首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Although plant species with either animal or wind pollination modes are widespread and usually sympatric in nature, the degree of pollen interference from wind‐pollinated species on animal‐pollinated species remains little known. Conifer trees generally release a huge number of pollen grains into the air, floating into our noses and sometimes causing an allergic response. Here we document airborne pollen from two conifers (Pinus densata Mast. and Picea likiangensis (Franch.) E. Pritz.) deposited on the stigmas of eight coflowering insect‐pollinated angiosperms over 2 years in a mountainous forest community, in Shangri‐La, southwest China. Pollen density in the air as well as conifer pollen deposited onto stigmas at short and long distances from the airborne pollen source were quantified. Our results showed that conifer pollen as a proportion of total stigmatic pollen loads in the insect‐pollinated plants varied from 0.16% to 8.67% (3.16% ± 0.41%, n = 735) in 2016 and 0.66% to 5.38% (2.87% ± 0.86%, n = 180), and pollen quantity per unit area was closely related to that of airborne pollen in the air. Conifer pollen deposition on stigmas of insect‐pollinated species decreased greatly with increased distance from the pollen source. In the 10 plant species flowering in summer after conifer pollen release had finished, heterospecific pollen deposited on these stigmas came mainly from other insect‐pollinated flowers, with little contribution from airborne conifer pollen. The results indicate that there might be little interference with coflowering angiosperms by airborne pollen from dominant conifers in natural communities.  相似文献   

2.
Many modern crop varieties rely on animal pollination to set fruit and seeds. Intensive crop plantations usually do not provide suitable habitats for pollinators so crop yield may depend on the surrounding vegetation to maintain pollination services. However, little is known about the effect of pollinator‐mediated interactions among co‐flowering plants on crop yield or the underlying mechanisms. Plant reproductive success is complex, involving several pre‐ and post‐pollination events; however, the current literature has mainly focused on pre‐pollination events in natural plant communities. We assessed pollinator sharing and the contribution to pollinator diet in a community of wild and cultivated plants that co‐flower with a focal papaya plantation. In addition, we assessed heterospecific pollen transfer to the stigmatic loads of papaya and its effect on fruit and seed production. We found that papaya shared at least one pollinator species with the majority of the co‐flowering plants. Despite this, heterospecific pollen transfer in cultivated papaya was low in open‐pollinated flowers. Hand‐pollination experiments suggest that heterospecific pollen transfer has no negative effect on fruit production or weight, but does reduce seed production. These results suggest that co‐flowering plants offer valuable floral resources to pollinators that are shared with cultivated papaya with little or no cost in terms of heterospecific pollen transfer. Although HP reduced seed production, a reduced number of seeds per se are not negative, given that from an agronomic perspective the number of seeds does not affect the monetary value of the papaya fruit.  相似文献   

3.
Information about the relative importance of competitive or facilitative pollinator‐mediated interactions in a multi‐species context is limited. We studied interspecific pollen transfer (IPT) networks to evaluate quantity and quality effects of pollinator sharing among plant species on three high‐Andean communities at 1600, 1800 and 2000 m a.s.l. To estimate the sign of the effects (positive, neutral or negative), the relation between conspecific and heterospecific pollen deposited on stigmas was analysed with GLMMs. Network analyses showed that communities were characterised by the presence of pollen hub‐donors and receptors. We inferred that facilitative and neutral pollinator‐mediated interactions among plants prevailed over competition. Thus, the benefits from pollinator sharing seem to outweigh the costs (i.e. heterospecific deposition and conspecific pollen loss). The largest proportion of facilitated species was found at the highest elevation community, suggesting that under unfavourable conditions for the pollination service and at lower plant densities facilitation can be more common.  相似文献   

4.
Summary The widespread occurrence of nonorchid, heterospecific pollen grains on the stigmatic surfaces of a range of nectariferous and nectarless European orchids (Dactylorhiza. Orchis, Goodyera, andGymnadenia species) is reported for the first time, and the impact of heterospecific pollination on orchid reproductive success is experimentally investigated. There are three main components of stigmatic contamination by heterospecific pollen: the frequency of contamination, the diversity of foreign species present on the stigma, and the amount of pollen deposited. Six out of seven of the species examined have greater than 85% of stigmas contaminated with wind and insect-dispersed pollen. From one to nine insect-dispersed foreign pollen species are present per stigma, including pollen of members of the families Apiaceae, Asteraceae, Caryohpyllaceae, Ericaceae, and Primulaceae. Average loads per stigma vary from 13 to 176 grains, with individual stigma loads ranging from one to 909. Whether or not the orchid provides nectar has a major impact on these three components. Nectarless orchids have the greatest frequencies of contamination, diversity of species, and average load per stigma. Insect-dispersed pollen is deposited both by pollinators and visitors but, in spite of low levels of pollination, nectarless orchids still exhibit higher frequencies of heterospecific pollen contamination. The effect of the presence of heterospecific pollen on the reproductive success of orchids is tested in this study for the first time. Average-to-high, naturally occurring loads of heterospecific pollen derived from a mixture ofArmeria maritima,Caltha palustris,Cochlearia officinalis,Cytisus scoparius, andPrimula vulgaris and consisting of 50–250 grains per load are placed onto stigmas ofDactylorhiza purpurella which are subsequently self-pollinated with half of a pollinium. All pollinations produce capsules indicating that heterospecific pollen does not affect fruit set. Although experimental and control fruits are similar in size, they differ in total seed weight and composition. Total seed weight is reduced and the proportion of seeds with normal embryos decreased while the proportion of unfertilised ovules increased following pollination with heterospecific pollen, indicating a detrimental effect on fertilisation. Lower reproductive success caused by fertilisation failure is likely to be most severe in nectarless species because of their generally higher levels of contaminated stigmas. As nectarless orchids are known to have lower fruit set compared with nectariferous ones, this finding suggests that the reproductive success of nectarless orchids may be even lower than previously realised.Abbreviations RS reproductive success  相似文献   

5.
Aims When sympatric flowering plant species in a natural community share pollinators, study of plant–plant interactions via interspecific pollen transfer (IPT) is essential for understanding species coexistence. However, little is known about the extent of IPT between interactive species and its causes.Methods To explore how sympatric flowering plants sharing pollinators minimize deleterious effects of IPT, we investigated the pollination ecology of two endemic species, Salvia przewalskii and Delphinium yuanum, in an alpine meadow in the Hengduan Mountains, southwest China. We quantified conspecific and interspecific visits by shared bumblebee pollinators, amounts of pollen placed on different body sites of the pollinators and stigmatic pollen loads on open-pollinated flowers. To examine whether IPT affects female fitness, we measured pollen germination and seed production in the two species in an artificial pollination experiment.Important findings One bumblebee species, Bombus trifasciatus, was found to be the sole effective pollinator for the two coflowering species. Pollination experiments indicated that deposition of heterospecific pollen could significantly decrease seed set in both species. Experiments showed that S. przewalskii pollen could germinate well on stigmas of D. yuanum, inhibiting conspecific pollen germination in D. yuanum. However, seed set was not lower under open pollination than under cross-pollination within species, suggesting that no female fitness loss was caused by IPT. In foraging bouts with pollinator switches, switches from S. przewalskii to D. yuanum were relatively more frequent (8.27%) than the converse (1.72%). However, IPT from S. przewalskii to D. yuanum accounted for only 1.82% of total stigmatic pollen loads while the reverse IPT to S. przewalskii was 8.70%, indicating that more switches of bumblebees to D. yuanum did not result in higher IPT. By contrast, selection for reduced IPT to S. przewalskii would limit pollinator switches from D. yuanum. We found that a bumblebee generally carried pollen grains from both species but the two species differed in the position of pollen placement on the bumblebee's body; S. przewalskii ' s pollen was concentrated on the dorsal thorax while D. yuanum ' s pollen was concentrated ventrally on the head. This differential pollen placement along with pollinator fidelity largely reduced IPT between the two species with a shared pollinator.  相似文献   

6.
Plant–plant interspecific competition via pollinators occurs when the flowering seasons of two or more plant species overlap and the pollinator fauna is shared. Negative sexual interactions between species (reproductive interference) through improper heterospecific pollen transfer have recently been reported between native and invasive species demonstrating pollination‐driven competition. We focused on two native Impatiens species (I. noli‐tangere and I. textori) found in Japan and examined whether pollinator‐mediated plant competition occurs between them. We demonstrate that I. noli‐tangere and I. textori share the same pollination niche (i.e., flowering season, pollinator fauna, and position of pollen on the pollinator's body). In addition, heterospecific pollen grains were deposited on most stigmas of both I. noli‐tangere and I. textori flowers that were situated within 2 m of flowers of the other species resulting in depressed fruit set. Further, by hand‐pollination experiments, we show that when as few as 10% of the pollen grains are heterospecific, fruit set is decreased to less than half in both species. These results show that intensive pollinator‐mediated competition occurs between I. noli‐tangere and I. textori. This study suggests that intensive pollinator‐mediated competition occurs in the wild even when interacting species are both native and not invasive.  相似文献   

7.
Pollinator‐mediated competition through shared pollinators can lead to segregated flowering phenologies, but empirical evidence for the process responsible for this flowering pattern is sparse. During two flowering seasons, we examined whether increasing overlap in flowering phenology decreased conspecific pollination, increased heterospecific pollination, and depressed seed output in the seven species composing a hummingbird–plant assemblage from the temperate forest of southern South America. Overall trends were summarized using meta‐analysis. Despite prevailing negative associations, relations between phenological overlap and conspecific pollen receipt varied extensively among species and between years. Heterospecific pollen receipt was low and presumably of limited biological significance. However, our results supported the hypothesis that concurrent flowering promotes interspecific pollen transfer, after accounting for changes in the abundance of conspecific flowers. Seed output was consistently reduced during maximum phenological overlap during the first flowering season because of limited fruit set. Responses varied more during the second year, despite an overall negative trend among species. Relations between estimated effects of phenological overlap on pollination and seed output, however, provided mixed evidence that conspecific pollen loss during pollinator visits to foreign flowers increases pollen limitation. By flowering together, different plant species might benefit each other's pollination by increasing hummingbird recruitment at the landscape level. Nevertheless, our results are mostly consistent with the hypothesis of pollinator‐mediated competition shaping the segregated flowering pattern reported previously for this temperate plant assemblage. The mechanisms likely involve effects on male function, whereby pollen‐transport loss during heterospecific flower visits limit pollen export, and more variable effects on female function through pollen limitation.  相似文献   

8.
Aims Distyly has been regarded as an adaptation to improve compatible pollination between two floral morphs with reciprocal herkogamy. The hypothesis that the different positions of anthers and stigmas within flowers as well as their reciprocal position between morphs, reduce the probability of self pollination raised by Darwin has been rarely tested. In this study, we measured stigmatic pollen loads in response to reduced reciprocal herkogamy in two Primula species.Methods To see whether reciprocal herkogamy can increase compatible and/or reduce incompatible pollen deposition, thus promoting compatible pollination, we shortened the distance between anthers and stigmas within the flowers by changing the position of the corolla tube, to which the anthers were fused, i.e. reduced herkogamy in natural populations of Primula secundiflora and P. poissonii and quantified stigmatic pollen loads in the field over 2 years.Important findings In both species, stigmatic pollen loads were significantly higher in the long-styled (L-morph) than in the short-styled morph (S-morph) in both control and manipulated flowers, but percentage of compatible pollen in S-morph were higher. Flowers manipulated to halve the anther–stigma distance showed a similar pattern for 2 years: total pollen grain counts on stigmas did not differ significantly but compatible pollen grains in L- and S-morphs were significantly decreased in both species. The percentage of compatible pollen loads was decreased by 68.7% in P. secundiflora and 65.3% in P. poissonii in L-morphs, while it decreased by 30.6% and 2.9% in S-morphs, respectively. Our manipulation of the relative position of anthers and stigmas in the two distylous species indicated that a lower degree of herkogamy reduced compatible but incompatible pollen transfer was likely to increase. The higher proportion of compatible pollen in the S-morph than in the L-morph in the two Primula species could be attributed to the accessibility of two-level sexual organs, floral orientations and pollinator behaviors. This is a first attempt to manipulate intraflower herkogamy for understanding adaptation of heterostyly, shedding insights into how the reciprocal herkogamy promotes compatible pollination.  相似文献   

9.
Pollinator and/or mate scarcity affects pollen transfer, with important ecological and evolutionary consequences for plant reproduction. However, the way in which the pollen loads transported by pollinators and deposited on stigmas are affected by pollination context has been little studied. We investigated the impacts of plant mate and visiting insect availabilities on pollen transport and receipt in a mass‐flowering and facultative autogamous shrub (Rhododendron ferrugineum). First, we recorded insect visits to R. ferrugineum in plant patches of diverse densities and sizes. Second, we analyzed the pollen loads transported by R. ferrugineum pollinators and deposited on stigmas of emasculated and intact flowers, in the same patches. Overall, pollinators (bumblebees) transported much larger pollen loads than the ones found on stigmas, and the pollen deposited on stigmas included a high proportion of conspecific pollen. However, comparing pollen loads of emasculated and intact flowers indicated that pollinators contributed only half the conspecific pollen present on the stigma. At low plant density, we found the highest visitation rate and the lowest proportion of conspecific pollen transported and deposited by pollinators. By contrast, at higher plant density and lower visitation rate, pollinators deposited larger proportion of conspecific pollen, although still far from sufficient to ensure that all the ovules were fertilized. Finally, self‐pollen completely buffered the detrimental effects on pollination of patch fragmentation and pollinator failure. Our results indicate that pollen loads from pollinators and emasculated flowers should be quantified for an accurate understanding of the relative impacts of pollinator and mate limitation on pollen transfer in facultative autogamous species.  相似文献   

10.
Abstract Animal‐pollinated plant species modulate the presentation of pollinator rewards to maximize reproductive success. In plants providing pollen as the only reward for pollinators, it is usually difficult to unravel the dual roles of reward presentation and the realization of male and female functions (pollen removal and deposition). Exploiting the two types of anther in the androecia of Melastoma malabathricum L., we examined whether the removal of pollen for reward is regulated primarily to favor male function or female function. Pollen removal by carpenter bees from the feeding and pollination anthers, as well as pollen deposition on the stigmas, were quantified during anthesis of M. malabathricum. There was no significant difference in pollen removal rates from the feeding and pollination anthers of M. malabathricum between the onset of anthesis and flower wilting. The stigmatic pollen loads exceeded the ovule number after three sonication bouts, and female function was satisfied earlier than male function. The results support the hypothesis that the presentation of pollination reward in this species is regulated primarily to favor the expression of male function, rather than female function, in agreement with the pollen‐donation hypothesis. A cooperative relationship between the feeding and pollination anthers was demonstrated in heterantherous flowers, which optimizes the balance in investments between pollinator rewards and “functional pollen” for gene transfer.  相似文献   

11.
The pollination efficiency hypothesis has long been proposed as an explanation for interspecific variation in pollen–ovule (P:O) ratios. However, no empirical study on P:O ratios has directly and quantitatively measured pollen transfer efficiency (PE). Here, we use a PE index, defined as the proportion of pollen grains removed from anthers that are subsequently deposited on conspecific stigmas, as a direct and quantitative measure of PE. We investigated P:O ratios, pollen removal and pollen deposition in 26 plant species in an alpine meadow, over three consecutive years. Our community survey showed that nearly 5% of removed pollen was successfully deposited on conspecific stigmas. The PE index ranged from 0.01% up to 78.56% among species, and correlated negatively with the P:O ratio across years. This correlation was not changed by controlling for phylogenetic relationships among species, suggesting that the interspecific variation in P:O ratios can be attributed to the probability of pollen grains reaching a stigma. The results indicate that the pollination efficiency hypothesis can help to explain interspecific variation in P:O ratios.  相似文献   

12.
The cumulative (season-long) incidence of heterospecific pollen transfer (HPT) was examined using nine sympatric species in a midsuccessional old field. Inflorescences were collected weekly during the flowering season, and the proportion of foreign pollen/stigma was recorded. Flowering phenologies of sympatric species and ovule and seed counts of study species were also recorded. Heterospecific pollen was detected on some stigmas of each species. Medicago sativa (Fabaceae) received the most foreign pollen; in some cases, all of the grains on a stigma were heterospecific. Lotus corniculatus (Fabaceae) received the least amount of foreign pollen; the incidence of heterospecific pollen was near zero in most cases. The mean and range of foreign pollen received varied by as much as an order of magnitude between species. The six species with zygomorphic flowers, all Fabaceae, received more heterospecific pollen than the three species with actinomorphic flowers, Potentilla recta and P. simplex (Rosaceae) and Ranunculus acris (Ranunculaceae). This probably reflects a bias because our data were analyzed on a cumulative basis and the Fabaceae had longer flowering phenologies. HPT was not correlated with the species' relative abundance within the community. Proportion of foreign pollen received varied temporally within species, and this variation generally was not related to phenology of any sympatric taxa or the species' own phenology. Pollen grain diameter was positively related to levels of foreign pollen received by species. This might be caused by poor adhesion of large pollen grains to small stigmatic papillae or if generalist pollinators carrying large amounts of heterospecific pollen visit the large-grained species and specialists with little foreign pollen visit the small-grained species. The large proportions of heterospecific pollen on stigmas of many species indicate that HPT occurs frequently in the community we studied and the implications may include reduced seed set because of occlusion by foreign grains. As yet, however, it is unclear how important a factor HPT is in mediating pollen limitation of reproductive success.  相似文献   

13.
Pollen limitation and resource limitation have been documented as the major factors responsible for plants commonly producing more ovules than seeds, but few studies have examined pollen deposition directly in natural populations at different sites and times. We investigated the causes of low seed set in four populations of Liriodendron chinense (Magnoliaceae), an insect‐pollinated endangered tree endemic to southern China, over 2–3 years. One pistil potentially produces two ovules. The number of pistils per flower varies among populations, but in three of the four populations the variation in a given population was not significantly different among years. Overall, populations with higher pistil numbers tend to set more seeds per flower, but a positive correlation between pistil numbers and seed production per flower was observed in only one of the four populations. The numbers of pollen grains deposited per stigma varied from 0 to 60. The proportion of pollinated stigmas per flower ranged from 44% to 88% among populations and years. The numbers of pollen grains deposited per stigma and the percentages of pollinated stigmas were significantly different between populations, and two populations showed significant differences between years. A positive correlation between stigmatic pollen load and seed set was sought in ten population‐by‐year combinations but, in a given population, high stigmatic pollen loads did not always result in high seed set. Examination of pollen deposition, pistil and seed production over several sites and years showed that in addition to pollination, other factors such as resource or genetic loads were likely to limit the (lower than 10%) seed set in L. chinense. It appears that small, isolated populations experience severe pollination limitation; one population studied had seed/ovule ratios of 0.84% and 1.88% in 1995 and 1996. © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society, 2002, 140 , 31–38.  相似文献   

14.
Differences in pollen tube growth rates (certation) between heterospecific (foreign) and conspecific pollen may strongly influence whether hybrid offspring are produced after mixed pollen loads are delivered to a stigma. For both members of a sympatric species pair, Hibiscus moscheutos and H. laevis, pollination by pure loads of foreign pollen resulted in fruit set that was not significantly different from conspecific pollination, indicating that pure loads of foreign pollen could readily result in hybrid offspring. However, the number of seeds per fruit from pure foreign pollinations was significantly less than that of pure conspecific pollination. Simultaneous mixed pollination resulted in a proportion of hybrid seeds (detected by an electrophoretic marker enzyme) that was significantly lower than expected based upon the capacity of foreign pollen to effect fertilization when applied in pure pollinations. After these 50/50% pollen mixtures were applied to stigmas, 8.0 and 7.4% hybrids were produced when H. moscheutos and H. laevis were the ovule parents, respectively. For these Hibiscus species, pollen competition appears to function as a barrier to hybridization that is of moderate intensity compared with similar barriers occurring between other recently studied sympatric species pairs.  相似文献   

15.
Marcus T. Brock 《Oecologia》2009,161(2):241-251
Prezygotic reproductive barriers limit interspecific gene flow between congeners. Here, I examine the strength of floral isolation and interspecific pollen-pistil barriers between an invasive apomictic, Taraxacum officinale, and the indigenous sexual alpine dandelion, Taraxacum ceratophorum. Experimental arrays of either native inflorescences or a mixture of native and exotic inflorescences were used to examine insect preference and to track movement of a pollen analog. Using hand-pollinations, conspecific and heterospecific pollen germination success on native stigmas was compared. To additionally test for interspecific pollen competition, T. ceratophorum plants received one of three possible hand-pollinations: control conspecific pollination, concomitant conspecific and heterospecific pollination (mixed), or conspecific pollen followed by heterospecific pollen 15 min later (staggered). Floral isolation was negligible as no insect preference was detected. On a presence/absence basis, florets on native inflorescences received slightly less pollen analog from heterospecific donors than from conspecific donors; however, the amount of dye particles transferred from either Taraxacum species to stigmas on recipient T. ceratophorum inflorescences was equivalent. In contrast to weak floral isolation, strong pollen germination and pollen competition barriers should reduce the potential for hybridization. Heterospecific T. officinale pollen exhibited reduced germination success on T. ceratophorum stigmas in comparison to conspecific pollen. Furthermore, a significant pollen-competition effect on the percentage of hybrid offspring was detected only when T. officinale preceded T. ceratophorum pollen by 15 min. This result indicates that conspecific pollen out-competes heterospecific pollen but further suggests that biotic and abiotic factors reducing pollen accrual rates may partially remove barriers to natural hybridization.  相似文献   

16.
Flowering plants do not occur alone and often grow in mixed‐species communities where pollinator sharing is high and interactions via pollinators can occur at pre‐ and post‐pollination stages. While the causes and consequences of pre‐pollination interactions have been well studied little is known about post‐pollination interactions via heterospecific pollen (HP) receipt, and even less about the evolutionary implications of these interactions. In particular, the degree to which plants can evolve tolerance mechanisms to the negative effects of HP receipt has received little attention. Here, we aim to fill this gap in our understanding of post‐pollination interactions by experimentally testing whether two co‐flowering Clarkia species can evolve HP tolerance, and whether tolerance to specific HP ‘genotypes’ (fine‐scale local adaptation to HP) occurs. We find that Clarkia species vary in their tolerance to HP effects. Furthermore, conspecific pollen performance and the magnitude of HP effects were related to the recipient's history of exposure to HP in C. xantiana but not in C. speciosa. Specifically, better conspecific pollen performance and smaller HP effects were observed in populations of C. xantiana plants with previous exposure to HP compared to populations without such exposure. These results suggest that plants may have the potential to evolve tolerance mechanisms to HP effects but that these may occur not from the female (stigma, style) but from the male (pollen) perspective, a possibility that is often overlooked. We find no evidence for fine‐scale local adaptation to HP receipt. Studies that evaluate the adaptive potential of plants to the negative effects of HP receipt are an important first step in understanding the evolutionary consequences of plant–plant post‐pollination interactions. Such knowledge is in turn crucial for deciphering the role of plant–pollinator interactions in driving floral evolution and the composition of co‐flowering communities.  相似文献   

17.
Teak is a timber tree that is widely distributed in the tropics. Several studies on pollination and reproductive biology have been conducted, but generally information on flowering phenology and annual variation in total pollen production per tree is lacking. The reproductive phenology as well as flower‐ and pollen grain production of individuals in a population is important to theoreticians, field biologists and plant breeders, as they determine the distribution of genotypes within populations and influences the degree of differentiation among populations. This study reports flowering phenology and variation in total flower, fruit‐ and pollen production per tree in teak in a 25‐year‐old plantation across three consecutive years (2006–2008). The results show that the date of onset and end of flowering was highly variable across years. The longest flowering period of 93 days was observed in 2006. There was an asynchrony in the number of open flowers due to differences in time of anthesis among individuals (± 2 days) and inflorescences within individuals (± 6 h). The production of pollen grains per tree in 2007 was 33%, i.e. 16% more compared to 2006 and 2008. The fruit production per tree was 42% and 27% higher in 2007 compared to 2006 and 2008. Concentration of pollen grains (both on jelly‐coated microscopic slides and stigmas) were highest between noon and 2 pm. At this time, the stigmatic pollen load ranged between 4–8 pollen grains per stigma, which is sufficient for fruit development. The study concludes that the asynchronization of the flower opening might give rise to a high amount of self‐pollination in the stand, ultimately leading to poor fruit setting. Also, the large production of flowers and pollen per tree induced geitonogamy and decreased female fitness, as T. grandis is preferentially an out‐crossing species.  相似文献   

18.

Premise of the Study

Heterostyly, the reciprocal positioning of stigmas and anthers in different floral morphs, has long been thought to promote intermorph pollination. However, extensive intramorph pollination occurs commonly in heterostylous species, leading to recurrent questions about the functional and evolutionary significance of heterostyly.

Methods

To identify the sources of stigmatic pollen (autogamous [intraflower], geitonogamous [intraplant], vs. interplant), we emasculated either one flower or entire plants in experimental populations of the two closely related buckwheat species, distylous Fagopyrum esculentum and homostylous F. tataricum. Differences in pollen size allowed unambiguous identification of pollen on stigmas.

Results

Only 2.4% of F. tataricum pollen and 1.5% of F. esculentum pollen arrived successfully on compatible stigmas of other plants. In the former (homostylous) species, 71.3% of the pollen load on stigmas was autogamous, 10.8% was geitonogamous, and 17.9% was interplant. In the latter (distylous) species, 37.45% of the pollen on stigmas was autogamous, 13.8% was geitonogamous, 17.0% was intramorph, and 31.75% was intermorph. The amount of incompatible pollen arriving on stigmas was greatly decreased by both one‐flower and whole‐plant emasculations, and thus, the proportion of compatible pollen deposited increased with one‐flower emasculation and increased even more with whole‐plant emasculation.

Conclusions

Our quantification of pollen‐donor sources in these two species indicated that heterostyly in Fagopyrum esculentum provided a nearly 2‐fold fitness advantage (in terms of compatible pollination) over expected (random) pollen transfers between morphs. Because of reduced herkogamy, the homostylous F. tataricum was highly autogamous.  相似文献   

19.
The frequency of hybrid formation in angiosperms depends on how often heterospecific pollen is transferred to the stigma and on the success of that heterospecific pollen at fertilizing ovules. Even if heterospecific pollen is capable of effecting fertilization it may perform poorly when conspecific pollen is also available on the stigma. We applied pollen mixtures to stigmas to determine how pollen interactions affect siring success and the frequency of hybrid formation between two species of Ipomopsis (Polemoniaceae) in Colorado. Plants of both parental species and natural hybrids were pollinated with I. aggregata and I. tenuituba pollen in ratios of 100:0, 80:20, 50:50, 20:80, and 0:100 by mass. Plants were homozygous for different alleles at an isozyme marker, allowing us to distinguish the type of pollen parent for 2166 viable seeds from 273 fruits. In contrast to studies of many other hybridizing taxa, there was no evidence of an advantage to conspecific pollen, nor did composition of the stigmatic pollen load affect seed set. Instead, the frequency of seeds sired by a given species was proportional to its representation in the pollen load. In this hybrid zone, both the frequency of first-generation hybrid formation and the relative male fitness of the two parental species should be predictable from the rates of pollen transfer to stigmas.  相似文献   

20.
Invasive plants may threaten the reproductive success of native sympatric plants by modifying the pollination process. One potential mechanism takes place through the deposition of invasive pollen onto native stigmas when pollinators are shared among species. We explore how pollen from the invasive plant Brassica nigra influences pre- and post-fertilization stages in the native plant Phacelia parryi, through a series of hand pollination experiments. These two species share pollinators to a high degree. P. parryi flowers were hand-pollinated with either pure conspecific pollen (the control) or with B. nigra pollen applied prior to, simultaneously with, or following conspecific pollen. Application of B. nigra pollen lowered seed set, with the simultaneous application resulting in the highest reduction. Pollen tube growth was also influenced by the presence of invasive pollen, with fewer conspecific pollen tubes reaching the base of P. parryi styles in treatments where B. nigra pollen was applied prior to or simultaneously with conspecific pollen. The deleterious effects of invasive pollen on native seed set in this study are likely not due to loss of stigmatic receptivity since seed set was less affected when heterospecific pollen was applied prior to conspecific pollen, but may instead involve interactions between interspecific pollen grains on the stigma or within the style. Our study highlights the importance of timing of foreign pollen deposition on native stigmas and suggests that interspecific pollen transfer between native and exotic plants may be an important mechanism of competition for pollination in invaded plant communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号