首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Loss of endemic species represents a symptom of general degrading ecosystem conditions that is the indirect result of biodiversity alteration. Here, we developed a predictive model relating species richness of endemic riverine fishes to measured biological, climatic, and historical variables using data from 118 rivers distributed all over the Northern Hemisphere. In a minimally adequate multiple general least square model, total riverine fish species richness, historical biogeography (Pleistocene glaciations), and comtemporary climate accounted for 63% of the variability in endemic species richness; the strongest correlate being riverine fish species richness. Our findings suggest that (i) endemism and richness patterns are generally similar (fish diversity "hot-spots" areas sustain higher endemic species richness); (ii) glaciation in the Pleistocene have had a significant negative influence on endemic species richness in the more septentrional areas; and (iii) certain basins situated in desertic areas (subtropical dry-zone of deserts) have unusually high numbers of endemics. These last areas should not be overshadowed when setting conservation priorities.  相似文献   

2.
3.
4.
The genus Leontopodium comprises 30–41 species. The centre of diversity is the Sino‐Himalayan region in south‐western China, where about 15 species occur. The two species native to Europe, L. alpinum (known as the common ‘Edelweiss’) and L. nivale, are part of the cultural heritage of the people living there. Despite its importance, very little is known about the systematics of the genus. Because recent molecular studies have shown that species within this genus are closely related and difficult to distinguish with rDNA and cpDNA data, we used AFLPs to obtain a more detailed understanding of the phylogeny of the genus. Our main aims were as follows: (1) to clarify species relationships within the genus; and (2) to reveal information about the biogeography of the genus. We used AFLPs with six primer combinations to investigate 216 individuals in 38 populations of 16 different species. With AFLPs, we were able to recognize 10 different groups, all of which had strong bootstrap support. These results were also congruent with the morphology‐based taxonomy of the genus. Most private and rare fragments were found in the Yunnan region (south‐western China) relative to Europe and Mongolia/central China, suggesting a long‐lasting in situ history of populations in the centre of diversity of the genus. Our results illustrate the utility of AFLPs to resolve phylogenetic relationships between these closely related species. © 2011 The Linnean Society of London, Botanical Journal of the Linnean Society, 2011, 165 , 364–377.  相似文献   

5.
Climate is a driver of terrestrial ecosystem carbon exchange, which is an important product of ecosystem function. The Qinghai–Tibetan Plateau has recently been subjected to a marked increase in temperature as a consequence of global warming. To explore the effects of warming on carbon exchange in grassland ecosystems, we conducted a whole‐year warming experiment between 2012 and 2014 using open‐top chambers placed in an alpine meadow, an alpine steppe, and a cultivated grassland on the central Qinghai–Tibetan Plateau. We measured the gross primary productivity, net ecosystem CO2 exchange (NEE), ecosystem respiration, and soil respiration using a chamber‐based method during the growing season. The results show that after 3 years of warming, there was significant stimulation of carbon assimilation and emission in the alpine meadow, but both these processes declined in the alpine steppe and the cultivated grassland. Under warming conditions, the soil water content was more important in stimulating ecosystem carbon exchange in the meadow and cultivated grassland than was soil temperature. In the steppe, the soil temperature was negatively correlated with ecosystem carbon exchange. We found that the ambient soil water content was significantly correlated with the magnitude of warming‐induced change in NEE. Under high soil moisture condition, warming has a significant positive effect on NEE, while it has a negative effect under low soil moisture condition. Our results highlight that the NEE in steppe and cultivated grassland have negative responses to warming; after reclamation, the natural meadow would subject to loose more C in warmer condition. Therefore, under future warmer condition, the overextension of cultivated grassland should be avoided and scientific planning of cultivated grassland should be achieved.  相似文献   

6.
The start of the growing season (SOS) is essential to track the responses of vegetation to climate change. However, recent findings on whether the SOS in the middle-high latitudes of the Northern Hemisphere (NH) continued to advance or reversed during the global warming hiatus were not consistent. It is necessary to investigate the causes of this controversy and to examine the relationship between the SOS and preseason temperature trends. To this end, we first applied four widely used phenology extraction methods to derive the SOS from the GIMMS NDVI3g dataset and then used the ensemble empirical modal decomposition (EEMD) method to extract the nonlinear trends of the SOS and preseason temperature. Our results clarify, for the first time, that the limitations of the linear assumption-based trend analysis methods are an important but overlooked cause of the discrepancies among existing studies on whether the SOS was advanced or delayed in the NH (>30° N) during the global warming hiatus. We further revealed the range of the mismatches between the SOS and preseason temperature trends at the latitude, altitude and biome levels. Specifically, we discovered that the SOS in the NH (>30° N) obtained by the four phenology extraction methods showed a significant reversal from advance to delay during the global warming hiatus, and the corresponding average rate of change was very small. The area showing increasing preseason temperatures decreased during the global warming hiatus, but it always occupied most of the NH (>30° N). However, delayed SOS trends were dominant in the NH from 50° N to 60° N, above 3000 m and in biomes other than TBMF and BF. Accordingly, using an EEMD-like approach to evaluate the changes in the SOS and preseason temperature is necessary for improving our understanding of the changes in the SOS and their association with climate.  相似文献   

7.
The uplift of the Qinghai–Tibetan Plateau dramatically changed the regional topography and climate, profoundly impacting the distribution of many plant lineages. Plant responses to environmental changes are particularly prominent in lineages that require ecological factors differentiated from those present before the uplift of the QTP. Two fossil occurrences of Christella H. Lév., Fl. Kouy–Tchéou (Thelypteridaceae), a fern genus now distributed mainly at low elevations of the pantropics with warm and moist habitats, are described based on fossilized Cenozoic leaf fronds recovered from SW China: late Paleocene Christella nervosa (J. R. Tao) C. L. Xu, T. Su & Z. K. Zhou comb. nov. found in Liuqu, southern Tibet and middle Miocene Christella sp. recovered from the Jinggu Basin in western Yunnan. The frond fossils from both sites share key morphological characteristics that diagnose these fossils as Christella. After detailed comparisons, we further clarified Christella papilio (C. Hope) Holttum, a species distributed in warm, humid habitats at altitudes no more than 1300?m, as the nearest living relative of C. nervosa. This finding suggested that southern Tibet had not reached its present elevation during the late Paleocene (ca. 56 Ma). We propose that the uplift, accompanied by severe cooling and aridification after the late Paleocene, caused the disappearance of Christella in southern Tibet, whereas paleoenvironmental conditions enabled the genus to survive in Yunnan. Our study provides the first example of distributional constraints of ferns in SW China in response to paleoenvironmental changes in the Qinghai–Tibetan Plateau and nearby areas.  相似文献   

8.
Sequences of internal transcribed spacers (ITS) of nuclear ribosomal DNA, the chloroplast ndhF gene, and chloroplast trnL-F regions (trnL intron, and trnL [UAA] 3' exon-trnF [GAA] intergenic spacer) were used for phylogenetic analyses of Rhus, a genus disjunctly distributed in Asia, Europe, Hawaii, North America, and Northern Central America. Both ITS and cpDNA data sets support the monophyly of Rhus. The monophyly of subgenus Rhus was suggested by the combined cpDNA and ITS data, and largely supported in the cpDNA data except that Rhus microphylla of subgenus Lobadium was nested within it. The monophyly of subgenus Lobadium was strongly supported in the ITS data, whereas the cpDNA data revealed two main clades within the subgenus, which formed a trichotomy with the clade of subgenus Rhus plus R. microphylla. The ITS and cpDNA trees differ in the positions of Rhus michauxii, R. microphylla, and Rhus rubifolia, and hybridization may have caused this discordance. Fossil evidence indicates that Rhus dates back to the early Eocene. The penalized likelihood method was used to estimate divergence times, with fossils of Rhus subgenus Lobadium, Pistacia and Toxicodendron used for age constraints. Rhus diverged from its closest relative at 49.1+/-2.1 million years ago (Ma), the split of subgenus Lobadium and subgenus Rhus was at 38.1+/-3.0 Ma. Rhus most likely migrated from North America into Asia via the Bering Land Bridge during the Late Eocene (33.8+/-3.1 Ma). Rhus coriaria from southern Europe and western Asia diverged from its relatives in eastern Asia at 24.4+/-3.2 Ma. The Hawaiian Rhus sandwicensis diverged from the Asian Rhus chinensis at 13.5+/-3.0 Ma. Subgenus Lobadium was inferred to be of North American origin. Taxa of subgenus Lobadium then migrated southward to Central America. Furthermore, we herein make the following three nomenclatural combinations: (1) Searsia leptodictya (Diels) T. S. Yi, A. J. Miller and J. Wen, comb. nov., (2) Searsia pyroides (A. Rich.) T. S. Yi, A. J. Miller and J. Wen, comb. nov., and (3) Searsia undulata (Jacq.) T. S. Yi, A. J. Miller and J. Wen, because our analyses support the segregation of Searsia from Rhus.  相似文献   

9.
10.
11.
In order to clarify the interspecific relationships of a lineage in Pleurospermum, P. hookeri C. B. Clarke, P. yunnanense Franch., and P. giraldii Diels, and to understand intraspecific divergence of P. hookeri, a phylogeographic study was carried out based on 198 individuals from 24 populations. Three chloroplast DNA regions, ndhF-rpl32, trnL-trnF, and trnQ-rps16, were sequenced in the present study. The genetic relationship between P. hookeri and P. giraldii is not as close as previously assumed. Pleurospermum hookeri and P. giraldii may originate from an unknown ancestor located in the Qinling region. Pleurospermum yunnanensewas found to be the closest relative of P. hookeri in all the species included in the phylogenetic analysis. The two haplotypes identified from P. yunnanense are shared with P. hookeri, which is potentially a result of both incomplete linkage sorting and introgression. Three large divergences within P. hookeri were identified, located at the northeastern edge, southeastern edge, and platform of the Qinghai–Tibet Plateau (QTP), respectively. Long-term history can explain the deep intraspecific divergence of P. hookeri. The uplift of the QTP played a key role in that divergence, and then were the climatic changes in the Quaternary. In addition, we found one refugium at the northeastern edge of the QTP, one at the southeastern edge, and at least one in the Hengduan Mountains region on the platform of the QTP.  相似文献   

12.
13.
14.
15.
Exploring the community assembly has been important for explaining the maintenance mechanisms of biodiversity and species coexistence, in that it is a central issue in community ecology. Here, we examined patterns of the community phylogenetic structure of the subalpine meadow plant community along the slope gradient in the Qinghai–Tibetan Plateau of China. We surveyed all species and constructed the phylogenetic tree of the plant community based on data from the Angiosperm Phylogeny Group III. We selected the net relative index (NRI) and evaluated the community phylogenetic structure along the five slope plants communities. We found that the phylogenetic structure varied from phylogenetic clustering to phylogenetic overdispersion with the slope aspect from north to south. In the north slope, the community phylogenetically cluster indicated that the limiting similarity played a leading role in the community assembly and the maintenance of biodiversity. Community phylogenetic overdispersion in the east, southeast, and south slopes indicated that habitat filtration was the driving force for community assembly. The NRI index of the northeast slope was close to zero, implying random dispersion. But it may be driven by the neutral process or limiting similarity, in that the community assembly process was the result of a combination of several ecological factors and thus required further study.  相似文献   

16.
The Qinghai–Tibet Plateau (QTP) is particularly sensitive to global climate change, especially to elevated temperatures, when compared with other ecosystems. However, few studies use long‐term field measurements to explore the interannual variations in plant biomass under climate fluctuations. Here, we examine the interannual variations of plant biomass within two vegetation types (alpine meadow and alpine shrub) during 2008–2017 and their relationships with climate variables. The following results were obtained. The aboveground biomass (AGB) and belowground biomass (BGB) response differently to climate fluctuations, the AGB in KPM was dominated by mean annual precipitation (MAP), whereas the AGB in PFS was controlled by mean annual air temperature (MAT). However, the BGB of both KPM and PFS was only weakly affected by climate variables, suggesting that the BGB in alpine ecosystems may remain as a stable carbon stock even under future global climate change. Furthermore, the AGB in PFS was significantly higher than KPM, while the BGB and R/S in KPM were significantly higher than PFS, reflecting the KPM be more likely to allocate more photosynthates to roots. Interestingly, the proportion of 0–10 cm root biomass increased in KPM and PFS, whereas the other proportions both decreased, reflecting a shift in biomass toward the surface layer. Our results could provide a new sight for the prediction how alpine ecosystem response to future climate change.  相似文献   

17.
Plant fossils from the Qinghai–Tibetan Plateau (QTP), China are critical to understand not only the diversification history of plants there, but also the paleoenvironmental conditions. Alnus are deciduous trees, mainly distributed in temperate and subtropical regions of Eurasia and North America, and they are well known in the fossil records throughout the Cenozoic in the Northern Hemisphere. We collected numerous well‐preserved Alnus leaf and infructescence fossils from the Lawula Formation (~34.6 Ma with 40Ar/39Ar dating) at the present elevation of 3910 m a.s.l. in the southeastern QTP. Based on detailed morphological comparisons with existing and fossil species, these fossils show closest affinity to Alnus ferdinandi‐coburgii C. K. Schneid., and we refer to these fossils as A. cf. ferdinandi‐coburgii. These specimens comprise the oldest megafossil record of Alnus in the QTP, and provide solid evidence for the distribution of Alnus there as early as the late Eocene. Extant A. ferdinandi‐coburgii is distributed in areas with mean annual temperature values between 9.7 °C and 16.9 °C, and mean annual precipitation values ranging from 896.2 mm to 1161.2 mm; therefore, fossils of A. cf. ferdinandi‐coburgii suggest a much warmer and wetter climate during the late Eocene than today in the southeastern QTP. This finding is consistent with other evidence for continued uplift of the southeastern QTP after the late Eocene that might be due to the eastward extension of the QTP.  相似文献   

18.
Based on a unique dataset of more than 50 000 observations of ice phenology from 1213 lakes and 236 rivers in 12 different countries, we show that interannual variations in the timing of ice‐on and ice‐off on lakes and rivers are not equally pronounced over the entire Northern Hemisphere, but increase strongly towards geographical regions that experience only short periods during which the air temperature falls below 0 °C. We explain our observations by interannual fluctuation patterns of air temperature and suggest that lake and river ecosystems in such geographical regions are particularly vulnerable to global warming, as high interannual variability is known to have important ramifications for ecosystem structure and functioning. We estimate that the standard deviation of the duration of ice cover, viewed as a measure of interannual variability, exceeds 25 days for lakes and rivers located on 7% of the land area of the Northern Hemisphere. Such high variability might be an early warning signal for a critical transition from strictly dimictic, ice‐covered systems to monomictic, open‐water systems. Using the Global Lake and Wetland Database, we suggest that 3.7% of the world's lakes larger than 0.1 km2 are at high risk of becoming open‐water systems in the near future, which will have immediate consequences for global biogeochemical cycles.  相似文献   

19.
Few studies have examined the succession of plant communities in the alpine zone. Studying the succession of plant communities is helpful to understand how species diversity is formed and maintained. In this study, we used species inventories, a molecular phylogeny, and trait data to detect patterns of phylogenetic and functional community structure in successional plant communities growing on the mounds of Himalayan marmots (Marmota himalayana) on the southeast edge of the Qinghai-Tibet Plateau. We found that phylogenetic and functional diversities of plant communities on marmot mounds tended to cluster during the early to medium stages of succession, then trended toward overdispersion from medium to late stages. Alpine species in early and late stages of succession were phylogenetically and functionally overdispersed, suggesting that such communities were assembled mainly through species interactions, especially competition. At the medium and late stages of succession, alpine communities growing on marmot mounds were phylogenetically and functionally clustered, implying that the communities were primarily structured by environmental filtering. During the medium and late stages of succession the phylogenetic and functional structures of plant communities on marmot mounds differed significantly from those on neighboring sites. Our results indicate that environmental filtering and species interactions can change plant community composition at different successional stages. Assembly of plant communities on marmot mounds was promoted by a combination of traits that may provide advantages for survival and adaptation during periods of environmental change.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号