, the lack of a high resolution structure for complex I, and its dual control by nuclear and mitochondrial DNA. However, in recent years, some of the atomic structure of the complex has been resolved and new insights into complex I assembly have been generated. Furthermore, a number of proteins have been identified as assembly factors for complex I biogenesis and many patients carrying mutations in genes associated with complex I deficiency and mitochondrial diseases have been discovered. Here, we review the current knowledge of the eukaryotic complex I assembly process and new insights from the identification of novel assembly factors. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.  相似文献   

6.
电子传递链亦称呼吸链,由位于线粒体内膜的I、II、III、IV 4种复合物组成,负责电子传递和产生质子梯度。电子主要从复合物I进入电子传递链,经复合物III传递至复合物IV。电子传递系统的组装是一个十分复杂的过程,目前已知主要有约69个结构亚基以及至少16个组装因子参与了人类复合物I、III、IV的组装,这些蛋白质由核基因组与线粒体基因组共同编码。对线粒体电子传递系统的蛋白质组成及其结构已研究得较为清楚,但对它们的组装了解得还比较初步。许多人类线粒体疾病是由于电子传递系统的功能障碍引起的,其中又有许多是由于该系统中一个或多个部件的错误组装引起的。研究这些缺陷不仅能够加深对线粒体疾病发病机理的了解,也有助于揭示线粒体功能的调控机制。将着重对电子传递系统复合物的组装及其与人类疾病关系的研究进展进行综述。  相似文献   

7.
Mourier A  Larsson NG 《PLoS biology》2011,9(8):e1001129
Mitochondria are the structures that produce the bulk part of the cellular energy currency ATP, which drives numerous energy requiring processes in the cell. This process involves a series of large enzyme complexes--the respiratory chain--that couples the transfer of electrons to the creation of a concentration gradient of protons across the inner mitochondrial membrane, which drives ATP synthesis. Complex I (or NADH-quinone oxidoreductase) is the largest and by far the most complicated of the respiratory chain enzyme complexes. The molecular mechanism whereby it couples electron transfer to proton extrusion has remained mysterious until very recently. Low-resolution X-ray structures of complex I have, surprisingly, suggested that electron transfer in the hydrophilic arm, protruding into the mitochondrial matrix, causes movement of a coupling rod that influences three putative proton pumps within the hydrophobic arm embedded in the inner mitochondrial membrane. In this Primer, we will briefly introduce the recent progress made in this area and highlight the road ahead that likely will unravel the detailed molecular mechanisms of complex I function.  相似文献   

8.
Proteins specifically involved in the biogenesis of respiratory complex I in eukaryotes have been characterized. The complex I intermediate associated proteins CIA30 and CIA84 are tightly bound to an assembly intermediate of the membrane arm. Like chaperones, they are involved in multiple rounds of membrane arm assembly without being part of the mature structure. Two biosynthetic subunits of eukaryotic complex I have been characterized. The acyl carrier subunit is needed for proper assembly of the peripheral arm as well as the membrane arm of complex I. It may interact with enzymes of a mitochondrial fatty acid synthetase. The 39/40-kDa subunit appears to be an isomerase with a tightly bound NADPH. It is related to a protein family of reductases/isomerases. Both subunits have been discussed to be involved in the synthesis of a postulated, novel, high-potential redox group.  相似文献   

9.
Mitochondrial NADH-ubiquinone oxidoreductase (complex I) is the largest enzyme of the oxidative phosphorylation system, with subunits located at the matrix and membrane domains. In plants, holocomplex I is composed of more than 40 subunits, 9 of which are encoded by the mitochondrial genome (NAD subunits). In Nicotiana sylvestris, a minor 800-kDa subcomplex containing subunits of both domains and displaying NADH dehydrogenase activity is detectable. The NMS1 mutant lacking the membrane arm NAD4 subunit and the CMSII mutant lacking the peripheral NAD7 subunit are both devoid of the holoenzyme. In contrast to CMSII, the 800-kDa subcomplex is present in NMS1 mitochondria, indicating that it could represent an assembly intermediate lacking the distal part of the membrane arm. L-galactono-1,4-lactone dehydrogenase (GLDH), the last enzyme in the plant ascorbate biosynthesis pathway, is associated with the 800-kDa subcomplex but not with the holocomplex. To investigate possible relationships between GLDH and complex I assembly, we characterized an Arabidopsis thaliana gldh insertion mutant. Homozygous gldh mutant plants were not viable in the absence of ascorbate supplementation. Analysis of crude membrane extracts by blue native and two-dimensional SDS-PAGE showed that complex I accumulation was strongly prevented in leaves and roots of Atgldh plants, whereas other respiratory complexes were found in normal amounts. Our results demonstrate the role of plant GLDH in both ascorbate biosynthesis and complex I accumulation.  相似文献   

10.
With more than 40 subunits, one FMN co-factor and eight FeS clusters, complex I or NADH:ubiquinone oxidoreductase is the largest multimeric respiratory enzyme in the mitochondria. In this review, we focus on the diversity of eukaryotic complex I. We describe the additional activities that have been reported to be associated with mitochondrial complex I and discuss their physiological significance. The recent identification of complex I-like enzymes in the hydrogenosome, a mitochondria-derived organelle is also discussed here. Complex I assembly in the mitochondrial inner membrane is an intricate process that requires the cooperation of the nuclear and mitochondrial genomes. The most prevalent forms of mitochondrial dysfunction in humans are deficiencies in complex I and remarkably, the molecular basis for 60% of complex I-linked defects is currently unknown. This suggests that mutations in yet-to-be-discovered assembly genes should exist. We review the different experimental systems for the study of complex I assembly. To our knowledge, in none of them, large screenings of complex I mutants have been performed. We propose that the unicellular green alga Chlamydomonas reinhardtii is a promising system for such a study. Complex I mutants can be easily scored on a phenotypical basis and a large number of transformants generated by insertional mutagenesis can be screened, which opens the possibility to find new genes involved in the assembly of the enzyme. Moreover, mitochondrial transformation, a recent technological advance, is now available, allowing the manipulation of all five complex I mitochondrial genes in this organism.  相似文献   

11.
Complex I (NADH:ubiquinone oxidoreductase) is the first and largest multimeric complex of the mitochondrial respiratory chain. Human complex I comprises seven subunits encoded by mitochondrial DNA and 38 nuclear-encoded subunits that are assembled together in a process that is only partially understood. To date, mutations causing complex I deficiency have been described in all 14 core subunits, five supernumerary subunits, and four assembly factors. We describe complex I deficiency caused by mutation of the putative complex I assembly factor C20orf7. A candidate region for a lethal neonatal form of complex I deficiency was identified by homozygosity mapping of an Egyptian family with one affected child and two affected pregnancies predicted by enzyme-based prenatal diagnosis. The region was confirmed by microcell-mediated chromosome transfer, and 11 candidate genes encoding potential mitochondrial proteins were sequenced. A homozygous missense mutation in C20orf7 segregated with disease in the family. We show that C20orf7 is peripherally associated with the matrix face of the mitochondrial inner membrane and that silencing its expression with RNAi decreases complex I activity. C20orf7 patient fibroblasts showed an almost complete absence of complex I holoenzyme and were defective at an early stage of complex I assembly, but in a manner distinct from the assembly defects caused by mutations in the assembly factor NDUFAF1. Our results indicate that C20orf7 is crucial in the assembly of complex I and that mutations in C20orf7 cause mitochondrial disease.  相似文献   

12.
13.
L-galactono-1,4-lactone dehydrogenase (GLDH) catalyzes the terminal step of the Smirnoff-Wheeler pathway for vitamin C (l-ascorbate) biosynthesis in plants. A GLDH in gel activity assay was developed to biochemically investigate GLDH localization in plant mitochondria. It previously has been shown that GLDH forms part of an 850-kDa complex that represents a minor form of the respiratory NADH dehydrogenase complex (complex I). Because accumulation of complex I is disturbed in the absence of GLDH, a role of this enzyme in complex I assembly has been proposed. Here we report that GLDH is associated with two further protein complexes. Using native gel electrophoresis procedures in combination with the in gel GLDH activity assay and immunoblotting, two mitochondrial complexes of 470 and 420 kDa were identified. Both complexes are of very low abundance. Protein identifications by mass spectrometry revealed that they include subunits of complex I. Finally, the 850-kDa complex was further investigated and shown to include the complete "peripheral arm" of complex I. GLDH is attached to a membrane domain, which represents a major fragment of the "membrane arm" of complex I. Taken together, our data further support a role of GLDH during complex I formation, which is based on its binding to specific assembly intermediates.  相似文献   

14.
《BBA》2020,1861(8):148202
Protein complexes from the oxidative phosphorylation (OXPHOS) system are assembled with the help of proteins called assembly factors. We here delineate the function of the inner mitochondrial membrane protein TMEM70, in which mutations have been linked to OXPHOS deficiencies, using a combination of BioID, complexome profiling and coevolution analyses. TMEM70 interacts with complex I and V and for both complexes the loss of TMEM70 results in the accumulation of an assembly intermediate followed by a reduction of the next assembly intermediate in the pathway. This indicates that TMEM70 has a role in the stability of membrane-bound subassemblies or in the membrane recruitment of subunits into the forming complex. Independent evidence for a role of TMEM70 in OXPHOS assembly comes from evolutionary analyses. The TMEM70/TMEM186/TMEM223 protein family, of which we show that TMEM186 and TMEM223 are mitochondrial in human as well, only occurs in species with OXPHOS complexes. Our results validate the use of combining complexome profiling with BioID and evolutionary analyses in elucidating congenital defects in protein complex assembly.  相似文献   

15.

Background

The quaternary structure of eukaryotic NADH:ubiquinone oxidoreductase (complex I), the largest complex of the oxidative phosphorylation, is still mostly unresolved. Furthermore, it is unknown where transiently bound assembly factors interact with complex I. We therefore asked whether the evolution of complex I contains information about its 3D topology and the binding positions of its assembly factors. We approached these questions by correlating the evolutionary rates of eukaryotic complex I subunits using the mirror-tree method and mapping the results into a 3D representation by multidimensional scaling.

Results

More than 60% of the evolutionary correlation among the conserved seven subunits of the complex I matrix arm can be explained by the physical distance between the subunits. The three-dimensional evolutionary model of the eukaryotic conserved matrix arm has a striking similarity to the matrix arm quaternary structure in the bacterium Thermus thermophilus (rmsd=19 ?) and supports the previous finding that in eukaryotes the N-module is turned relative to the Q-module when compared to bacteria. By contrast, the evolutionary rates contained little information about the structure of the membrane arm. A large evolutionary model of 45 subunits and assembly factors allows to predict subunit positions and interactions (rmsd = 52.6 ?). The model supports an interaction of NDUFAF3, C8orf38 and C2orf56 during the assembly of the proximal matrix arm and the membrane arm. The model further suggests a tight relationship between the assembly factor NUBPL and NDUFA2, which both have been linked to iron-sulfur cluster assembly, as well as between NDUFA12 and its paralog, the assembly factor NDUFAF2.

Conclusions

The physical distance between subunits of complex I is a major correlate of the rate of protein evolution in the complex I matrix arm and is sufficient to infer parts of the complex??s structure with high accuracy. The resulting evolutionary model predicts the positions of a number of subunits and assembly factors.  相似文献   

16.
The respiratory chain of the mitochondrial inner membrane includes a proton-pumping enzyme, complex I, which catalyses electron transfer from NADH to ubiquinone. This electron pathway occurs through a series of protein-bound prosthetic groups, FMN and around eight iron-sulfur clusters. The high number of polypeptide subunits of mitochondrial complex I, around 40, have a dual genetic origin. Neurospora crassa has been a useful genetic model to characterise complex I. The characterisation of mutants in specific proteins helped to understand the elaborate processes of the biogenesis, structure and function of the oligomeric enzyme. In the fungus, complex I seems to be dispensable for vegetative growth but required for sexual development. N. crassa mitochondria also contain three to four nonproton-pumping alternative NAD(P)H dehydrogenases. One of them is located in the outer face of the inner mitochondrial membrane, working as a calcium-dependent oxidase of cytosolic NADPH.  相似文献   

17.
Complex I (CI) of the electron transport chain, a large membrane-embedded NADH dehydrogenase, couples electron transfer to the release of protons into the mitochondrial inner membrane space to promote ATP production through ATP synthase. In addition to being a central conduit for ATP production, CI activity has been linked to neurodegenerative disorders, including Parkinson''s disease. CI is built in a stepwise fashion through the actions of several assembly factors. We employed interaction proteomics to interrogate the molecular associations of 15 core subunits and assembly factors previously linked to human CI deficiency, resulting in a network of 101 proteins and 335 interactions (edges). TIMMDC1, a predicted 4-pass membrane protein, reciprocally associated with multiple members of the MCIA CI assembly factor complex and core CI subunits and was localized in the mitochondrial inner membrane, and its depletion resulted in reduced CI activity and cellular respiration. Quantitative proteomics demonstrated a role for TIMMDC1 in assembly of membrane-embedded and soluble arms of the complex. This study defines a new membrane-embedded CI assembly factor and provides a resource for further analysis of CI biology.  相似文献   

18.
The TIM17:23 complex on the mitochondrial inner membrane is responsible for import of the majority of mitochondrial proteins in plants. In Arabidopsis, Tim17 and Tim23 belong to a large gene family consisting of 16 members termed the Preprotein and Amino acid transporters (PRAT). Recently, two members of this protein family, Tim23-2 and the Complex I subunit B14.7, have been shown to assemble into both Complex I of the respiratory chain and the TIM17:23 complex (Wang et al., 2012), adding to other examples of links between respiratory and protein import complexes. These associations provide a mechanism to coordinate mitochondrial activity and biogenesis.  相似文献   

19.
The mitochondrial inner membrane contains different translocator systems for the import of presequence-carrying proteins and carrier proteins. The translocator assembly and maintenance protein 41 (Tam41/mitochondrial matrix protein 37) was identified as a new member of the mitochondrial protein translocator systems by its role in maintaining the integrity and activity of the presequence translocase of the inner membrane (TIM23 complex). Here we demonstrate that the assembly of proteins imported by the carrier translocase, TIM22 complex, is even more strongly affected by the lack of Tam41. Moreover, respiratory chain supercomplexes and the inner membrane potential are impaired by lack of Tam41. The phenotype of Tam41-deficient mitochondria thus resembles that of mitochondria lacking cardiolipin. Indeed, we found that Tam41 is required for the biosynthesis of the dimeric phospholipid cardiolipin. The pleiotropic effects of the translocator maintenance protein on preprotein import and respiratory chain can be attributed to its role in biosynthesis of mitochondrial cardiolipin.  相似文献   

20.
Mitochondrial biogenesis utilizes a complex proteinaceous machinery for the import of cytosolically synthesized preproteins. At least three large multisubunit protein complexes, one in the outer membrane and two in the inner membrane, have been identified. These translocase complexes cooperate with soluble proteins from the cytosol, the intermembrane space and the matrix. The translocation of presequence-containing preproteins through the outer membrane channel includes successive electrostatic interactions of the charged mitochondrial targeting sequence with a chain of import components. Translocation across the inner mitochondrial membrane utilizes the energy of the proton motive force of the inner membrane and the hydrolysis of ATP. The matrix chaperone system of the mitochondrial heat shock protein 70 forms an ATP-dependent import motor by interaction with the polypeptide chain in transit and components of the inner membrane translocase. The precursors of integral inner membrane proteins of the metabolite carrier family interact with newly identified import components of the intermembrane space and are inserted into the inner membrane by a second translocase complex. A comparison of the full set of import components between the yeast Sacccharomyces cerevisiae and the nematode Caenorhabditis elegans demonstrates an evolutionary conservation of most components of the mitochondrial import machinery with a possible greater divergence for the import pathway of the inner membrane carrier proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号