首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In plant leaves, resource use follows a trade‐off between rapid resource capture and conservative storage. This “worldwide leaf economics spectrum” consists of a suite of intercorrelated leaf traits, among which leaf mass per area, LMA, is one of the most fundamental as it indicates the cost of leaf construction and light‐interception borne by plants. We conducted a broad‐scale analysis of the evolutionary history of LMA across a large dataset of 5401 vascular plant species. The phylogenetic signal in LMA displayed low but significant conservatism, that is, leaf economics tended to be more similar among close relatives than expected by chance alone. Models of trait evolution indicated that LMA evolved under weak stabilizing selection. Moreover, results suggest that different optimal phenotypes evolved among large clades within which extremes tended to be selected against. Conservatism in LMA was strongly related to growth form, as were selection intensity and phenotypic evolutionary rates: woody plants showed higher conservatism in relation to stronger stabilizing selection and lower evolutionary rates compared to herbaceous taxa. The evolutionary history of LMA thus paints different evolutionary trajectories of vascular plant species across clades, revealing the coordination of leaf trait evolution with growth forms in response to varying selection regimes.  相似文献   

2.
Novel environmental conditions experienced by introduced species can drive rapid evolution of diverse traits. In turn, rapid evolution, both adaptive and non‐adaptive, can influence population size, growth rate, and other important ecological characteristics of populations. In addition, spatial evolutionary processes that arise from a combination of assortative mating between highly dispersive individuals at the expanding edge of populations and altered reproductive rates of those individuals can accelerate expansion speed. Growing experimental evidence shows that the effects of rapid evolution on ecological dynamics can be quite large, and thus it can affect establishment, persistence, and the distribution of populations. We review the experimental and theoretical literature on such eco‐evolutionary feedbacks and evaluate the implications of these processes for biological control. Experiments show that evolving populations can establish at higher rates and grow larger than non‐evolving populations. However, non‐adaptive processes, such as genetic drift and inbreeding depression can also lead to reduced fitness and declines in population size. Spatial evolutionary processes can increase spread rates and change the fitness of individuals at the expansion front. These examples demonstrate the power of eco‐evolutionary dynamics and indicate that evolution is likely more important in biocontrol programs than previously realized. We discuss how this knowledge can be used to enhance efficacy of biological control.  相似文献   

3.
Coevolution of two species is typically thought to favour the evolution of faster evolutionary rates helping a species keep ahead in the Red Queen race, where ‘it takes all the running you can do to stay where you are’. In contrast, if species are in a mutualistic relationship, it was proposed that the Red King effect may act, where it can be beneficial to evolve slower than the mutualistic species. The Red King hypothesis proposes that the species which evolves slower can gain a larger share of the benefits. However, the interactions between the two species may involve multiple individuals. To analyse such a situation, we resort to evolutionary multiplayer games. Even in situations where evolving slower is beneficial in a two-player setting, faster evolution may be favoured in a multiplayer setting. The underlying features of multiplayer games can be crucial for the distribution of benefits. They also suggest a link between the evolution of the rate of evolution and group size.  相似文献   

4.
An organism's energy budget is strongly related to resource consumption, performance, and fitness. Hence, understanding the evolution of key energetic traits, such as basal metabolic rate (BMR), in natural populations is central for understanding life-history evolution and ecological processes. Here we used quantitative genetic analyses to study evolutionary potential of BMR in two insular populations of the house sparrow (Passer domesticus). We obtained measurements of BMR and body mass (Mb) from 911 house sparrows on the islands of Leka and Vega along the coast of Norway. These two populations were the source populations for translocations to create an additional third, admixed ‘common garden’ population in 2012. With the use of a novel genetic group animal model concomitant with a genetically determined pedigree, we differentiate genetic and environmental sources of variation, thereby providing insight into the effects of spatial population structure on evolutionary potential. We found that the evolutionary potential of BMR was similar in the two source populations, whereas the Vega population had a somewhat higher evolutionary potential of Mb than the Leka population. BMR was genetically correlated with Mb in both populations, and the conditional evolutionary potential of BMR (independent of body mass) was 41% (Leka) and 53% (Vega) lower than unconditional estimates. Overall, our results show that there is potential for BMR to evolve independently of Mb, but that selection on BMR and/or Mb may have different evolutionary consequences in different populations of the same species.  相似文献   

5.
Studies of eco-evolutionary dynamics have integrated evolution with ecological processes at multiple scales (populations, communities and ecosystems) and with multiple interspecific interactions (antagonistic, mutualistic and competitive). However, evolution has often been conceptualised as a simple process: short-term directional adaptation that increases population growth. Here we argue that diverse other evolutionary processes, well studied in population genetics and evolutionary ecology, should also be considered to explore the full spectrum of feedback between ecological and evolutionary processes. Relevant but underappreciated processes include (1) drift and mutation, (2) disruptive selection causing lineage diversification or speciation reversal and (3) evolution driven by relative fitness differences that may decrease population growth. Because eco-evolutionary dynamics have often been studied by population and community ecologists, it will be important to incorporate a variety of concepts in population genetics and evolutionary ecology to better understand and predict eco-evolutionary dynamics in nature.  相似文献   

6.
Metapopulations of moths on islands: a test of two contrasting models   总被引:1,自引:0,他引:1  
1. We describe a generalized mainland-island metapopulation model which includes migration among the island populations. We test model predictions with quantitative data on more than 200 species of moths in two contrasting networks of small islands. The data include a direct measure of migration rate, based on trapping of moths on rocky skerries with no local populations of the vast majority of species.
2. We predicted that moths which are strong fliers but uncommon on the islands have a higher incidence on scattered islands than on islands in a group, because the latter 'compete' for immigrants from the mainland. In contrast, we predicted that weakly flying species with potentially large local populations on the islands occur more frequently on islands in a group due to enhanced colonization rate.
3. Both predicted patterns were observed. Island occupancy increased significantly with the number of individuals caught on the rocky skerries, which is our measure of migration rate from the mainland, supporting the basic assumption that the species occur on the islands in a balance between colonizations and extinctions.
4. These results demonstrate that the moth metapopulations on islands represent a mixture of Levins's and mainland-island metapopulations, and that the mixture is different for different species in the same landscape.  相似文献   

7.
8.
Rates of trait evolution are known to vary across phylogenies; however, standard evolutionary models assume a homogeneous process of trait change. These simple methods are widely applied in small‐scale phylogenetic studies, whereas models of rate heterogeneity are not, so the prevalence and patterns of potential rate variation in groups up to hundreds of species remain unclear. The extent to which trait evolution is modelled accurately on a given phylogeny is also largely unknown because studies typically lack absolute model fit tests. We investigated these issues by applying both rate‐static and variable‐rates methods on (i) body mass data for 88 avian clades of 10–318 species, and (ii) data simulated under a range of rate‐heterogeneity scenarios. Our results show that rate heterogeneity is present across small‐scaled avian clades, and consequently applying only standard single‐process models prompts inaccurate inferences about the generating evolutionary process. Specifically, these approaches underestimate rate variation, and systematically mislabel temporal trends in trait evolution. Conversely, variable‐rates approaches have superior relative fit (they are the best model) and absolute fit (they describe the data well). We show that rate changes such as single internal branch variations, rate decreases and early bursts are hard to detect, even by variable‐rates models. We also use recently developed absolute adequacy tests to highlight misleading conclusions based on relative fit alone (e.g. a consistent preference for constrained evolution when isolated terminal branch rate increases are present). This work highlights the potential for robust inferences about trait evolution when fitting flexible models in conjunction with tests for absolute model fit.  相似文献   

9.
The growing interest for studying questions in the wild requires acknowledging that eco-evolutionary processes are complex, hierarchically structured and often partially observed or with measurement error. These issues have long been ignored in evolutionary biology, which might have led to flawed inference when addressing evolutionary questions. Hierarchical modelling (HM) has been proposed as a generic statistical framework to deal with complexity in ecological data and account for uncertainty. However, to date, HM has seldom been used to investigate evolutionary mechanisms possibly underlying observed patterns. Here, we contend the HM approach offers a relevant approach for the study of eco-evolutionary processes in the wild by confronting formal theories to empirical data through proper statistical inference. Studying eco-evolutionary processes requires considering the complete and often complex life histories of organisms. We show how this can be achieved by combining sequentially all life-history components and all available sources of information through HM. We demonstrate how eco-evolutionary processes may be poorly inferred or even missed without using the full potential of HM. As a case study, we use the Atlantic salmon and data on wild marked juveniles. We assess a reaction norm for migration and two potential trade-offs for survival. Overall, HM has a great potential to address evolutionary questions and investigate important processes that could not previously be assessed in laboratory or short time-scale studies.  相似文献   

10.
Brownian motions on coalescent structures have a biological relevance, either as an approximation of the stepwise mutation model for microsatellites, or as a model of spatial evolution considering the locations of individuals at successive generations. We discuss estimation procedures for the dispersal parameter of a Brownian motion defined on coalescent trees. First, we consider the mean square distance unbiased estimator and compute its variance. In a second approach, we introduce a phylogenetic estimator. Given the UPGMA topology, the likelihood of the parameter is computed thanks to a new dynamical programming method. By a proper correction, an unbiased estimator is derived from the pseudomaximum of the likelihood. The last approach consists of computing the likelihood by a Markov chain Monte Carlo sampling method. In the one-dimensional Brownian motion, this method seems less reliable than pseudomaximum-likelihood.  相似文献   

11.
Flower color is an important adaptive trait in many plant species because it determines reproductive success through differential attractiveness to insect pollinators. The genus Ipomoea is a pan tropically distributed plant genus characterized by showy flowers that often differ in color among closely related species. Flower color is determined primarily by products of the anthocyanin biosynthesis pathway. To determine whether flower color evolution among members of the genus is driven by adaptive molecular evolution of the anthocyanin pathway genes, we analyzed data from 10 genes sequenced from 19 species of Ipomoea . Six protein-coding genes from the anthocyanin pathway were drawn for evolutionary analysis in addition to three genes from the unrelated leucine biosynthesis pathway and one MADS box regulatory gene for comparison. The analyses provided: (i) no convincing evidence for positive selection on anthocyanin pathway structural genes, or on the other sampled genes, despite shifts in flower color among species included in the sample; (ii) pathway position correlated weakly with estimates of the intensity of evolutionary constraint on the anthocyanin pathway enzyme coding genes; and (iii) there was substantial gene-specific heterogeneity in the rates of synonymous site evolution. Synonymous rate heterogeneity does not appear to be accounted for by codon bias or local contextual or compositional sequence differences, leading us to implicate heterogeneous rates of mutation among genes as the most probable cause of synonymous rate heterogeneity.  相似文献   

12.
13.
14.
Understanding pathogen infectivity and virulence requires combining insights from epidemiology, ecology, evolution and genetics. Although theoretical work in these fields has identified population structure as important for pathogen life-history evolution, experimental tests are scarce. Here, we explore the impact of population structure on life-history evolution in phage T4, a viral pathogen of Escherichia coli. The host–pathogen system is propagated as a metapopulation in which migration between subpopulations is either spatially restricted or unrestricted. Restricted migration favours pathogens with low infectivity and low virulence. Unrestricted migration favours pathogens that enter and exit their hosts quickly, although they are less productive owing to rapid extirpation of the host population. The rise of such ‘rapacious’ phage produces a ‘tragedy of the commons’, in which better competitors lower productivity. We have now identified a genetic basis for a rapacious life history. Mutations at a single locus (rI) cause increased virulence and are sufficient to account for a negative relationship between phage competitive ability and productivity. A higher frequency of rI mutants under unrestricted migration signifies the evolution of rapaciousness in this treatment. Conversely, spatially restricted migration favours a more ‘prudent’ pathogen strategy, in which the tragedy of the commons is averted. As our results illustrate, profound epidemiological and ecological consequences of life-history evolution in a pathogen can have a simple genetic cause.  相似文献   

15.
羊肚菌的多样性、演化历史及栽培研究进展   总被引:11,自引:0,他引:11  
杜习慧  赵琪  杨祝良 《菌物学报》2014,33(2):183-197
羊肚菌属Morchella真菌是一类珍稀食用和药用真菌,具有重要的经济和科研价值。从羊肚菌属的分类研究、物种多样性、物种分布与生态多样性、演化历史、人工栽培等方面,对新近的研究成果进行了综述,总结了世界羊肚菌研究中取得的主要成绩,指出了仍然存在的主要问题及解决这些问题的相应思路和对策。  相似文献   

16.
The cultural reproduction of lithic technology, long an implicit assumption of archaeological theories, has garnered increasing attention over the past decades. Major debates ranging from the origins of the human culture capacity to the interpretation of spatiotemporal patterning now make explicit reference to social learning mechanisms and cultural evolutionary dynamics. This burgeoning literature has produced important insights and methodological innovations. However, this rapid growth has sometimes led to confusion and controversy due to an under-examination of underlying theoretical and methodological assumptions. The time is thus ripe for a critical assessment of progress in the study of the cultural reproduction of lithic technology. Here we review recent work addressing the evolutionary origins of human culture and the meaning of artifact variation at both intrasite and intersite levels. We propose that further progress will require a more extended and context-specific evolutionary approach to address the complexity of real-world cultural reproduction.  相似文献   

17.
The growth of evolutionary psychology has led to renewed interest in what might be the significant evolutionary heritage of people living today, and in the extent to which humans are suited to a particular adaptive environment—the EEA. The EEA, though, is a new tool in the battery of evolutionary concepts, and it is important both that it is scrutinized for its utility, and that the actual reconstructions of the environments in which humans and hominids evolved are based on sound palaeobiological inference and an appropriate use of the phylogenetic context of primate evolution.  相似文献   

18.
Interest in eco‐evolutionary dynamics is rapidly increasing thanks to ground‐breaking research indicating that evolution can occur rapidly and can alter the outcome of ecological processes. A key challenge in this sub‐discipline is establishing how important the contribution of evolutionary and ecological processes and their interactions are to observed shifts in population and community characteristics. Although a variety of metrics to separate and quantify the effects of evolutionary and ecological contributions to observed trait changes have been used, they often allocate fractions of observed changes to ecology and evolution in different ways. We used a mathematical and numerical comparison of two commonly used frameworks – the Price equation and reaction norms – to reveal that the Price equation cannot partition genetic from non‐genetic trait change within lineages, whereas the reaction norm approach cannot partition among‐ from within‐lineage trait change. We developed a new metric that combines the strengths of both Price‐based and reaction norm metrics, extended all metrics to analyse community change and also incorporated extinction and colonisation of species in these metrics. Depending on whether our new metric is applied to populations or communities, it can correctly separate intraspecific, interspecific, evolutionary, non‐evolutionary and interacting eco‐evolutionary contributions to trait change.  相似文献   

19.
George Gaylord Simpson famously postulated that much of life's diversity originated as adaptive radiations—more or less simultaneous divergences of numerous lines from a single ancestral adaptive type. However, identifying adaptive radiations has proven difficult due to a lack of broad‐scale comparative datasets. Here, we use phylogenetic comparative data on body size and shape in a diversity of animal clades to test a key model of adaptive radiation, in which initially rapid morphological evolution is followed by relative stasis. We compared the fit of this model to both single selective peak and random walk models. We found little support for the early‐burst model of adaptive radiation, whereas both other models, particularly that of selective peaks, were commonly supported. In addition, we found that the net rate of morphological evolution varied inversely with clade age. The youngest clades appear to evolve most rapidly because long‐term change typically does not attain the amount of divergence predicted from rates measured over short time scales. Across our entire analysis, the dominant pattern was one of constraints shaping evolution continually through time rather than rapid evolution followed by stasis. We suggest that the classical model of adaptive radiation, where morphological evolution is initially rapid and slows through time, may be rare in comparative data.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号