首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Post‐translational modifications (PTMs) are critical regulators of protein function, and nearly 200 different types of PTM have been identified. Advances in high‐resolution mass spectrometry have led to the identification of an unprecedented number of PTM sites in numerous organisms, potentially facilitating a more complete understanding of how PTMs regulate cellular behavior. While databases have been created to house the resulting data, most of these resources focus on individual types of PTM, do not consider quantitative PTM analyses or do not provide tools for the visualization and analysis of PTM data. Here, we describe the Functional Analysis Tools for Post‐Translational Modifications (FAT‐PTM) database ( https://bioinformatics.cse.unr.edu/fat-ptm/ ), which currently supports eight different types of PTM and over 49 000 PTM sites identified in large‐scale proteomic surveys of the model organism Arabidopsis thaliana. The FAT‐PTM database currently supports tools to visualize protein‐centric PTM networks, quantitative phosphorylation site data from over 10 different quantitative phosphoproteomic studies, PTM information displayed in protein‐centric metabolic pathways and groups of proteins that are co‐modified by multiple PTMs. Overall, the FAT‐PTM database provides users with a robust platform to share and visualize experimentally supported PTM data, develop hypotheses related to target proteins or identify emergent patterns in PTM data for signaling and metabolic pathways.  相似文献   

3.
Post‐translational modifications (PTMs) represent an important regulatory layer influencing the structure and function of proteins. With broader availability of experimental information on the occurrences of different PTM types, the investigation of a potential “crosstalk” between different PTM types and combinatorial effects have moved into the research focus. Hypothesizing that relevant interferences between different PTM types and sites may become apparent when investigating their mutual physical distances, we performed a systematic survey of pairwise homo‐ and heterotypic distances of seven frequent PTM types considering their sequence and spatial distances in resolved protein structures. We found that actual PTM site distance distributions differ from random distributions with most PTM type pairs exhibiting larger than expected distances with the exception of homotypic phosphorylation site distances and distances between phosphorylation and ubiquitination sites that were found to be closer than expected by chance. Random reference distributions considering canonical acceptor amino acid residues only were found to be shifted to larger distances compared to distances between any amino acid residue type indicating an underlying tendency of PTM‐amenable residue types to be further apart than randomly expected. Distance distributions based on sequence separations were found largely consistent with their spatial counterparts suggesting a primary role of sequence‐based pairwise PTM‐location encoding rather than folding‐mediated effects. Our analysis provides a systematic and comprehensive overview of the characteristics of pairwise PTM site distances on proteins and reveals that, predominantly, PTM sites tend to avoid close proximity with the potential implication that an independent attachment or removal of PTMs remains possible. Proteins 2016; 85:78–92. © 2016 Wiley Periodicals, Inc.  相似文献   

4.
Various post‐translational modifications (PTMs) fine‐tune the functions of almost all eukaryotic proteins, and co‐regulation of different types of PTMs has been shown within and between a number of proteins. Aiming at a more global view of the interplay between PTM types, we collected modifications for 13 frequent PTM types in 8 eukaryotes, compared their speed of evolution and developed a method for measuring PTM co‐evolution within proteins based on the co‐occurrence of sites across eukaryotes. As many sites are still to be discovered, this is a considerable underestimate, yet, assuming that most co‐evolving PTMs are functionally associated, we found that PTM types are vastly interconnected, forming a global network that comprise in human alone >50 000 residues in about 6000 proteins. We predict substantial PTM type interplay in secreted and membrane‐associated proteins and in the context of particular protein domains and short‐linear motifs. The global network of co‐evolving PTM types implies a complex and intertwined post‐translational regulation landscape that is likely to regulate multiple functional states of many if not all eukaryotic proteins.  相似文献   

5.
The complex and diverse nature of the post-translational modification (PTM) of proteins represents an efficient and cost-effective mechanism for the exponential diversification of the genome. PTMs have been shown to affect almost every aspect of protein activity, including function, localisation, stability, and dynamic interactions with other molecules. Although many PTMs are evolutionarily conserved there are also important kingdom-specific modifications which should be considered when expressing recombinant proteins. Plants are gaining increasing acceptance as an expression system for recombinant proteins, particularly where eukaryotic-like PTMs are required. Glycosylation is the most extensively studied PTM of plant-made recombinant proteins. However, other types of protein processing and modification also occur which are important for the production of high quality recombinant protein, such as hydroxylation and lipidation. Plant and/or protein engineering approaches offer many opportunities to exploit PTM pathways allowing the molecular farmer to produce a humanised product with modifications functionally similar or identical to the native protein. Indeed, plants have demonstrated a high degree of tolerance to changes in PTM pathways allowing recombinant proteins to be modified in a specific and controlled manner, frequently resulting in a homogeneity of product which is currently unrivalled by alternative expression platforms. Whether a recombinant protein is intended for use as a scientific reagent, a cosmetic additive or as a pharmaceutical, PTMs through their presence and complexity, offer an extensive range of options for the rational design of humanised (biosimilar), enhanced (biobetter) or novel products.  相似文献   

6.
Protein phosphorylation and acetylation are the two most abundant post‐translational modifications (PTMs) that regulate protein functions in eukaryotes. In plants, these PTMs have been investigated individually; however, their co‐occurrence and dynamics on proteins is currently unknown. Using Arabidopsis thaliana, we quantified changes in protein phosphorylation, acetylation and protein abundance in leaf rosettes, roots, flowers, siliques and seedlings at the end of day (ED) and at the end of night (EN). This identified 2549 phosphorylated and 909 acetylated proteins, of which 1724 phosphorylated and 536 acetylated proteins were also quantified for changes in PTM abundance between ED and EN. Using a sequential dual‐PTM workflow, we identified significant PTM changes and intersections in these organs and plant developmental stages. In particular, cellular process‐, pathway‐ and protein‐level analyses reveal that the phosphoproteome and acetylome predominantly intersect at the pathway‐ and cellular process‐level at ED versus EN. We found 134 proteins involved in core plant cell processes, such as light harvesting and photosynthesis, translation, metabolism and cellular transport, that were both phosphorylated and acetylated. Our results establish connections between PTM motifs, PTM catalyzing enzymes and putative substrate networks. We also identified PTM motifs for further characterization of the regulatory mechanisms that control cellular processes during the diurnal cycle in different Arabidopsis organs and seedlings. The sequential dual‐PTM analysis expands our understanding of diurnal plant cell regulation by PTMs and provides a useful resource for future analyses, while emphasizing the importance of analyzing multiple PTMs simultaneously to elucidate when, where and how they are involved in plant cell regulation.  相似文献   

7.
In mass spectrometry (MS)-based bottom-up proteomics, protease digestion plays an essential role in profiling both proteome sequences and post-translational modifications (PTMs). Trypsin is the gold standard in digesting intact proteins into small-size peptides, which are more suitable for high-performance liquid chromatography (HPLC) separation and tandem MS (MS/MS) characterization. However, protein sequences lacking Lys and Arg cannot be cleaved by trypsin and may be missed in conventional proteomic analysis. Proteases with cleavage sites complementary to trypsin are widely applied in proteomic analysis to greatly improve the coverage of proteome sequences and PTM sites. In this review, we survey the common and newly emerging proteases used in proteomics analysis mainly in the last 5 years, focusing on their unique cleavage features and specific proteomics applications such as missing protein characterization, new PTM discovery, and de novo sequencing. In addition, we summarize the applications of proteases in structural proteomics and protein function analysis in recent years. Finally, we discuss the future development directions of new proteases and applications in proteomics.  相似文献   

8.
《Proteomics》2017,17(19)
Myelin basic protein (MBP) is a multifunctional protein involved in maintaining the stability and integrity of the myelin sheath by a variety of interactions with membranes and other proteins. MBP is subjected to extensive posttranslational modifications (PTMs) that are known to be crucial for the regulation of these interactions. Here, we report capillary electrophoresis–mass spectrometric (CE–MS) analysis for the separation and identification of MBP peptides that incorporate the same PTM at different sites, creating multiple localization variants, and the ability to analyze challenging modifications such as asparagine and glutamine deamidation, isomerization, and arginine citrullination. Moreover, we observed site‐specific alterations in the modification level of MBP purified from brain of mice of different age. In total, we identified 40 modifications at 33 different sites, which include both previously reported and seven novel modifications. The identified modifications include Nα‐terminal acetylation, mono‐ and dimethylation, phosphorylation, oxidation, deamidation, and citrullination. Notably, some new sites of arginine methylation overlap with the sites of citrullination. Our results highlight the need for sensitive and efficient techniques for a comprehensive analysis of PTMs.  相似文献   

9.
Background : Mass spectrometry (MS)-based proteomic analysis of posttranslational modifications (PTMs) usually requires the pre-enrichment of modified proteins or peptides. However, recent ultra-deep whole proteome profiling generates millions of spectra in a single experiment, leaving many unassigned spectra, some of which may be derived from PTM peptides. Methods : Here we present JUMPptm, an integrative computational pipeline, to extract PTMs from unenriched whole proteome. JUMPptm combines the advantages of JUMP, MSFragger and Comet search engines, and includes de novo tags, customized database search and peptide filtering, which iteratively analyzes each PTM by a multi-stage strategy to improve sensitivity and specificity. Results : We applied JUMPptm to the deep brain proteome of Alzheimer's disease (AD), and identified 34,954 unique peptides with phosphorylation, methylation, acetylation, ubiquitination, and others. The phosphorylated peptides were validated by enriched phosphoproteome from the same sample. TMT-based quantification revealed 482 PTM peptides dysregulated at different stages during AD progression. For example, the acetylation of numerous mitochondrial proteins is significantly decreased in AD. A total of 60 PTM sites are found in the pan-PTM map of the Tau protein. Conclusion : The JUMPptm program is an effective tool for pan-PTM analysis and the resulting AD pan-PTM profile serves as a valuable resource for AD research.  相似文献   

10.
In this review, we provide a comprehensive bibliographic overview of the role of mass spectrometry and the recent technical developments in the detection of post-translational modifications (PTMs). We briefly describe the principles of mass spectrometry for detecting PTMs and the protein and peptide enrichment strategies for PTM analysis, including phosphorylation, acetylation and oxidation. This review presents a bibliographic overview of the scientific achievements and the recent technical development in the detection of PTMs is provided. In order to ascertain the state of the art in mass spectrometry and proteomics methodologies for the study of PTMs, we analyzed all the PTM data introduced in the Universal Protein Resource (UniProt) and the literature published in the last three years. The evolution of curated data in UniProt for proteins annotated as being post-translationally modified is also analyzed. Additionally, we have undertaken a careful analysis of the research articles published in the years 2010 to 2012 reporting the detection of PTMs in biological samples by mass spectrometry.  相似文献   

11.
Protein post‐translational modifications (PTMs) are important modulators of virtually all cellular processes, and frequently correlate with not only the rate but also severity of diseases. There has been considerable interest to map all possible PTM sites to be used as drug targets. Current approaches for PTM analysis suffer from a number of challenges; one of which is the lack of a PTM specific cleaving reagent. A central technology for global quantitative PTM analysis, mass spectrometry (MS) based proteomics, is biased toward trypsin due to its high activity and specificity. This bias becomes a problem when a PTM is located at or near tryptic cleavage sites, in which case the PTM might block recognition by trypsin, resulting in missed cleavage and sequence coverage gaps. Reviewed here are recent advances in engineering new proteases for PTM analyses, and how these new proteases are beginning to address current challenges in the field.  相似文献   

12.
Protein activity and turnover is tightly and dynamically regulated in living cells. Whereas the three-dimensional protein structure is predominantly determined by the amino acid sequence, posttranslational modification (PTM) of proteins modulates their molecular function and the spatial-temporal distribution in cells and tissues. Most PTMs can be detected by protein and peptide analysis by mass spectrometry (MS), either as a mass increment or a mass deficit relative to the nascent unmodified protein. Tandem mass spectrometry (MS/MS) provides a series of analytical features that are highly useful for the characterization of modified proteins via amino acid sequencing and specific detection of posttranslationally modified amino acid residues. Large-scale, quantitative analysis of proteins by MS/MS is beginning to reveal novel patterns and functions of PTMs in cellular signaling networks and biomolecular structures.  相似文献   

13.
Post‐translational modifications (PTMs) play a critical role in regulating plant growth and development through the modulation of protein functionality and its interaction with its partners. Analysis of the functional implication of PTMs on plant cellular signalling presents grand challenges in understanding their significance. Proteins decorated or modified with another chemical group or polypeptide play a significant role in regulating physiological processes as compared with non‐decorated or non‐modified proteins. In the past decade, SUMOylation has been emerging as a potent PTM influencing the adaptability of plants to growth, in response to various environmental cues. Deciphering the SUMO‐mediated regulation of plant stress responses and its consequences is required to understand the mechanism underneath. Here, we will discuss the recent advances in the role and significance of SUMOylation in plant growth, development and stress response.  相似文献   

14.
Protein post‐translational modifications (PTMs) allow the cell to regulate protein activity and play a crucial role in the response to changes in external conditions or internal states. Advances in mass spectrometry now enable proteome wide characterization of PTMs and have revealed a broad functional role for a range of different types of modifications. Here we review advances in the study of the evolution and function of PTMs that were spurred by these technological improvements. We provide an overview of studies focusing on the origin and evolution of regulatory enzymes as well as the evolutionary dynamics of modification sites. Finally, we discuss different mechanisms of altering protein activity via post‐translational regulation and progress made in the large‐scale functional characterization of PTM function.  相似文献   

15.
Large‐scale characterization of post‐translational modifications (PTMs), such as phosphorylation, acetylation and ubiquitination, has highlighted their importance in the regulation of a myriad of signaling events. While high‐throughput technologies have tremendously helped cataloguing the proteins modified by these PTMs, the identification of lysine‐methylated proteins, a PTM involving the transfer of one, two or three methyl groups to the ε‐amine of a lysine side chain, has lagged behind. While the initial findings were focused on the methylation of histone proteins, several studies have recently identified novel non‐histone lysine‐methylated proteins. This review provides a compilation of all lysine methylation sites reported to date. We also present key examples showing the impact of lysine methylation and discuss the circuitries wired by this important PTM.  相似文献   

16.
Mass spectrometry (MS) analysis of peptides carrying post‐translational modifications is challenging due to the instability of some modifications during MS analysis. However, glycopeptides as well as acetylated, methylated and other modified peptides release specific fragment ions during CID (collision‐induced dissociation) and HCD (higher energy collisional dissociation) fragmentation. These fragment ions can be used to validate the presence of the PTM on the peptide. Here, we present PTM MarkerFinder, a software tool that takes advantage of such marker ions. PTM MarkerFinder screens the MS/MS spectra in the output of a database search (i.e., Mascot) for marker ions specific for selected PTMs. Moreover, it reports and annotates the HCD and the corresponding electron transfer dissociation (ETD) spectrum (when present), and summarizes information on the type, number, and ratios of marker ions found in the data set. In the present work, a sample containing enriched N‐acetylhexosamine (HexNAc) glycopeptides from yeast has been analyzed by liquid chromatography‐mass spectrometry on an LTQ Orbitrap Velos using both HCD and ETD fragmentation techniques. The identification result (Mascot .dat file) was submitted as input to PTM MarkerFinder and screened for HexNAc oxonium ions. The software output has been used for high‐throughput validation of the identification results.  相似文献   

17.
蛋白质翻译后修饰对蛋白质成熟、结构和功能多样性有决定性的作用。但蛋白质翻译后修饰的多样性、普遍性、动态性,使传统的生物化学方法在全局水平上理解翻译后修饰非常有限,对它们的研究、特别是大规模的研究长期发展缓慢。现在,在实验研究基础上,借助多方面的生物信息学方法,可以快速高通量的预测和鉴定蛋白质翻译后修饰。一方面,可以从序列角度出发,基于酶识别底物的特异性,用位点权重矩阵、支持向量机等算法,从底物蛋白质序列提取修饰相关的保守序列,并用于预测翻译后修饰位点。这种方法相对成熟,能够取得较理想的预测准确性,但不能反映不同时间不同细胞的翻译后修饰状态。另一方面,可从质谱数据分析出发,有望捕获细胞内翻译后修饰的动态特性。质谱分析的高灵敏度、高准确度和高通量的能力已使建立在质谱基础上的蛋白质组学成为研究翻译后修饰的重要工具,生物信息学方法和质谱蛋白质组学的结合则更可以加速研究翻译后修饰的进程。本文从序列和质谱分析两个角度总结评价了各种翻译后修饰相关生物信息学方法的研究近况,重点讨论利用质谱数据鉴定翻译后修饰的新思路。  相似文献   

18.
Post-translational modifications (PTMs) occur on almost all proteins analyzed to date. The function of a modified protein is often strongly affected by these modifications and therefore increased knowledge about the potential PTMs of a target protein may increase our understanding of the molecular processes in which it takes part. High-throughput methods for the identification of PTMs are being developed, in particular within the fields of proteomics and mass spectrometry. However, these methods are still in their early stages, and it is indeed advantageous to cut down on the number of experimental steps by integrating computational approaches into the validation procedures. Many advanced methods for the prediction of PTMs exist and many are made publicly available. We describe our experiences with the development of prediction methods for phosphorylation and glycosylation sites and the development of PTM-specific databases. In addition, we discuss novel ideas for PTM visualization (exemplified by kinase landscapes) and improvements for prediction specificity (by using ESS--evolutionary stable sites). As an example, we present a new method for kinase-specific prediction of phosphorylation sites, NetPhosK, which extends our earlier and more general tool, NetPhos. The new server, NetPhosK, is made publicly available at the URL http://www.cbs.dtu.dk/services/NetPhosK/. The issues of underestimation, over-prediction and strategies for improving prediction specificity are also discussed.  相似文献   

19.
Post-translational modifications (PTMs) play key roles in the regulation of biological functions of proteins. Although some progress has been made in identifying several PTMs using existing approaches involving a combination of affinity-based enrichment and mass spectrometric analysis, comprehensive identification of PTMs remains a challenging problem in proteomics because of the dynamic complexities of PTMs in vivo and their low abundance. We describe here a strategy for rapid, efficient, and comprehensive identification of PTMs occurring in biological processes in vivo. It involves a selectively excluded mass screening analysis (SEMSA) of unmodified peptides during liquid chromatography-electrospray ionization-quadrupole-time-of-flight tandem mass spectrometry (LC-ESI-q-TOF MS/MS) through replicated runs of a purified protein on two-dimensional gel. A precursor ion list of unmodified peptides with high mass intensities was obtained during the initial run followed by exclusion of these unmodified peptides in subsequent runs. The exclusion list can grow as long as replicate runs are iteratively performed. This enables the identifications of modified peptides with precursor ions of low intensities by MS/MS sequencing. Application of this approach in combination with the PTM search algorithm MODi to GAPDH protein in vivo modified by oxidative stress provides information on multiple protein modifications (19 types of modification on 42 sites) with >92% peptide coverage and the additional potential for finding novel modifications, such as transformation of Cys to Ser. On the basis of the information of precursor ion m/z, quantitative analysis of PTM was performed for identifying molecular changes in heterogeneous protein populations. Our results show that PTMs in mammalian systems in vivo are more complicated and heterogeneous than previously reported. We believe that this strategy has significant potential because it permits systematic characterization of multiple PTMs in functional proteomics.  相似文献   

20.
The tremendous functional, spatial, and temporal diversity of the plant proteome is regulated by multiple factors that continuously modify protein abundance, modifications, interactions, localization, and activity to meet the dynamic needs of plants. Dissecting the proteome complexity and its underlying genetic variation is attracting increasing research attention. Mass spectrometry (MS)-based proteomics has become a powerful approach in the global study of protein functions and their relationships on a systems level. Here, we review recent breakthroughs and strategies adopted to unravel the diversity of the proteome, with a specific focus on the methods used to analyze posttranslational modifications (PTMs), protein localization, and the organization of proteins into functional modules. We also consider PTM crosstalk and multiple PTMs temporally regulating the life cycle of proteins. Finally, we discuss recent quantitative studies using MS to measure protein turnover rates and examine future directions in the study of the plant proteome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号