首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Climate is a driver of terrestrial ecosystem carbon exchange, which is an important product of ecosystem function. The Qinghai–Tibetan Plateau has recently been subjected to a marked increase in temperature as a consequence of global warming. To explore the effects of warming on carbon exchange in grassland ecosystems, we conducted a whole‐year warming experiment between 2012 and 2014 using open‐top chambers placed in an alpine meadow, an alpine steppe, and a cultivated grassland on the central Qinghai–Tibetan Plateau. We measured the gross primary productivity, net ecosystem CO2 exchange (NEE), ecosystem respiration, and soil respiration using a chamber‐based method during the growing season. The results show that after 3 years of warming, there was significant stimulation of carbon assimilation and emission in the alpine meadow, but both these processes declined in the alpine steppe and the cultivated grassland. Under warming conditions, the soil water content was more important in stimulating ecosystem carbon exchange in the meadow and cultivated grassland than was soil temperature. In the steppe, the soil temperature was negatively correlated with ecosystem carbon exchange. We found that the ambient soil water content was significantly correlated with the magnitude of warming‐induced change in NEE. Under high soil moisture condition, warming has a significant positive effect on NEE, while it has a negative effect under low soil moisture condition. Our results highlight that the NEE in steppe and cultivated grassland have negative responses to warming; after reclamation, the natural meadow would subject to loose more C in warmer condition. Therefore, under future warmer condition, the overextension of cultivated grassland should be avoided and scientific planning of cultivated grassland should be achieved.  相似文献   

2.
3.
    
The uplift of the Qinghai–Tibetan Plateau dramatically changed the regional topography and climate, profoundly impacting the distribution of many plant lineages. Plant responses to environmental changes are particularly prominent in lineages that require ecological factors differentiated from those present before the uplift of the QTP. Two fossil occurrences of Christella H. Lév., Fl. Kouy–Tchéou (Thelypteridaceae), a fern genus now distributed mainly at low elevations of the pantropics with warm and moist habitats, are described based on fossilized Cenozoic leaf fronds recovered from SW China: late Paleocene Christella nervosa (J. R. Tao) C. L. Xu, T. Su & Z. K. Zhou comb. nov. found in Liuqu, southern Tibet and middle Miocene Christella sp. recovered from the Jinggu Basin in western Yunnan. The frond fossils from both sites share key morphological characteristics that diagnose these fossils as Christella. After detailed comparisons, we further clarified Christella papilio (C. Hope) Holttum, a species distributed in warm, humid habitats at altitudes no more than 1300?m, as the nearest living relative of C. nervosa. This finding suggested that southern Tibet had not reached its present elevation during the late Paleocene (ca. 56 Ma). We propose that the uplift, accompanied by severe cooling and aridification after the late Paleocene, caused the disappearance of Christella in southern Tibet, whereas paleoenvironmental conditions enabled the genus to survive in Yunnan. Our study provides the first example of distributional constraints of ferns in SW China in response to paleoenvironmental changes in the Qinghai–Tibetan Plateau and nearby areas.  相似文献   

4.
    
Exploring the community assembly has been important for explaining the maintenance mechanisms of biodiversity and species coexistence, in that it is a central issue in community ecology. Here, we examined patterns of the community phylogenetic structure of the subalpine meadow plant community along the slope gradient in the Qinghai–Tibetan Plateau of China. We surveyed all species and constructed the phylogenetic tree of the plant community based on data from the Angiosperm Phylogeny Group III. We selected the net relative index (NRI) and evaluated the community phylogenetic structure along the five slope plants communities. We found that the phylogenetic structure varied from phylogenetic clustering to phylogenetic overdispersion with the slope aspect from north to south. In the north slope, the community phylogenetically cluster indicated that the limiting similarity played a leading role in the community assembly and the maintenance of biodiversity. Community phylogenetic overdispersion in the east, southeast, and south slopes indicated that habitat filtration was the driving force for community assembly. The NRI index of the northeast slope was close to zero, implying random dispersion. But it may be driven by the neutral process or limiting similarity, in that the community assembly process was the result of a combination of several ecological factors and thus required further study.  相似文献   

5.
6.
    
Plant fossils from the Qinghai–Tibetan Plateau (QTP), China are critical to understand not only the diversification history of plants there, but also the paleoenvironmental conditions. Alnus are deciduous trees, mainly distributed in temperate and subtropical regions of Eurasia and North America, and they are well known in the fossil records throughout the Cenozoic in the Northern Hemisphere. We collected numerous well‐preserved Alnus leaf and infructescence fossils from the Lawula Formation (~34.6 Ma with 40Ar/39Ar dating) at the present elevation of 3910 m a.s.l. in the southeastern QTP. Based on detailed morphological comparisons with existing and fossil species, these fossils show closest affinity to Alnus ferdinandi‐coburgii C. K. Schneid., and we refer to these fossils as A. cf. ferdinandi‐coburgii. These specimens comprise the oldest megafossil record of Alnus in the QTP, and provide solid evidence for the distribution of Alnus there as early as the late Eocene. Extant A. ferdinandi‐coburgii is distributed in areas with mean annual temperature values between 9.7 °C and 16.9 °C, and mean annual precipitation values ranging from 896.2 mm to 1161.2 mm; therefore, fossils of A. cf. ferdinandi‐coburgii suggest a much warmer and wetter climate during the late Eocene than today in the southeastern QTP. This finding is consistent with other evidence for continued uplift of the southeastern QTP after the late Eocene that might be due to the eastward extension of the QTP.  相似文献   

7.
8.
    
The Himalaya–Hengduan Mountain region is one of the hotspots of biodiversity research. The uplift of the Qinghai–Tibetan Plateau (QTP) and the Quaternary glaciation caused great environmental changes in this region, and the responses of many species in the QTP to the Quaternary climate are still largely unknown. The genetic structure and phylogeographical history of Gentiana crassicaulis Duthie ex Burk, an endemic Chinese alpine species in this area, were investigated based on four chloroplast fragments and internal transcribed spacer region of the nuclear ribosomal DNA (nrITS) sequences of 11 populations. The populations with highly diverse chloroplast haplotypes were mainly found at the edge of the QTP. There were two main haplotypes of nrITS clones, one shared by the Yunnan and Guizhou populations, and the other by the remaining populations. The population with the highest diversity was the Gansu population, located at the edge of the plateau. Based on molecular dating, the diversification of G. crassicaulis at the edge of the plateau occurred before the Last Glacial Maximum (LGM), and the species may have completed its expansion from the edge to the platform. Ecological niche models were conducted to predict the distributional ranges of G. crassicaulis at present, during the LGM, and during the last interglacial (LIG) period. The results demonstrated that G. crassicaulis survived on the QTP platform and at the edge during the LGM but afterward retreated from the platform to the southern edge, followed by expansion to the platform.  相似文献   

9.
    
The genus Leontopodium comprises 30–41 species. The centre of diversity is the Sino‐Himalayan region in south‐western China, where about 15 species occur. The two species native to Europe, L. alpinum (known as the common ‘Edelweiss’) and L. nivale, are part of the cultural heritage of the people living there. Despite its importance, very little is known about the systematics of the genus. Because recent molecular studies have shown that species within this genus are closely related and difficult to distinguish with rDNA and cpDNA data, we used AFLPs to obtain a more detailed understanding of the phylogeny of the genus. Our main aims were as follows: (1) to clarify species relationships within the genus; and (2) to reveal information about the biogeography of the genus. We used AFLPs with six primer combinations to investigate 216 individuals in 38 populations of 16 different species. With AFLPs, we were able to recognize 10 different groups, all of which had strong bootstrap support. These results were also congruent with the morphology‐based taxonomy of the genus. Most private and rare fragments were found in the Yunnan region (south‐western China) relative to Europe and Mongolia/central China, suggesting a long‐lasting in situ history of populations in the centre of diversity of the genus. Our results illustrate the utility of AFLPs to resolve phylogenetic relationships between these closely related species. © 2011 The Linnean Society of London, Botanical Journal of the Linnean Society, 2011, 165 , 364–377.  相似文献   

10.
    
Metasequoia was widely distributed across the mid and high latitudes of the Northern Hemisphere during the Cretaceous, and experienced range contraction associated with Tertiary climatic cooling and drying. We compile occurrences of Metasequoia from the literature, museum collections and new localities, and plot them in a plate tectonic framework to document these range changes through time. We note two pulses of range contraction: Eocene–Oligocene associated with cooling at high latitudes, and Late Miocene–Pliocene associated with cooling and drying in mid latitudes. Only the northern limit of the taxon's range changed during these intervals. Because of its apparent climate sensitivity, Metasequoia might be used to reconstruct palaeoclimate. To test this hypothesis, we assemble the climatic tolerances of living Metasequoia glyptostroboides under natural and cultivated conditions and compare them with palaeoclimate reconstructions across the genus' former range. The fossil record of Metasequoia shows that ancient members of the genus regenerated under similar conditions to those preferred by living M. glyptostroboides (mean annual temperature of 9–17 °C and mean annual precipitation of 953–2039 mm). However, some data suggest that early Tertiary representatives may have tolerated mean annual temperatures as high as 20–22 °C. Thus, the climate tolerance of Metasequoia appears to have evolved little since the Cretaceous, suggesting that it has potential as a palaeoclimate indicator when used in coordination with other climate proxies. However, Metasequoia alone cannot provide great precision.  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 154 , 115–127.  相似文献   

11.
    
Organic nitrogen (N) uptake by plants has been recognized as a significant component of terrestrial N cycle. Several studies indicated that plants have the ability to switch their preference between inorganic and organic forms of N in diverse environments; however, research on plant community response in organic nitrogen uptake to warming and grazing is scarce. Here, we demonstrated that organic N uptake by an alpine plant community decreased under warming with 13C–15N‐enriched glycine addition method. After 6 years of treatment, warming decreased plant organic N uptake by 37% as compared to control treatment. Under the condition of grazing, warming reduced plant organic N uptake by 44%. Grazing alone significantly increased organic N absorption by 15%, whereas under warming condition grazing did not affect organic N uptake by the Kobresia humilis community on Tibetan Plateau. Besides, soil NO3–N content explained more than 70% of the variability observed in glycine uptake, and C:N ratio in soil dissolved organic matter remarkably increased under warming treatment. These results suggested warming promoted soil microbial activity and dissolved organic N mineralization. Grazing stimulated organic N uptake by plants, which counteracted the effect of warming.  相似文献   

12.
    
The Hengduan Mountains (HDM) in China are an important hotspot of plant diversity and endemism, and are considered to be a secondary diversification center for the woody plant genus Salix L. (Salicaceae). Here we aimed to reconstruct the spatiotemporal evolution of the Salix ChamaetiaVetrix clade in the HDM and to test for the occurrence of a local radiation. We inferred phylogenetic relationships based on more than 34 000 restriction‐site associated DNA loci from 27 species. Phylogenetic analyses recovered a well‐resolved tree topology with two major clades, the Eurasian clade and the HDM clade, with a divergence time of ca. 23.9 Ma. Species in the HDM clade originated in the northern part of the range and adjacent areas, and then dispersed into the southern HDM, westwards to the Himalayas and eastwards to the Qinling Mountains. Niche modelling analyses reveal that range contractions occurred in the northern areas during the last glacial maximum, while southward expansions resulted in range overlaps. Reconstructions of character evolution related to plant height, inflorescence, and flower morphology suggest that adaptations to altitudinal distribution contributed to the diversification of the HDM willows. Our data support the occurrence of a radiation in the HDM within the Salix ChamaetiaVetrix clade. Dispersal within the mountain system, and to adjacent regions, in addition to survival in glacial refugia shaped the biogeographical history of the clade, while adaptations of the HDM willows along an altitudinal gradient could be important ecological factors explaining the high species diversity of Salix in this area.  相似文献   

13.
14.
15.
    
In order to clarify the interspecific relationships of a lineage in Pleurospermum, P. hookeri C. B. Clarke, P. yunnanense Franch., and P. giraldii Diels, and to understand intraspecific divergence of P. hookeri, a phylogeographic study was carried out based on 198 individuals from 24 populations. Three chloroplast DNA regions, ndhF-rpl32, trnL-trnF, and trnQ-rps16, were sequenced in the present study. The genetic relationship between P. hookeri and P. giraldii is not as close as previously assumed. Pleurospermum hookeri and P. giraldii may originate from an unknown ancestor located in the Qinling region. Pleurospermum yunnanensewas found to be the closest relative of P. hookeri in all the species included in the phylogenetic analysis. The two haplotypes identified from P. yunnanense are shared with P. hookeri, which is potentially a result of both incomplete linkage sorting and introgression. Three large divergences within P. hookeri were identified, located at the northeastern edge, southeastern edge, and platform of the Qinghai–Tibet Plateau (QTP), respectively. Long-term history can explain the deep intraspecific divergence of P. hookeri. The uplift of the QTP played a key role in that divergence, and then were the climatic changes in the Quaternary. In addition, we found one refugium at the northeastern edge of the QTP, one at the southeastern edge, and at least one in the Hengduan Mountains region on the platform of the QTP.  相似文献   

16.
    
Anthropogenic‐driven global change, including changes in atmospheric nitrogen (N) deposition and precipitation patterns, is dramatically altering N cycling in soil. How long‐term N deposition, precipitation changes, and their interaction influence nitrous oxide (N2O) emissions remains unknown, especially in the alpine steppes of the Qinghai–Tibetan Plateau (QTP). To fill this knowledge gap, a platform of N addition (10 g m−2 year−1) and altered precipitation (±50% precipitation) experiments was established in an alpine steppe of the QTP in 2013. Long‐term N addition significantly increased N2O emissions. However, neither long‐term alterations in precipitation nor the co‐occurrence of N addition and altered precipitation significantly affected N2O emissions. These unexpected findings indicate that N2O emissions are particularly susceptible to N deposition in the alpine steppes. Our results further indicated that both biotic and abiotic properties had significant effects on N2O emissions. N2O emissions occurred mainly due to nitrification, which was dominated by ammonia‐oxidizing bacteria, rather than ammonia‐oxidizing archaea. Furthermore, the alterations in belowground biomass and soil temperature induced by N addition modulated N2O emissions. Overall, this study provides pivotal insights to aid the prediction of future responses of N2O emissions to long‐term N deposition and precipitation changes in alpine ecosystems. The underlying microbial pathway and key predictors of N2O emissions identified in this study may also be used for future global‐scale model studies.  相似文献   

17.
18.
The Qinghai–Tibetan Plateau (QTP) has the highest elevations of all biodiversity hotspots. Difficulties involved in fieldwork at high elevations cause challenges in researching mechanisms facilitating species coexistence. Herein, we investigated Snow Partridge (Lerwa lerwa) and Tibetan Snowcock (Tetraogallus tibetanus), the only two endemic Galliformes on the QTP, to understand species coexistence patterns and determine how they live in sympatry for the first time. We assembled occurrence data, estimated habitat suitability differences and the underlying factors between two species at different scales using ecological niche models. Niche overlap tests were used to investigate whether niche differences between these species allow for their coexistence. We found that elevation was the most important factor determining habitat suitability for both species. At the meso‐scale, two species have similar ecological niches with their suitable habitats lying predominantly along ridge crests. However, ridge crests were more influential for habitat suitability by L. lerwa than for that of T. tibetanus because the latter species ranges further afield than ridge crests. Thus, differences in habitat suitability between these species lead to habitat partitioning, which allows stable coexistence. At the macro‐scale, temperature and precipitation were major factors influencing habitat suitability differences between these species. Tetraogallus tibetanus extended into the hinterland of the QTP and occurred at higher elevations, where colder and drier alpine conditions are commonplace. Conversely, L. lerwa occurred along the southeastern margin of the QTP with a lower snow line, an area prone to rainy and humid habitats. Niche overlap analysis showed that habitat suitability differences between these species are not driven by niche differentiation. We concluded that the coexistence of these two pheasants under high‐elevation conditions could be an adaption to different alpine conditions.  相似文献   

19.
    
The Qinghai–Tibet Plateau (QTP) is particularly sensitive to global climate change, especially to elevated temperatures, when compared with other ecosystems. However, few studies use long‐term field measurements to explore the interannual variations in plant biomass under climate fluctuations. Here, we examine the interannual variations of plant biomass within two vegetation types (alpine meadow and alpine shrub) during 2008–2017 and their relationships with climate variables. The following results were obtained. The aboveground biomass (AGB) and belowground biomass (BGB) response differently to climate fluctuations, the AGB in KPM was dominated by mean annual precipitation (MAP), whereas the AGB in PFS was controlled by mean annual air temperature (MAT). However, the BGB of both KPM and PFS was only weakly affected by climate variables, suggesting that the BGB in alpine ecosystems may remain as a stable carbon stock even under future global climate change. Furthermore, the AGB in PFS was significantly higher than KPM, while the BGB and R/S in KPM were significantly higher than PFS, reflecting the KPM be more likely to allocate more photosynthates to roots. Interestingly, the proportion of 0–10 cm root biomass increased in KPM and PFS, whereas the other proportions both decreased, reflecting a shift in biomass toward the surface layer. Our results could provide a new sight for the prediction how alpine ecosystem response to future climate change.  相似文献   

20.
    
Pleistocene glacial–interglacial climatic oscillations greatly shaped the current genetic structure of many species. However, geographic features may influence the impact of climatic cycling. Distinct geographic and environmental characters between northern and southern parts of the eastern Qinghai–Tibetan Plateau (EQTP) facilitate explorations into the impacts of geographic features on species. The northern parts of EQTP contain large areas of marsh, and the environment is rather homogeneous. In contrast, the southern EQTP harbors complex alpine valleys and a much more heterogeneous setting. We evaluate DNA sequence variation from both the mitochondrial and nuclear genomes in Nanorana pleskei, a species endemic to the EQTP. Hypothesis testing on the evolutionary history of N. pleskei indicates that northern populations can disperse freely, but alpine valleys isolate southern populations. Demographic histories between northern and southern populations also differ. Northern populations appear to have experienced population expansions, while southern frogs exhibit a far more stable demographic history. By combining climatic analyses and species' distribution models, our study suggests that geographic and environmental features drive the differences between the northern and southern EQTP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号