首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Climatic dryness imposes limitations on vascular plant growth by reducing stomatal conductance, thereby decreasing CO2 uptake and transpiration. Given that transpiration‐driven water flow is required for nutrient uptake, climatic stress‐induced nutrient deficit could be a key mechanism for decreased plant performance under prolonged drought. We propose the existence of an “isohydric trap,” a dryness‐induced detrimental feedback leading to nutrient deficit and stoichiometry imbalance in strict isohydric species. We tested this framework in a common garden experiment with 840 individuals of four ecologically contrasting European pines (Pinus halepensis, P. nigra, P. sylvestris, and P. uncinata) at a site with high temperature and low soil water availability. We measured growth, survival, photochemical efficiency, stem water potentials, leaf isotopic composition (δ13C, δ18O), and nutrient concentrations (C, N, P, K, Zn, Cu). After 2 years, the Mediterranean species Pinus halepensis showed lower δ18O and higher δ13C values than the other species, indicating higher time‐integrated transpiration and water‐use efficiency (WUE), along with lower predawn and midday water potentials, higher photochemical efficiency, higher leaf P, and K concentrations, more balanced N:P and N:K ratios, and much greater dry‐biomass (up to 63‐fold) and survival (100%). Conversely, the more mesic mountain pine species showed higher leaf δ18O and lower δ13C, indicating lower transpiration and WUE, higher water potentials, severe P and K deficiencies and N:P and N:K imbalances, and poorer photochemical efficiency, growth, and survival. These results support our hypothesis that vascular plant species with tight stomatal regulation of transpiration can become trapped in a feedback cycle of nutrient deficit and imbalance that exacerbates the detrimental impacts of climatic dryness on performance. This overlooked feedback mechanism may hamper the ability of isohydric species to respond to ongoing global change, by aggravating the interactive impacts of stoichiometric imbalance and water stress caused by anthropogenic N deposition and hotter droughts, respectively.  相似文献   

2.
Increasing biodiversity has been linked to higher primary productivity in terrestrial ecosystems. However, the underlying ecophysiological mechanisms remain poorly understood. We investigated the effects of surrounding species richness (monoculture, two‐ and four‐species mixtures) on the ecophysiology of Lithocarpus glaber seedlings in experimental plots in subtropical China. A natural rain event isotopically labelled both the water uptaken by the L. glaber seedlings and the carbon in new photoassimilates through changes of photosynthetic discrimination. We followed the labelled carbon (C) and oxygen (O) in the plant–soil–atmosphere continuum. We measured gas‐exchange variables (C assimilation, transpiration and above‐ and belowground respiration) and δ13C in leaf biomass, phloem, soil microbial biomass, leaf‐ and soil‐respired CO2 as well as δ18O in leaf and xylem water. The 13C signal in phloem and respired CO2 in L. glaber in monoculture lagged behind those in species mixture, showing a slower transport of new photoassimilates to and through the phloem in monoculture. Furthermore, leaf‐water 18O enrichment above the xylem water in L. glaber increased after the rain in lower diversity plots suggesting a lower ability to compensate for increased transpiration. Lithocarpus glaber in monoculture showed higher C assimilation rate and water‐use efficiency. However, these increased C resources did not translate in higher growth of L. glaber in monoculture suggesting the existence of larger nongrowth‐related C sinks in monoculture. These ecophysiological responses of L. glaber, in agreement with current understanding of phloem transport are consistent with a stronger competition for water resources in monoculture than in species mixtures. Therefore, increasing species diversity in the close vicinity of the studied plants appears to alleviate physiological stress induced by water competition and to counterbalance the negative effects of interspecific competition on assimilation rates for L. glaber by allowing a higher fraction of the C assimilated to be allocated to growth in species mixture than in monoculture.  相似文献   

3.
4.
Genetic selection for whole‐plant water use efficiency (yield per transpiration; WUEplant) in any crop‐breeding programme requires high‐throughput phenotyping of component traits of WUEplant such as intrinsic water use efficiency (WUEi; CO2 assimilation rate per stomatal conductance). Measuring WUEi by gas exchange measurements is laborious and time consuming and may not reflect an integrated WUEi over the life of the leaf. Alternatively, leaf carbon stable isotope composition (δ13Cleaf) has been suggested as a potential time‐integrated proxy for WUEi that may provide a tool to screen for WUEplant. However, a genetic link between δ13Cleaf and WUEplant in a C4 species has not been well established. Therefore, to determine if there is a genetic relationship in a C4 plant between δ13Cleaf and WUEplant under well watered and water‐limited growth conditions, a high‐throughput phenotyping facility was used to measure WUEplant in a recombinant inbred line (RIL) population created between the C4 grasses Setaria viridis and S. italica. Three quantitative trait loci (QTL) for δ13Cleaf were found and co‐localized with transpiration, biomass accumulation, and WUEplant. Additionally, WUEplant for each of the δ13Cleaf QTL allele classes was negatively correlated with δ13Cleaf, as would be predicted when WUEi influences WUEplant. These results demonstrate that δ13Cleaf is genetically linked to WUEplant, likely to be through their relationship with WUEi, and can be used as a high‐throughput proxy to screen for WUEplant in these C4 species.  相似文献   

5.
Natural selection driven by water availability has resulted in considerable variation for traits associated with drought tolerance and leaf‐level water‐use efficiency (WUE). In Arabidopsis, little is known about the variation of whole‐plant water use (PWU) and whole‐plant WUE (transpiration efficiency). To investigate the genetic basis of PWU, we developed a novel proxy trait by combining flowering time and rosette water use to estimate lifetime PWU. We validated its usefulness for large‐scale screening of mapping populations in a subset of ecotypes. This parameter subsequently facilitated the screening of water use and drought tolerance traits in a recombinant inbred line population derived from two Arabidopsis accessions with distinct water‐use strategies, namely, C24 (low PWU) and Col‐0 (high PWU). Subsequent quantitative trait loci mapping and validation through near‐isogenic lines identified two causal quantitative trait loci, which showed that a combination of weak and nonfunctional alleles of the FRIGIDA (FRI) and FLOWERING LOCUS C (FLC) genes substantially reduced plant water use due to their control of flowering time. Crucially, we observed that reducing flowering time and consequently water use did not penalize reproductive performance, as such water productivity (seed produced per unit of water transpired) improved. Natural polymorphisms of FRI and FLC have previously been elucidated as key determinants of natural variation in intrinsic WUE (δ13C). However, in the genetic backgrounds tested here, drought tolerance traits, stomatal conductance, δ13C. and rosette water use were independent of allelic variation at FRI and FLC, suggesting that flowering is critical in determining lifetime PWU but not always leaf‐level traits.  相似文献   

6.
Plant δ13C–temperature (δ‐T) relation has been established in many systems and is often used as paleotemperature transfer function. However, it is still unclear about the exact contributions of temperature variation to plant 13C discrimination because of covariation between temperature and precipitation (aridity), which reduces confidence in reconstruction of paleoclimate. In this study, we measured carbon isotope composition (δ13C) of 173 samples of C3 perennial herbs from 22 sites across a temperature gradient along the 400 mm isohyet in the farming‐pastoral zone of North China. The results showed that precipitation obviously affected the correlations of temperatures and foliar δ13C. After removing the influence of precipitation by analysis of covariance (ANCOVA), a more strongly positive relationship was obtained between site‐mean foliar δ13C and annual mean temperature (AMT), with a regression coefficient of 0.1636‰/°C (= .0024). For widespread species, Artemisia lavandulaefolia and Artemisia capillaries, the slopes (or coefficients) of foliar δ13C and AMT were significantly steeper (larger) than those of foliar δ13C and AMT where the precipitation influence was not excluded, whereas the δ‐T coefficients of Polygonum persicaria and Leymus chinensis showed little change across the transect after deducting the precipitation effect. Moreover, the positive relationship between temperature and δ13C over the transect could be explained by soil moisture availability related to temperature. Our results may afford new opportunities for investigating the nature of past climate variability.  相似文献   

7.
Wetland indicator status (WIS ) describes the habitat affinity of plant species and is used in wetland delineations and resource inventories. Understanding how species‐level functional traits vary across WIS categories may improve designations, elucidate mechanisms of adaptation, and explain habitat optima and niche. We investigated differences in species‐level traits of riparian flora across WIS categories, extending their application to indicate hydrologic habitat. We measured or compiled data on specific leaf area (SLA ), stem specific gravity (SSG ), seed mass, and mature height of 110 plant species that occur along the Colorado River in Grand Canyon, Arizona. Additionally, we measured leaf δ13C, δ15N, % carbon, % nitrogen, and C/N ratio of 56 species with C3 photosynthesis. We asked the following: (i) How do species‐level traits vary over WIS categories? (ii) Does the pattern differ between herbaceous and woody species? (iii) How well do multivariate traits define WIS categories? (iv) Which traits are correlated? The largest trait differences among WIS categories for herbaceous species occurred for SSG , seed mass, % leaf carbon and height, and for woody species occurred for height, SSG , and δ13C. SSG increased and height decreased with habitat aridity for both woody and herbaceous species. The δ13C and hence water use efficiency of woody species increased with habitat aridity. Water use efficiency of herbaceous species increased with habitat aridity via greater occurrence of C4 grasses. Multivariate trait assemblages differed among WIS categories. Over all species, SLA was correlated with height, δ13C, % leaf N, and C/N; height was correlated with SSG and % leaf C; SSG was correlated with % leaf C. Adaptations of both herbaceous and woody riparian species to wet, frequently inundated habitats include low‐density stem tissue. Adaptations to drier habitats in the riparian zone include short, high‐density cavitation‐resistant stem tissue, and high water use efficiency. The results enhance understanding about using traits to describe plant habitat in riparian systems.  相似文献   

8.
The carbon isotope discrimination (δ^13C) of leaves has been shown to be correlated with the transpiration efficiency of leaves in a wide range of species. This has led to δ^13C being used in breeding programs to select for improved transpiration efficiency. The correlation between δ^13C and transpiration efficiency was determined under well-watered conditions during the vegetative phase in six genotypes of lentil (Lens culinaris Medikus), six genotypes of chickpea (Cicerarietinum L.) and 10 cultivars of narrow-leafed lupin (Lupinus angustifolius L.). Biomass (dry matter) accumulation and water use (transpiration) varied among the genotypes in all three species and transpiration efficiency was 40% to 75% higher in the most efficient compared with the least efficient genotypes. However, δ^13C and transpiration efficiency were not significantly correlated in any of the species. This suggests that the δ^13C technique cannot be used in selection for transpiration efficiency in the three grain legumes (pulses) studied.  相似文献   

9.
Water stress and nitrogen (N) availability are the main constraints limiting yield in durum wheat (Triticum turgidum L. var. durum). This work investigates the combined effects of N source (ammonium–NH4+, nitrate–NO3 or a mixture of both–NH4+:NO3) and water availability (well‐watered vs. moderate water stress) on photosynthesis and water‐use efficiency in durum wheat (cv. Korifla) flag leaves grown under controlled conditions, using gas exchange, chlorophyll fluorescence and stable carbon isotope composition (δ13C). Under well‐watered conditions, NH4+‐grown plants had lower net assimilation rates (A) than those grown with the other two N forms. This effect was mainly due to lower stomatal conductance (gs). Under moderate water stress, differences among N forms were not significant, because water regime (WR) had a stronger effect on gs and A than did N source. Consistent with lower gs, δ13C and transpiration efficiency (TE) were the highest in NH4+ leaves in both water treatments. These results indicate higher water‐use efficiency in plants fertilized with NH4+ due to stomatal limitation on photosynthesis. Moreover, leaf δ13C is an adequate trait to assess differences in photosynthetic activity and water‐use efficiency caused by different N sources. Further, the effect of these growing conditions on the nitrogen isotope composition (δ15N) of flag leaves and roots was examined. Water stress increased leaf δ15N in all N forms. In addition, leaf δ15N increased as root N decreased and as leaf δ13C became less negative. Regardless of WR, the leaf δ15N of NO3‐grown plants was lowest. Based on stepwise and canonical discriminant analyses, we conclude that plant δ15N together with δ13C and other variables may reflect the conditions of N nutrition and water availability where the plants were grown. Thus well‐watered plants grown with NH4+:NO3 resembled those grown with NO3, whereas under water stress they were closer to plants grown with NH4+.  相似文献   

10.
11.
Drought‐induced tree mortality is occurring across all forested continents and is expected to increase worldwide during the coming century. Regional‐scale forest die‐off influences terrestrial albedo, carbon and water budgets, and land‐surface energy partitioning. Although increased temperatures during drought are widely identified as a critical contributor to exacerbated tree mortality associated with “global‐change‐type drought”, corresponding changes in vapor pressure deficit (D) have rarely been considered explicitly and have not been disaggregated from that of temperature per se. Here, we apply a detailed mechanistic soil–plant–atmosphere model to examine the impacts of drought, increased air temperature (+2°C or +5°C), and increased vapor pressure deficit (D; +1 kPa or +2.5 kPa), singly and in combination, on net primary productivity (NPP) and transpiration and forest responses, especially soil moisture content, leaf water potential, and stomatal conductance. We show that increased D exerts a larger detrimental effect on transpiration and NPP, than increased temperature alone, with or without the imposition of a 3‐month drought. Combined with drought, the effect of increased D on NPP was substantially larger than that of drought plus increased temperature. Thus, the number of days when NPP was zero across the 2‐year simulation was 13 or 14 days in the control and increased temperature scenarios, but increased to approximately 200 days when D was increased. Drought alone increased the number of days of zero NPP to 88, but drought plus increased temperature did not increase the number of days. In contrast, drought and increased D resulted in the number of days when NPP = 0 increasing to 235 (+1 kPa) or 304 days (+2.5 kPa). We conclude that correct identification of the causes of global change‐type mortality events requires explicit consideration of the influence of D as well as its interaction with drought and temperature.  相似文献   

12.
  1. Climate change is testing the resilience of forests worldwide pushing physiological tolerance to climatic extremes. Plant functional traits have been shown to be adapted to climate and have evolved patterns of trait correlations (similar patterns of distribution) and coordinations (mechanistic trade‐off). We predicted that traits would differentiate between populations associated with climatic gradients, suggestive of adaptive variation, and correlated traits would adapt to future climate scenarios in similar ways.
  2. We measured genetically determined trait variation and described patterns of correlation for seven traits: photochemical reflectance index (PRI), normalized difference vegetation index (NDVI), leaf size (LS), specific leaf area (SLA), δ13C (integrated water‐use efficiency, WUE), nitrogen concentration (NCONC), and wood density (WD). All measures were conducted in an experimental plantation on 960 trees sourced from 12 populations of a key forest canopy species in southwestern Australia.
  3. Significant differences were found between populations for all traits. Narrow‐sense heritability was significant for five traits (0.15–0.21), indicating that natural selection can drive differentiation; however, SLA (0.08) and PRI (0.11) were not significantly heritable. Generalized additive models predicted trait values across the landscape for current and future climatic conditions (>90% variance). The percent change differed markedly among traits between current and future predictions (differing as little as 1.5% (δ13C) or as much as 30% (PRI)). Some trait correlations were predicted to break down in the future (SLA:NCONC, δ13C:PRI, and NCONC:WD).
  4. Synthesis: Our results suggest that traits have contrasting genotypic patterns and will be subjected to different climate selection pressures, which may lower the working optimum for functional traits. Further, traits are independently associated with different climate factors, indicating that some trait correlations may be disrupted in the future. Genetic constraints and trait correlations may limit the ability for functional traits to adapt to climate change.
  相似文献   

13.
The combined use of a gas‐exchange system and laser‐based isotope measurement is a tool of growing interest in plant ecophysiological studies, owing to its relevance for assessing isotopic variability in leaf water and/or transpiration under non‐steady‐state (NSS) conditions. However, the current Farquhar & Cernusak (F&C) NSS leaf water model, originally developed for open‐field scenarios, is unsuited for use in a gas‐exchange cuvette environment where isotope composition of water vapour (δv) is intrinsically linked to that of transpiration (δE). Here, we modified the F&C model to make it directly compatible with the δv–δE dynamic characteristic of a typical cuvette setting. The resultant new model suggests a role of ‘net‐flux’ (rather than ‘gross‐flux’ as suggested by the original F&C model)‐based leaf water turnover rate in controlling the time constant (τ) for the approach to steady sate. The validity of the new model was subsequently confirmed in a cuvette experiment involving cotton leaves, for which we demonstrated close agreement between τ values predicted from the model and those measured from NSS variations in isotope enrichment of transpiration. Hence, we recommend that our new model be incorporated into future isotope studies involving a cuvette condition where the transpiration flux directly influences δv. There is an increasing popularity among plant ecophysiologists to use a gas‐exchange system coupled to laser‐based isotope measurement for investigating non‐steady state (NSS) isotopic variability in leaf water (and/or transpiration); however, the current Farquhar & Cernusak (F&C) NSS leaf water model is unsuited for use in a gas‐exchange cuvette environment due to its implicit assumption of isotope composition of water vapor (δv) being constant and independent of that of transpiration (δE). In the present study, we modified the F&C model to make it compatible with the dynamic relationship between δv and δE as is typically associated with a cuvette setting. Using an experiment conducted on cotton leaves, we show that the modified NSS model performed well in predicting the time constant for the exponential approach of leaf water toward steady state under cuvette conditions. Such a result demonstrates the applicability of this new model to gas‐exchange cuvette conditions where the transpiration flux directly influences δv, and therefore suggests the need to incorporate this model into future isotope studies that employ a laser‐cuvette coupled system.  相似文献   

14.
Plants depend upon both genetic differences and phenotypic plasticity to cope with environmental variation over different timescales. The spatial variation in foliar δ13C levels along a moisture gradient represents an overlay of genetic and plastic responses. We hypothesized that such a spatial variation would be more obvious than the variation arising purely from a plastic response to moisture change. Leymus chinensis and Stipa spp. were sampled from Inner Mongolia along a dry‐wet transect, and some of these species were transplanted to an area with a moisture gradient. For Stipa spp., the slope of foliar δ13C and mean annual precipitation along the transect was significantly steeper than that of foliar δ13C and mean annual precipitation after the watering treatment. For L. chinensis, there was a general decreasing trend in foliar δ13C under the different (increasing) watering levels; however, its populations showed an irregular relationship between foliar δ13C and moisture origin. Therefore, support for our hypothesis was obtained from Stipa spp., but not from L. chinensis.  相似文献   

15.
Human‐induced changes in atmospheric composition are expected to affect primary productivity across terrestrial biomes. Recent changes in productivity have been observed in many forest ecosystems, but low‐latitude upper tree line forests remain to be investigated. Here, we use dendrochronological methods and isotopic analysis to examine changes in productivity, and their physiological basis, in Abies religiosa (Ar) and Pinus hartwegii (Ph) trees growing in high‐elevation forests of central Mexico. Six sites were selected across a longitudinal transect (Transverse Volcanic Axis), from the Pacific Ocean toward the Gulf of Mexico, where mature dominant trees were sampled at altitudes ranging from 3200 to 4000 m asl. A total of 60 Ar and 84 Ph trees were analyzed to describe changes in growth (annual‐resolution) and isotopic composition (decadal‐resolution) since the early 1900s. Our results show an initial widespread increase in basal area increment (BAI) during the first half of the past century. However, BAI has decreased significantly since the 1950s with accentuated decline after the 1980s in both species and across sites. We found a consistent reduction in atmosphere to wood 13C discrimination, resulting from increasing water use efficiency (20–60%), coinciding with rising atmospheric CO2. Changes in 13C discrimination were not followed, however, by shifts in tree ring δ18O, indicating site‐ and species‐specific differences in water source or uptake strategy. Our results indicate that CO2 stimulation has not been enough to counteract warming‐induced drought stress, but other stressors, such as progressive nutrient limitation, could also have contributed to growth decline. Future studies should explore the distinct role of resource limitation (water vs. nutrients) in modulating the response of high‐elevation ecosystems to atmospheric change.  相似文献   

16.
Reducing the number of tillers per plant using a t iller in hibition (tin) gene has been considered as an important trait for wheat production in dryland environments. We used a spatial analysis approach with a daily time‐step coupled radiation and transpiration efficiency model to simulate the impact of the reduced‐tillering trait on wheat yield under different climate change scenarios across Australia's arable land. Our results show a small but consistent yield advantage of the reduced‐tillering trait in the most water‐limited environments both under current and likely future conditions. Our climate scenarios show that whilst elevated [CO2] (e[CO2]) alone might limit the area where the reduced‐tillering trait is advantageous, the most likely climate scenario of e[CO2] combined with increased temperature and reduced rainfall consistently increased the area where restricted tillering has an advantage. Whilst long‐term average yield advantages were small (ranged from 31 to 51 kg ha?1 year?1), across large dryland areas the value is large (potential cost‐benefits ranged from Australian dollar 23 to 60 MIL/year). It seems therefore worthwhile to further explore this reduced‐tillering trait in relation to a range of different environments and climates, because its benefits are likely to grow in future dry environments where wheat is grown around the world.  相似文献   

17.
  • The fast growth of mulberry depends on high water consumption, but considerable variations in drought tolerance exist across different cultivars. Physiological and anatomical mechanisms are important to plant survival under drought. However, few research efforts have been made to reveal the relationships of these two aspects in relation to drought tolerance.
  • In this study, growth rates, leaf functional physiology and anatomical characteristics of leaf and xylem of 1‐year‐old saplings of seven mulberry cultivars at a common garden were compared. Their relationships were also explored.
  • Growth, leaf physiology and anatomy were significantly different among the tested cultivars. Foliar stable carbon isotope composition (δ13C) was negatively correlated with growth rates, and closely related to several leaf and xylem anatomical traits. Particularly, leaf thickness, predicted hydraulic conductivity and vessel element length jointly contributed 77% of the variability in δ13C. Cultivar Wupu had small stomata, intermediate leaf thickness, the smallest hydraulically weighted vessel diameter and highest vessel number, and higher δ13C; Yunguo1 had high abaxial stomatal density, low specific leaf area, moderate hydraulic conductivity and δ13C; these are beneficial features to reduce leaf water loss and drought‐induced xylem embolism in arid areas. Cultivar Liaolu11 had contrasting physiological and anatomical traits compared with the previous two cultivars, suggesting that it might be sensitive to drought.
  • Our findings indicate that growth and δ13C are closely associated with both leaf and xylem anatomical characteristics in mulberry, which provides fundamental information to assist evaluation of drought tolerance in mulberry cultivars and in other woody trees.
  相似文献   

18.
  • Soil degradation resulting from various types of salinity is a major environmental problem, especially in arid and semiarid regions. Exploring the water‐related physiological traits of halophytes is useful for understanding the mechanisms of salt tolerance. This knowledge could be used to rehabilitate degraded arid lands.
  • To investigate whether different types of salinity influence the water sources and water‐use efficiency of desert plants (Karelinia caspia, Tamarix hohenackeri, Nitraria sibirica, Phragmites australis, Alhagi sparsifolia, Suaeda microphylla, Kalidium foliatum) in natural environments, we measured leaf gas exchange, leaf carbon and xylem oxygen isotope composition and soil oxygen isotope composition at neutral saline‐sodic site (NSS) and alkaline saline‐sodic site (ASS) in northwest China.
  • The studied plants had different xylem water oxygen isotope compositions (δ18O) and foliar carbon isotope compositions (δ13C), indicating that desert plants coexist through differentiation in water use patterns. Compared to that at the NSS site, the stem water in K. caspia, A. sparsifolia and S. microphylla was depleted in 18O at the ASS site, which indicates that plants can switch to obtain water from deeper soil layers when suffering environmental stress from both salinity and alkalinisation. Alhagi sparsifolia had higher δ13C at the ASS site than at the NSS site, while K. caspia and S. microphylla had lower δ13C, which may have resulted from interspecific differences in plant alkali and salt tolerance ability.
  • Our results suggest that under severe salinity and alkalinity, plants may exploit deeper soil water to avoid ion toxicity resulting from high concentrations of soluble salts in the superficial soil layer. In managed lands, it is vital to select and cultivate different salt‐tolerant or alkali‐tolerant plant species in light of local conditions.
  相似文献   

19.
The efficiency of water use to produce biomass is a key trait in designing sustainable bioenergy‐devoted systems. We characterized variations in the carbon isotope composition (δ13C) of leaves, current year wood and holocellulose (as proxies for water use efficiency, WUE) among six poplar genotypes in a short‐rotation plantation. Values of δ13Cwood and δ13Cholocellulose were tightly and positively correlated, but the offset varied significantly among genotypes (0.79–1.01‰). Leaf phenology was strongly correlated with δ13C, and genotypes with a longer growing season showed a higher WUE. In contrast, traits related to growth and carbon uptake were poorly linked to δ13C. Trees growing on former pasture with higher N‐availability displayed higher δ13C as compared with trees growing on former cropland. The positive relationships between δ13Cleaf and leaf N suggested that spatial variations in WUE over the plantation were mainly driven by an N‐related effect on photosynthetic capacities. The very coherent genotype ranking obtained with δ13C in the different tree compartments has some practical outreach. Because WUE remains largely uncoupled from growth in poplar plantations, there is potential to identify genotypes with satisfactory growth and higher WUE.  相似文献   

20.
Almost no δ18O data are available for leaf carbohydrates, leaving a gap in the understanding of the δ18O relationship between leaf water and cellulose. We measured δ18O values of bulk leaf water (δ18OLW) and individual leaf carbohydrates (e.g. fructose, glucose and sucrose) in grass and tree species and δ18O of leaf cellulose in grasses. The grasses were grown under two relative humidity (rH) conditions. Sucrose was generally 18O‐enriched compared with hexoses across all species with an apparent biosynthetic fractionation factor (εbio) of more than 27‰ relative to δ18OLW, which might be explained by isotopic leaf water and sucrose synthesis gradients. δ18OLW and δ18O values of carbohydrates and cellulose in grasses were strongly related, indicating that the leaf water signal in carbohydrates was transferred to cellulose (εbio = 25.1‰). Interestingly, damping factor pexpx, which reflects oxygen isotope exchange with less enriched water during cellulose synthesis, responded to rH conditions if modelled from δ18OLW but not if modelled directly from δ18O of individual carbohydrates. We conclude that δ18OLW is not always a good substitute for δ18O of synthesis water due to isotopic leaf water gradients. Thus, compound‐specific δ18O analyses of individual carbohydrates are helpful to better constrain (post‐)photosynthetic isotope fractionation processes in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号