共查询到20条相似文献,搜索用时 15 毫秒
1.
NICOLAS RAY 《Molecular ecology resources》2005,5(1):177-180
pathmatrix is a tool used to compute matrices of effective geographical distances among samples using a least‐cost path algorithm. This program is dedicated to the study of the role of the environment on the spatial genetic structure of populations. Punctual locations (e.g. individuals) or zones encompassing sample data points (e.g. demes) are used in conjunction with a species‐specific friction map representing the cost of movement through the landscape. Matrices of effective distances can then be exported to population genetic software to test, for example, for isolation by distance. pathmatrix is an extension to the geographical information system (GIS) software arcview 3.x. 相似文献
2.
3.
Epperson BK 《Molecular ecology resources》2010,10(5):845-853
Although many properties of spatial autocorrelation statistics are well characterized, virtually nothing is known about possible correlations among values at different spatial scales, which ultimately would influence how inferences about spatial genetics are made at multiple spatial scales. This article reports the results of stochastic space-time simulations of isolation by distance processes, having a very wide range of amounts of dispersal for plants or animals, and analyses of the correlations among Moran's I-statistics for different mutually exclusive distance classes. In general, the stochastic correlations are extremely large (>0.90); however, the correlations bear a complex relationship with level of dispersal, spatial scale and spatial lag between distance classes. The correlations are so large that any existing or conceived statistical method that employs more than one distance class (or spatial scale) should not ignore them. This result also suggests that gains in statistical power via increasing sample size are limited, and that increasing numbers of assayed loci generally should be preferred. To the extent that sampling error for real data sets can be treated as white noise, it should be possible to account for stochastic correlations in formulating more precise statistical methods. Further, while the current results are for isolation by distance processes, they provide some guidance for some more complex stochastic space-time processes of landscape genetics. Moreover, the results hold for several popular measures other than Moran's I. In addition, in the results, the signal to noise ratios strongly decreased with distance, which also has several implications for optimal statistical methods using correlations at multiple spatial scales. 相似文献
4.
Tânia Barros Eduardo Ferreira Rita Gomes Rocha Philippe Gaubert Victor Bandeira Luis Souto António Mira Carlos Fonseca 《Biological journal of the Linnean Society. Linnean Society of London》2016,118(3):686-697
In the last three decades, the range of the Egyptian mongoose (Herpestes ichneumon) has increased in the Iberian Peninsula. A panel of microsatellites was used to confront the patterns of genetic diversity of the species with the scenario of its recent northward expansion in its Iberian range. Evidence of substructure and significant genetic differentiation within the studied population were recorded, with a central‐northern subpopulation (CNorth) and a southern subpopulation (S). Northward range expansion was supported by the observed allelic frequencies, diversity parameters, and observed heterozygosity of the studied loci, with S showing a higher allelic diversity and a higher number of private alleles than CNorth. Patterns of isolation‐by‐distance and isolation‐by‐barrier as a result of the Tagus River were demonstrated, suggesting that the river acted as a semi‐permeable barrier, possibly leading to genetic differentiation of the studied population. The observed individuals from CNorth in southern locations and individuals from S in central/northern areas might comprise evidence for long‐range dispersals across the studied range. A bottleneck event after population expansion was supported by a significant heterozygosity deficiency in CNorth, which is in agreement with a scenario of founder events occurring in recently colonized areas after the crossing of the Tagus River. 相似文献
5.
Ecologically mediated selection has increasingly become recognised as an important driver of speciation. The correlation between neutral genetic differentiation and environmental or phenotypic divergence among populations, to which we collectively refer to as isolation‐by‐ecology (IBE), is an indicator of ecological speciation. In a meta‐analysis framework, we determined the strength and commonality of IBE in nature. On the basis of 106 studies, we calculated a mean effect size of IBE with and without controlling for spatial autocorrelation among populations. Effect sizes were 0.34 (95% CI 0.24–0.42) and 0.26 (95% CI 0.13–0.37), respectively, indicating that an average of 5% of the neutral genetic differentiation among populations was explained purely by ecological contrast. Importantly, spatial autocorrelation reduced IBE correlations for environmental variables, but not for phenotypes. Through simulation, we showed how the influence of isolation‐by‐distance and spatial autocorrelation of ecological variables can result in false positives or underestimated correlations if not accounted for in the IBE model. Collectively, this meta‐analysis showed that ecologically induced genetic divergence is pervasive across time‐scales and taxa, and largely independent of the choice of molecular marker. We discuss the importance of these results in the context of adaptation and ecological speciation and suggest future research avenues. 相似文献
6.
The spatial clustering of single- and di-locus genotypes in a natural, continuous population of Norway spruce was investigated using 69 Mendelian Random Amplified Polymorphic DNA (RAPD) markers that covered about 15 of the species genome, and whose linkage relationships were known. Spatial autocorrelation techniques and randomization tests, applied to both single- and di-locus genotypes, revealed a weak, though significant, spatial structure at the scale 0-200 m (5 of single-locus and 7 of di-locus genotypes). To assess the relative importance of isolation by distance and linkage between markers on their spatial genetic structuring, we grouped joins between sampled trees into equivalence categories expected to show similar, specific patterns of spatial distribution under isolation by distance. Results from both single- and di-locus analyses were consistent with the existence of patches of like homozygotes (about 8 and 11 of loci at the single- and di-locus level, respectively) surrounded by a mix of like heterozygotes. Similar structuring has been predicted by simulation models under isolation by distance and selective neutrality. Overall, linkage between markers accounted for an increase of spatial clumping of di-locus genotypes involving tightly linked loci with recombination fractions up to 0.1, a consequence of limited, stochastic spread of single-locus genotypes in space. Our results support the hypothesis that isolation by distance and linkage have a small, though significant, effect even within continuous forest tree populations. In general, the spatial distribution of multilocus genotypes within populations should be interpreted with caution when linkage relationships among the markers used are unknown. 相似文献
7.
Plant dispersal, neighbourhood size and isolation by distance 总被引:1,自引:0,他引:1
Epperson BK 《Molecular ecology》2007,16(18):3854-3865
A theoretical relationship between isolation by distance or spatial genetic structure (SGS) and seed and pollen dispersal is tested using extensive spatial-temporal simulations. Although for animals Wright's neighbourhood size N(e) = 4pisigma(2)(t) has been ascertained also, where sigma(2)(t) is the axial variance of distances between parents and offspring, and it was recently confirmed that N(e) = 4pi(sigma(2)(f) + sigma(2)(m))/2 when dispersal of females and males differ, the situation for plants had not been established. This article shows that for a very wide range of conditions, neighbourhood size defined by Crawford's formula N(e) = 4pi(sigma(2)(s) + sigma(2)(p)/2) fully determines SGS, even when dispersal variances of seed (sigma(2)(s)) and pollen sigma(2)(p)) differ strongly. Further, self-fertilization with rate s acts as zero-distance pollen dispersal, and N(e) = 4pi[sigma(2)(s) + sigma(2)(p)(1 - s)/2] fully determines SGS, for most cases where there are both likely parameter values and substantial SGS. Moreover, for most cases, there is a loglinear relationship, I(1) = 0.587 - 0.117 ln(N(e)), between SGS, as measured by I(1), Moran's coefficient for adjacent individuals, and N(e). However, there are several biologically significant exceptions, namely for very low or large N(e), SGS exceeds the loglinear values. There are also important exceptions to Crawford's formula. First, plants with low seed dispersal, high outcross pollen dispersal and high selfing rate show larger SGS than predicted. Second, in plants with very low (near zero) seed dispersal, selfing decreases SGS, opposite expectations. Finally, in some cases seed dispersal is more critical than pollen dispersal, in a manner inconsistent with Crawford's formula. 相似文献
8.
Yannic G Basset P Büchi L Hausser J Broquet T 《Evolution; international journal of organic evolution》2012,66(6):1737-1750
We investigated sex specificities in the evolutionary processes shaping Y chromosome, autosomes, and mitochondrial DNA patterns of genetic structure in the Valais shrew (Sorex antinorii), a mountain dwelling species with a hierarchical distribution. Both hierarchical analyses of variance and isolation-by-distance analyses revealed patterns of population structure that were not consistent across maternal, paternal, and biparentally inherited markers. Differentiation on a Y microsatellite was lower than expected from the comparison with autosomal microsatellites and mtDNA, and it was mostly due to genetic variance among populations within valleys, whereas the opposite was observed on other markers. In addition, there was no pattern of isolation by distance for the Y, whereas there was strong isolation by distance on mtDNA and autosomes. We use a hierarchical island model of coancestry dynamics to discuss the relative roles of the microevolutionary forces that may induce such patterns. We conclude that sex-biased dispersal is the most important driver of the observed genetic structure, but with an intriguing twist: it seems that dispersal is strongly male biased at large spatial scale, whereas it is mildly biased in favor of females at local scale. These results add to recent reports of scale-specific sex-biased dispersal patterns, and emphasize the usefulness of the Y chromosome in conjunction with mtDNA and autosomes to infer sex specificities. 相似文献
9.
We propose a novel method that uses natural admixture between divergent lineages (hybridization) to investigate the genetic architecture of reproductive isolation and adaptive introgression. Our method employs multinomial regression to estimate genomic clines and to quantify introgression for individual loci relative to the genomic background (clines in genotype frequency along a genomic admixture gradient). Loci with patterns of introgression that deviate significantly from null expectations based on the remainder of the genome are potentially subject to selection and thus of interest to understanding adaptation and the evolution of reproductive isolation. Using simulations, we show that different forms of selection modify these genomic clines in predictable ways and that our method has good power to detect moderate to strong selection for multiple forms of selection. Using individual-based simulations, we demonstrate that our method generally has a low false positive rate, except when genetic drift is particularly pronounced (e.g. low population size, low migration rates from parental populations, and substantial time since initial admixture). Additional individual-based simulations reveal that moderate selection against heterozygotes can be detected as much as 50 c m away from the focal locus directly experiencing selection, but is not detected at unlinked loci. Finally, we apply our analytical method to previously published data sets from a mouse ( Mus musculus and M. domesticus ) and two sunflower ( Helianthus petiolaris and H. annuus ) hybrid zones. This method should be applicable to numerous species that are currently the focus of research in evolution and ecology and should help bring about new insights regarding the processes underlying the origin and maintenance of biological diversity. 相似文献
10.
JULIE A. LEE-YAW REW DAVIDSON† BRAD H. MCRAE‡ DAVID M. GREEN§ 《Molecular ecology》2009,18(9):1863-1874
Understanding factors that influence population connectivity and the spatial distribution of genetic variation is a major goal in molecular ecology. Improvements in the availability of high-resolution geographic data have made it increasingly possible to quantify the effects of landscape features on dispersal and genetic structure. However, most studies examining such landscape effects have been conducted at very fine (e.g. landscape genetics) or broad (e.g. phylogeography) spatial scales. Thus, the extent to which processes operating at fine spatial scales are linked to patterns at larger scales remains unclear. Here, we test whether factors impacting wood frog dispersal at fine spatial scales are correlated with genetic structure at regional scales. Using recently developed methods borrowed from electrical circuit theory, we generated landscape resistance matrices among wood frog populations in eastern North America based on slope, a wetness index, land cover and absolute barriers to wood frog dispersal. We then determined whether these matrices are correlated with genetic structure based on six microsatellite markers and whether such correlations outperform a landscape-free model of isolation by resistance. We observed significant genetic structure at regional spatial scales. However, topography and landscape variables associated with the intervening habitat between sites provide little explanation for patterns of genetic structure. Instead, absolute dispersal barriers appear to be the best predictor of regional genetic structure in this species. Our results suggest that landscape variables that influence dispersal, microhabitat selection and population structure at fine spatial scales do not necessarily explain patterns of genetic structure at broader scales. 相似文献
11.
Rousset 《Journal of evolutionary biology》2000,13(1):58-62
I describe a method of analysis of genetic differentiation which is suitable for the comparison of genetic and demographic estimates of the ‘neighborhood size’– more precisely the product of density and second moment of dispersal distance σ2– in continuous populations sampled at the smallest scale. This method is based on results of models of isolation by distance common to a wide variety of dispersal distances. The performance of this method is tested by simulation for some highly leptokurtic dispersal distributions, and it is applied to a previous study of a kangaroo‐rat (Dipodomys spectabilis) population. In this case, genetic and demographic estimates are within a factor of two from each other. Thus, in line with some previous examples, this study shows that a better agreement may be attained than is usually recognized between genetic and demographic estimates. 相似文献
12.
Tong Liu Kangkang Zhang Wentao Dai Longru Jin Keping Sun Jiang Feng 《Journal of Zoological Systematics and Evolutionary Research》2021,59(1):294-310
Evolutionary processes can be influenced by several factors, such as geographic isolation, environmental selection, and sensory variation. For most nocturnal bats, echolocation is the primary sensory system used to prey and communicate, and plays important roles in chiropteran diversification and evolution. Understanding the relative contribution of geography, the environment, and this sensory system to population genetic divergence can elucidate the processes involved in bat incipient speciation and evolution. In this study, we collected spatial and environmental information, echolocation calls, as well as the previously published genetic data (six microsatellite loci and the mitochondrial cytochrome b gene) of widely distributed Rhinolophus episcopus populations to test three hypotheses for nuclear and mitochondrial divergence (isolation by distance, isolation by environment, and isolation by sensory variation) and unveil the factors that drive intraspecific genetic differentiation. The moderate level of nuclear differentiation was correlated with geographic/spatial distance and acoustic variation, whereas the relatively high level of mitochondrial differentiation was mainly associated with acoustic divergence. No significant correlation was observed between genetic divergence and environmental variables. Among the three factors, acoustic divergence explained the highest percentage of both nuclear and mitochondrial divergence. Thus, our results indicate that sensory variation may have played important roles in driving population isolation early in bat speciation, which is consistent with the hypothesis of isolation by sensory variation. Our study emphasizes the need to consider more factors, especially sensory traits, and combine multiple statistical methods in landscape genetic studies to test their potential contributions to driving population divergence. 相似文献
13.
Fumana thymifolia (Cistaceae) is an insect-pollinated, gravity-dispersed evergreen shrub, which is a common component of fire-prone Mediterranean shrubland ecosystems. Despite the availability of basic knowledge on its ecology, little is known of its breeding system and no information is available on its population genetic structure. We explored the within-population genetic structure of this species using amplified fragment length polymorphism (AFLP) molecular markers and related this to predictions based on its breeding system, pollen and seed dispersal. Existing information on the reproductive ecology of F. thymifolia was supplemented by artificial pollination experiments. We determined that self-fertilisation can occur in F. thymifolia but results in reduced fruit set. Significant genetic structuring was detected within the population, a likely consequence of localised seed dispersal in combination with a mixed mating system. In a study site covering approximately 0.5 ha, amova revealed that approximately 9% of genetic variability was distributed among population subsamples. Significant spatial genetic structure was detected, with kinship coefficients being significantly elevated above the null expectation in the first six distance classes (maximum 5 m), and a value of Sp of up to 0.0342, comparable with species having similar ecological characteristics. Weak isolation by distance at the plot scale was detected, suggesting that insect-mediated pollen flow is non-random, despite being more extensive than seed dispersal. Fumana thymifolia provides a promising model for the investigation of both short- and long-term population dynamics in relation to fire frequency within this plant community. 相似文献
14.
Genetic and demographic estimates of dispersal are often thought to be inconsistent. In this study, we use the damselfly Coenagrion mercuriale (Odonata: Zygoptera) as a model to evaluate directly the relationship between estimates of dispersal rate measured during capture-mark-recapture fieldwork with those made from the spatial pattern of genetic markers in linear and two-dimensional habitats. We estimate the 'neighbourhood size' (Nb) - the product of the mean axial dispersal rate between parent and offspring and the population density - by a previously described technique, here called the regression method. Because C. mercuriale is less philopatric than species investigated previously by the regression method we evaluate a refined estimator that may be more applicable for relatively mobile species. Results from simulations and empirical data sets reveal that the new estimator performs better under most situations, except when dispersal is very localized relative to population density. Analysis of the C. mercuriale data extends previous results which demonstrated that demographic and genetic estimates of Nb by the regression method are equivalent to within a factor of two at local scales where genetic estimates are less affected by habitat heterogeneity, stochastic processes and/or differential selective regimes. The corollary is that with a little insight into a species' ecology the pattern of spatial genetic structure provides quantitative information on dispersal rates and/or population densities that has real value for conservation management. 相似文献
15.
Born C Hardy OJ Chevallier MH Ossari S Attéké C Wickings EJ Hossaert-McKey M 《Molecular ecology》2008,17(8):2041-2050
Under the isolation-by-distance model, the strength of spatial genetic structure (SGS) depends on seed and pollen dispersal and genetic drift, which in turn depends on local demographic structure. SGS can also be influenced by historical events such as admixture of differentiated gene pools. We analysed the fine-scale SGS in six populations of a pioneer tree species endemic to Central Africa, Aucoumea klaineana. To infer the impacts of limited gene dispersal, population history and habitat fragmentation on isolation by distance, we followed a stepwise approach consisting of a Bayesian clustering method to detect differentiated gene pools followed by the analysis of kinship-distance curves. Interestingly, despite considerable variation in density, the five populations situated under continuous forest cover displayed very similar extent of SGS. This is likely due to an increase in dispersal distance with decreased tree density. Admixture between two gene pools was detected in one of these five populations creating a distinctive pattern of SGS. In the last population sampled in open habitat, the genetic diversity was in the same range as in the other populations despite a recent habitat fragmentation. This result may due to the increase of gene dispersal compensating the effect of the disturbance as suggested by the reduced extent of SGS estimated in this population. Thus, in A. klaineana, the balance between drift and dispersal may facilitate the maintenance of genetic diversity. Finally, from the strength of the SGS and population density, an indirect estimate of gene dispersal distances was obtained for one site: the quadratic mean parent-offspring distance, sigma(g), ranged between 210 m and 570 m. 相似文献
16.
17.
The interactions between organisms and their environments can shape distributions of spatial genetic variation, resulting in patterns of isolation by environment (IBE) in which genetic and environmental distances are positively correlated, independent of geographic distance. IBE represents one of the most important patterns that results from the ways in which landscape heterogeneity influences gene flow and population connectivity, but it has only recently been examined in studies of ecological and landscape genetics. Nevertheless, the study of IBE presents valuable opportunities to investigate how spatial heterogeneity in ecological processes, agents of selection and environmental variables contributes to genetic divergence in nature. New and increasingly sophisticated studies of IBE in natural systems are poised to make significant contributions to our understanding of the role of ecology in genetic divergence and of modes of differentiation both within and between species. Here, we describe the underlying ecological processes that can generate patterns of IBE, examine its implications for a wide variety of disciplines and outline several areas of future research that can answer pressing questions about the ecological basis of genetic diversity. 相似文献
18.
Benjamin P. Keck Thomas J. Near 《Evolution; international journal of organic evolution》2010,64(5):1410-1428
A growing number of molecular studies have identified mitochondrial replacement among closely related animal species, but there has been limited investigation into the phylogenetic, geographic, and temporal patterns, especially in more inclusive clades. We present a phylogenetic analysis of DNA sequences collected from mitochondrial and nuclear genes sampled from all 20 species of the darter clade Nothonotus and reveal extensive mtDNA replacement in N. rufilineatus. Using phylogenetic trees, haplotype networks, analysis of molecular variance (AMOVAs), and distributions of minimum pairwise genetic distances, we discovered that the mtDNA of N. rufilineatus has been replaced by that of different sympatric species of Nothonotus in different river drainages. In the Cumberland River, N. rufilineatus populations were fixed for N. camurus mtDNA. In the upper Tennessee River, N. rufilineatus contained N. chlorobranchius and N. camurus mtDNA. Most surprising, our analyses indicated that N. rufilineatus has acted as a “conduit species,” facilitating the introgression of N. chlorobranchius mtDNA into N. camurus in the upper Tennessee River. We identified several potential mechanisms for the observed pattern of introgression, and suggest experiments to assess their relative contributions. Comparisons among darter subclades indicated that the mitochondrial lineage of the clade is most influential in determining if the lineage is a mitochondrial donor or recipient. 相似文献
19.
20.
Gametophytic self-incompatibility (SI) systems in plants exhibit high polymorphism at the SI controlling S-locus because individuals with rare alleles have a higher probability to successfully pollinate other plants than individuals with more frequent alleles. This process, referred to as frequency-dependent selection, is expected to shape number, frequency distribution, and spatial distribution of self-incompatibility alleles in natural populations. We investigated the genetic diversity and the spatial genetic structure within a Prunus avium population at two contrasting gene loci: nuclear microsatellites and the S-locus. The S-locus revealed a higher diversity (15 alleles) than the eight microsatellites (4-12 alleles). Although the frequency distribution of S-alleles differed significantly from the expected equal distribution, the S-locus showed a higher evenness than the microsatellites (Shannon's evenness index for the S-locus: E = 0.91; for the microsatellites: E = 0.48-0.83). Also, highly significant deviations from neutrality were found for the S-locus whereas only minor deviations were found for two of eight microsatellites. A comparison of the frequency distribution of S-alleles in three age-cohorts revealed no significant differences, suggesting that different levels of selection acting on the S-locus or on S-linked sites might also affect the distribution and dynamics of S-alleles. Autocorrelation analysis revealed a weak but significant spatial genetic structure for the multilocus average of the microsatellites and for the S-locus, but could not ascertain differences in the extent of spatial genetic structure between these locus types. An indirect estimate of gene dispersal, which was obtained to explain this spatial genetic pattern, indicated high levels of gene dispersal within our population (sigma(g) = 106 m). This high gene dispersal, which may be partly due to the self-incompatibility system itself, aids the effective gene flow of the microsatellites, thereby decreasing the contrast between the neutral microsatellites and the S-locus. 相似文献