首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王发松  温铁龙  牛苗  李琳 《广西植物》2015,35(2):178-186
鼠尾草属是唇形科中最大的属,全球有近1 000种。我国是鼠尾草属东亚分布中心,有84种,分布于全国各地,尤以西南地区最多。鼠尾草属植物具有很高的经济价值和观赏价值,但由于鼠尾草属植物分布广、种类多、形态变异大,给该属鉴定和分类学研究带来了很大的困难。此外,在采集和调查过程中发现弧隔鼠尾草亚属和荔枝草亚属的很多种类在营养生长期仅通过叶片很难鉴定。表皮毛是植物叶片上最常见的附属物,其分布特性和形态特征常作为植物鉴定和分类学研究的重要手段。该文利用光学显微镜和环境扫描电镜对18种和1变型共19份鼠尾草属植物的叶片类型、表皮细胞形状、垂周壁样式、气孔器类型和表皮毛等叶表皮微形态特征进行了观察和比较研究,为鼠尾草属的分类界定研究提供证据。结果表明:这19份鼠尾草属植物叶表皮和表皮毛形态特征在电子显微镜下表现出明显的多样性,叶表皮细胞形状为不规则形或多边形,垂周壁多数为浅波状或波状,少数为平直或弓形。气孔器为无规则型和不等细胞型,其中无规则型最为常见。样品叶表皮毛分为4个类型,盾状腺毛、头状腺毛、短非腺毛和长非腺毛。该属植物叶表皮的这些微形态特征,可为本属鉴定和分类学研究提供理论依据。  相似文献   

2.
Phenetic classification corresponds to no biological model and lacks a sound philosophical basis. Cladistics (ignoring meaningless “transformed cladistics”) assumes divergent evolution and, usually, that best estimates of phylogeny are obtained by parsimony principles, both questionable assumptions at times. It is better than phenetics since more-or-less testable hypotheses are generated, but pitfalls are many, in data selection and interpretation (as to homology), and in commensurability of units and direction of change. Above all we learn: homoplasy is rife in nature. Much bad cladistics has been done. If it is to reflect phylogeny, classification cannot be artificially stabilized, but is its only aim to express (hypothesized) cladistic patterns? And can it do that with any degree of overall assurance? Biologists are legitimately interested in defining grades as well as clades. Recognition of an unequivocal clade-grade frequently leaves a paraphyletic grade residue that cannot itself be unequivocally resolved. This is a real problem that requires attention in formal taxonomy and in applying cladistics. Primarily morphological cladistics will be increasingly supplanted by molecular (nucleotide-sequence) cladistics. The role of evolutionary taxonomy will change accordingly.  相似文献   

3.
    
The inconsistency problem in systematics refers in part to the fact that disparate taxa of identical Linnean rank are not necessarily similar or even readily comparable in any other specifiable biological feature. This shortcoming led to a ‘temporal banding’ proposal in which extant clades associated with particular taxonomic ranks would be standardized according to a universal metric: the absolute time of evolutionary origin. However, one underexplored possibility is that same‐level taxa in disparate organismal groups already might be similar (fortuitously so) in evolutionary age. In the present study, we explicitly address this possibility by reviewing published molecular inferences about the known or suspected origination dates of taxonomic genera, families, and orders in diverse organismal groups. Our findings empirically confirm that currently recognized taxa are far from temporally standardized, thereby adding support for the contention that this kind of taxonomic inconsistency should ultimately be rectified in our biological classifications. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 707–714.  相似文献   

4.
  总被引:1,自引:0,他引:1  
  相似文献   

5.
    
Petal and fruit surface sculpturing are reported for seven endemic Bupleurum species in Turkey. Considerable differences in the dorsal surface of petals were observed, but major structural similarities were found in the ventral surface of petals. Significant taxonomic differences between species were determined on the surfaces of the fruits. These microstructural surface features are evaluated as possible consistent parameters in the delimitation of species of Bupleurum. © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society , 2002, 138 , 441–449.  相似文献   

6.
    
Systematic research on bivalved molluscs (Mollusca: Bivalvia = Pelecypoda) is briefly reviewed in an introduction to a series of papers focusing on seven of the larger branches of the bivalve tree. These are presented in an attempt to summarize current knowledge, to stimulate new research and to highlight needs for future research focus. A revised classification of extant bivalve families (with synonyms and included subfamilies) is presented, based on information compiled from the latest palaeontological, morphological and molecular data.  © 2006 The Linnean Society of London, Zoological Journal of the Linnean Society , 2006, 148 , 223–235.  相似文献   

7.
    
With c. 85 species, the genus Micranthes is among the larger genera of the Saxifragaceae. It is only distantly related to the morphologically similar genus Saxifraga, in which it has frequently been included as Saxifraga section Micranthes. To study the molecular evolution of Micranthes, we analysed nuclear ribosomal (internal transcribed spacer, ITS) and plastid (trnLtrnF) DNA sequences in a comprehensive set of taxa comprising c. 75% of the species. The molecular phylogenetic tree from the combined dataset revealed eight well‐supported clades of Micranthes. These clades agree in part with previously acknowledged subsections or series of Saxifraga section Micranthes. As these eight groups can also be delineated morphologically, we suggest that they should be recognized as sections of Micranthes. New relationships were also detected for some species and species groups, e.g. section Davuricae sister to sections Intermediae and Merkianae, and M. micranthidifolia as a member of section Micranthes. Species proposed to be excluded from the genus Micranthes for morphological reasons were resolved in the molecular tree in Saxifraga. Many morphological characters surveyed were homoplasious to varying extents. Micromorphological characters support comparatively well the clades in the phylogenetic tree. An updated nomenclature and a taxonomic conspectus of sections and species of Micranthes are provided. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 178 , 47–66.  相似文献   

8.
We used a phylogenetic approach to analyze the evolution of methanogenesis and methanogens. We show that 23 vertically transmitted ribosomal proteins do not support the monophyly of methanogens, and propose instead that there are two distantly related groups of extant archaea that produce methane, which we have named Class I and Class II. Based on this finding, we subsequently investigated the uniqueness of the origin of methanogenesis by studying both the enzymes of methanogenesis and the proteins that synthesize its specific coenzymes. We conclude that hydrogenotrophic methanogenesis appeared only once during evolution. Genes involved in the seven central steps of the methanogenic reduction of carbon dioxide (CO(2)) are ubiquitous in methanogens and share a common history. This suggests that, although extant methanogens produce methane from various substrates (CO(2), formate, acetate, methylated C-1 compounds), these archaea have a core of conserved enzymes that have undergone little evolutionary change. Furthermore, this core of methanogenesis enzymes seems to originate (as a whole) from the last ancestor of all methanogens and does not appear to have been horizontally transmitted to other organisms or between members of Class I and Class II. The observation of a unique and ancestral form of methanogenesis suggests that it was preserved in two independent lineages, with some instances of specialization or added metabolic flexibility. It was likely lost in the Halobacteriales, Thermoplasmatales and Archaeoglobales. Given that fossil evidence for methanogenesis dates back 2.8 billion years, a unique origin of this process makes the methanogenic archaea a very ancient taxon.  相似文献   

9.
Klasea , traditionally treated as a section in Serratula , is now widely accepted at the generic level. A classification of the genus is presented here, accommodating the 46 species in ten sections based on nuclear ribosomal DNA external and internal transcribed spacer sequence data and morphology. New combinations for five species and ten subspecies are published, and a new hybrid species is described. The genus ranges from the Iberian Peninsula and north Africa through southern and eastern Europe, west and central Asia to the Himalayas, and the Far East of Russia and China. The ancestral area is in west Asia, most probably eastern Anatolia and northern and western Iran. In this region, representatives of all sections are present. The largest section Klasea diversified most likely in the mountains of central Asia. A key to all Klasea species is provided.  © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society , 2006, 152 , 435–464.  相似文献   

10.
    
Orophilous taxa of Sideritis sect. Sideritis (Lamiaceae) are rare, although highly diversified in south-eastern Spain. Most of them belong to subsections Hyssopifolia and Fruticulosa and show very reduced distribution areas in the summits of the highest Betic mountains. The inaccessibility of their habitats has meant that many of them have been described only within the last twenty years. In this context, a new species Sideritis tugiensis is described in subsection Hyssopifolia , from the Oromediterranean summits of Sierra de Segura (south-eastern Spain). It is a woody, cushion-shaped plant, resembling both S. carbonellis Socorro (subsect. Hyssopifolia) and S. glacialis Boiss., s.l. (subsect. Fruticulosa) , though important morphological divergences warrant recognition at species rank. Data on morphology, ecology and chorology of the new species are reported, and affinities and differences with regard to close taxa from other subsections are presented. Evolutionary trends in the whole aggregate are briefly discussed.  相似文献   

11.
12.
Documentation of amentoflavone O-glucosides as the predominant flavonoid glycosides in both genera of the Psilotaceae clearly distinguishes this family from all other families of vascular plants. Psilotum and Tmesipteris also possess apigenin C- and O-glycosides as common flavonoid types. Apigenin 7-O-rhamnoglucoside occurs in both genera and the previously undocumented apigenin 7-O-rhamnoglucoside-4′-O-glucoside, although identified only in Tmesipteris, may also be present in Psilotum. The existence of flavone C-glycosides in both genera may provide a phytochemical relationship between the Psilotaceae and some ferns. The phylogenetic significance of these results is discussed.  相似文献   

13.
ABSTRACT. Using nine new taxa and statistical inferences based on morphological and molecular data, we analyze the evolution within the class Colpodea. The molecular and cladistic analyses show four well‐supported clades: platyophryids, bursariomorphids, cyrtolophosidids, and colpodids. There is a widespread occurrence of homoplasies, affecting even conspicuous morphological characteristics, e.g. the inclusion of the micronucleus in the perinuclear space of the macronucleus. The most distinct changes in the morphological classification are the lack of a basal divergence into two subclasses and the split of the cyrtolophosidids into two main clades, differing mainly by the presence vs. absence of an oral cavity. The most complex clade is that of the colpodids. We partially reconcile the morphological and molecular data using evolutionary systematics, providing a scenario in which the colpodids evolved from a Bardeliella‐like ancestor and the genus Colpoda performed an intense adaptive radiation, giving rise to three main clades: Colpodina n. subord., Grossglockneriina, and Bryophryina. Three new taxa are established: Colpodina n. subord., Tillinidae n. fam., and Ottowphryidae n. fam. Colpodean evolution and classification are far from being understood because sequences are lacking for most species and half of their diversity is possibly undescribed.  相似文献   

14.
    
Based on recent molecular and morphological studies we present a modern worldwide phylogenetic classification of the ± 12074 grasses and place the 771 grass genera into 12 subfamilies (Anomochlooideae, Aristidoideae, Arundinoideae, Bambusoideae, Chloridoideae, Danthonioideae, Micraioideae, Oryzoideae, Panicoideae, Pharoideae, Puelioideae, and Pooideae), 6 supertribes (Andropogonodae, Arundinarodae, Bambusodae, Panicodae, Poodae, Triticodae), 51 tribes (Ampelodesmeae, Andropogoneae, Anomochloeae, Aristideae, Arundinarieae, Arundineae, Arundinelleae, Atractocarpeae, Bambuseae, Brachyelytreae, Brachypodieae, Bromeae, Brylkinieae, Centotheceae, Centropodieae, Chasmanthieae, Cynodonteae, Cyperochloeae, Danthonieae, Diarrheneae, Ehrharteae, Eragrostideae, Eriachneae, Guaduellieae, Gynerieae, Hubbardieae, Isachneae, Littledaleeae, Lygeeae, Meliceae, Micraireae, Molinieae, Nardeae, Olyreae, Oryzeae, Paniceae, Paspaleae, Phaenospermateae, Phareae, Phyllorachideae, Poeae, Steyermarkochloeae, Stipeae, Streptochaeteae, Streptogyneae, Thysanolaeneae, Triraphideae, Tristachyideae, Triticeae, Zeugiteae, and Zoysieae), and 80 subtribes (Aeluropodinae, Agrostidinae, Airinae, Ammochloinae, Andropogoninae, Anthephorinae, Anthistiriinae, Anthoxanthinae, Arthraxoninae, Arthropogoninae, Arthrostylidiinae, Arundinariinae, Aveninae, Bambusinae, Boivinellinae, Boutelouinae, Brizinae, Buergersiochloinae, Calothecinae, Cenchrinae, Chionachninae, Chusqueinae, Coicinae, Coleanthinae, Cotteinae, Cteniinae, Cynosurinae, Dactylidinae, Dichantheliinae, Dimeriinae, Duthieinae, Eleusininae, Eragrostidinae, Farragininae, Germainiinae, Gouiniinae, Guaduinae, Gymnopogoninae, Hickeliinae, Hilariinae, Holcinae, Hordeinae, Ischaeminae, Loliinae, Melinidinae, Melocanninae, Miliinae, Monanthochloinae, Muhlenbergiinae, Neurachninae, Olyrinae, Orcuttiinae, Oryzinae, Otachyriinae, Panicinae, Pappophorinae, Parapholiinae, Parianinae, Paspalinae, Perotidinae, Phalaridinae, Poinae, Racemobambosinae, Rottboelliinae, Saccharinae, Scleropogoninae, Scolochloinae, Sesleriinae, Sorghinae, Sporobolinae, Torreyochloinae, Traginae, Trichoneurinae, Triodiinae, Tripogoninae, Tripsacinae, Triticinae, Unioliinae, Zizaniinae, and Zoysiinae). In addition, we include a radial tree illustrating the hierarchical relationships among the subtribes, tribes, and subfamilies. We use the subfamilial name, Oryzoideae, over Ehrhartoideae because the latter was initially published as a misplaced rank, and we circumscribe Molinieae to include 13 Arundinoideae genera. The subtribe Calothecinae is newly described and the tribe Littledaleeae is new at that rank.  相似文献   

15.
Microbial community profiling using 16S rRNA gene sequences requires accurate taxonomy assignments. ‘Universal'' primers target conserved sequences and amplify sequences from many taxa, but they provide variable coverage of different environments, and regions of the rRNA gene differ in taxonomic informativeness—especially when high-throughput short-read sequencing technologies (for example, 454 and Illumina) are used. We introduce a new evaluation procedure that provides an improved measure of expected taxonomic precision when classifying environmental sequence reads from a given primer. Applying this measure to thousands of combinations of primers and read lengths, simulating single-ended and paired-end sequencing, reveals that these choices greatly affect taxonomic informativeness. The most informative sequence region may differ by environment, partly due to variable coverage of different environments in reference databases. Using our Rtax method of classifying paired-end reads, we found that paired-end sequencing provides substantial benefit in some environments including human gut, but not in others. Optimal primer choice for short reads totaling 96 nt provides 82–100% of the confident genus classifications available from longer reads.  相似文献   

16.
Directions, modes, specializations, and coordination systems of morphofunctional changes are discussed based on modern data. Phylogenetic heterochronies (pedomorphoses and outstripping), which provide the basis for parallel, mosaic, and saltation development and different rates of morphological evolution, are regarded as important events of morphological diversification. The analysis of specificity and relationships of structural levels of organization (including genetic and epigenetic) and the elaboration of evolutionary principles of their dynamic stability are thought to be the most promising fields of modern research.  相似文献   

17.
Pollen grains of 15 taxa of the genus Chelonopsis (14 spp. and 1 variety) from China and Japan and 6 species of the closely related genera Bostrychanthera (1 species) and Gomphostemma (5 species) were examined by light and scanning electron microscopy. Of these, the pollen morphology of 18 taxa was studied for the first time. Pollen grains were found to be tricolpate with polar lengths of 20.8–30.0 μm and equatorial widths of 17.5–27.3 μm. The basic shape of the pollen in most taxa is subprolate or prolate-spheroidal, but spheroidal, subprolate-spheroidal, oblate-spheroidal, and prolate-subprolate grains are also found in some species. The surface is generally reticulate or suprareticulate in Chelonopsis and granulate in Bostrychanthera. In comparison with those of Chelonopsis and Bostrychanthera, the pollen grain surfaces of Gomphostemma are more diverse. In Chelonopsis, pollen is taxonomically useful at the sectional level, and some grains provide enough characters for species delimitation. The potential pollination ecology of cellular hairs on the anthers of Chelonopsis and Bostrychanthera is also briefly discussed.  相似文献   

18.
    
? Premise of the Study: Little research has been done at the molecular level on the tribe Fumarieae (Papaveraceae). Papaveraceae is a model plant group for studying evolutionary patterns despite the lack of a reference phylogeny for this tribe. We investigated the phylogenetic relationships within the tribe to complete the molecular data for this family in order to help understand its character evolution and biogeographic pattern. ? Methods: We used maximum-parsimony and Bayesian approaches to analyze five DNA regions for 25 species representing 10 of the 11 Fumarieae genera and five outgroups. Evolutionary pathways of four characters (habit, life span, type of fruit, and number of seeds per fruit) were inferred on the phylogeny using parsimony. The ancestral distribution areas were reconstructed using dispersal-vicariance analysis. ? Key Results: Fumarieae is monophyletic and includes three groups that agree with the morphology-based subtribes: Discocapninae, Fumariinae, and Sarcocapninae. Within subtribes, the relationships among genera were different from those obtained with morphological data. Annual life span, nonchasmophytic habit, and a several-seeded capsule were the basal character states for the tribe. The ancestor occupied a continuous area between West Eurasia and Africa. Vicariances explain the divergence between lineages Discocapninae (South Africa) and Fumariinae-Sarcocapninae (Mediterranean), and the disjunction of Fumariinae (Mediterranean-Central Asia). ? Conclusions: Molecular phylogeny confirms the subtribal classification of Fumarieae based on morphology. However it provides different results regarding the relationships among genera within each subtribe, which affects the inference of the evolutionary pathway followed by the four selected characters. The disjunct distribution of the tribe is explained by different vicariance scenarios.  相似文献   

19.
    
We aimed to describe and analyse the morphological, anatomical and micromorphological traits of 36 Turkish orchids representing 12 genera (e.g. Anacamptis, Cephalanthera, Dactylorhiza, Orchis, Serapias) in detail and analyse their usability for solving phylogenetic and taxonomic issues. We applied UPGMA cluster analysis to anatomical, morphological and micromorphological characters such as root tubers, leaf and flower structures, pit, sclerenchymatic sheath, vascular bundle shape, crystal and starch, exodermis and endodermis structure, stomata type, bulliform cells in roots, shoots and leaves, surface structures like papillae, hairs and ornamentation on flower parts, leaves, fruits and seeds. Furthermore, in a phylogenetic framework, we analysed nuclear ribosomal ITS diversity in the same orchid species belonging, and in a combined Bayesian phylogenetic analysis based on anatomical, morphological, micromorphogical and ITS data we confirmed the usefulness of multiple data sets for effectively assessing taxonomically critical orchids. In the combined analysis, all genera were resolved as monophyletic with topologies congruent with recently published more thorough molecular phylogenetic reconstructions, while the trees obtained by seprately analysing the ITS and the anatomical, morphological, micromorphogical data were less resolved and partly inconclusive.  相似文献   

20.
木霉菌及其系统分类学研究回顾   总被引:2,自引:0,他引:2  
从木霉菌(Trichodermaspp.)的分类历史、主要分类系统、分子生物学在木霉菌分类研究中的应用、我国木霉菌分类研究状况等几个方面,对木霉菌的分类研究进展进行了简要回顾。近些年来国际上对木霉菌的分类研究取得了显著进展,陆续发表了许多新种,目前木霉属已报道有3组60种和2个变型。另外,对木霉分类研究中存在的问题也进行了讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号