共查询到20条相似文献,搜索用时 62 毫秒
1.
Ning Jiang Jun Cui Xinxin Hou Guanglei Yang Yu Xiao Lu Han Jun Meng Yushi Luan 《The Plant journal : for cell and molecular biology》2020,103(4):1561-1574
Long non‐coding RNAs (lncRNAs) are involved in the resistance of plants to infection by pathogens via interactions with microRNAs (miRNAs). Long non‐coding RNAs are cleaved by miRNAs to produce phased small interfering RNAs (phasiRNAs), which, as competing endogenous RNAs (ceRNAs), function as decoys for mature miRNAs, thus inhibiting their expression, and contain pre‐miRNA sequences to produce mature miRNAs. However, whether lncRNAs and miRNAs mediate other molecular mechanisms during plant resistance to pathogens is unknown. In this study, as a positive regulator, Sl‐lncRNA15492 from tomato (Solanum lycopersicum Zaofen No. 2) plants affected tomato resistance to Phytophthora infestans. Gain‐ and loss‐of‐function experiments and RNA ligase‐mediated 5′‐amplification of cDNA ends (RLM‐5′ RACE) also revealed that Sl‐miR482a was negatively involved in tomato resistance by targeting Sl‐NBS‐LRR genes and that silencing of Sl‐NBS‐LRR1 decreased tomato resistance. Sl‐lncRNA15492 inhibited the expression of mature Sl‐miR482a, whose precursor was located within the antisense sequence of Sl‐lncRNA15492. Further degradome analysis and additional RLM‐5′ RACE experiments verified that mature Sl‐miR482a could also cleave Sl‐lncRNA15492. These results provide a mechanism by which lncRNAs might inhibit precursor miRNA expression through antisense strands of lncRNAs, and demonstrate that Sl‐lncRNA15492 and Sl‐miR482a mutually inhibit the maintenance of Sl‐NBS‐LRR1 homeostasis during tomato resistance to P. infestans. 相似文献
2.
Comparative transcriptome analysis between resistant and susceptible tomato allows the identification of lncRNA16397 conferring resistance to Phytophthora infestans by co‐expressing glutaredoxin 下载免费PDF全文
Jun Cui Yushi Luan Ning Jiang Hang Bao Jun Meng 《The Plant journal : for cell and molecular biology》2017,89(3):577-589
3.
Pallem Chowdappa Nirmal B. J. Kumar Shivanna Madhura Mohan S. P. Kumar Kevin L. Myers William E. Fry Julie N. Squires David E. L. Cooke 《Journal of Phytopathology》2013,161(1):49-58
Prior to 2007, late blight was not reported as a serious threat to tomato cultivation in India although the disease has been known on potato since 1953. During the July–December cropping season of 2009 and 2010, severe late blight epidemics were observed in Karnataka state of India, causing crop losses up to 100%. Nineteen Phytophthora isolates, recovered from late blight affected tomato tissues from different localities in Karnataka state between 2009 and 2010, were identified as Phytophthora infestans based on morphology, a similarity search of ITS sequences at GenBank and species‐specific PCR using PINF/ITS5 primer pair. The isolates were further assessed for metalaxyl sensitivity, mating type, mitochondrial DNA (mtDNA) haplotype, DNA fingerprinting patterns based on simple sequence repeats (SSR) and RFLPs using the RG57 probe and aggressiveness on tomato. All isolates were metalaxyl resistant, A2 mating type, mtDNA haplotype Ia and had identical SSR and RG57 fingerprints and highly aggressive on tomato. The phenotypic and genotypic characters of isolates examined in this study were found to be similar to that of 13_A2 genotype of P. infestans population reported in Europe. Thus, appearance of new population similar to 13_A2 genotype was responsible for severe late blight epidemics on tomato in South‐West India. 相似文献
4.
5.
E‐Jiao Wu Ce Yang Peter H. Thrall Jeremy J. Burdon Li‐Ping Jin Li‐Ping Shang Jiasui Zhan 《Molecular ecology》2016,25(16):4047-4058
Temperature is one of the most important environmental parameters with crucial impacts on nearly all biological processes. Due to anthropogenic activity, average air temperatures are expected to increase by a few degrees in coming decades, accompanied by an increased occurrence of extreme temperature events. Such global trends are likely to have various major impacts on human society through their influence on natural ecosystems, food production and biotic interactions, including diseases. In this study, we used a combination of statistical genetics, experimental evolution and common garden experiments to investigate the evolutionary potential for thermal adaptation in the potato late blight pathogen, Phytophthora infestans, and infer its likely response to changing temperatures. We found a trade‐off associated with thermal adaptation to heterogeneous environments in P. infestans, with the degree of the trade‐off peaking approximately at the pathogen's optimum growth temperature. A genetic trade‐off in thermal adaptation was also evidenced by the negative association between a strain's growth rate and its thermal range for growth, and warm climates selecting for a low pathogen growth rate. We also found a mirror effect of phenotypic plasticity and genetic adaptation on growth rate. At below the optimum, phenotypic plasticity enhances pathogen's growth rate but nature selects for slower growing genotypes when temperature increases. At above the optimum, phenotypic plasticity reduces pathogen's growth rate but natural selection favours for faster growing genotypes when temperature increases further. We conclude from these findings that the growth rate of P. infestans will only be marginally affected by global warming. 相似文献
6.
7.
8.
Bioassay‐Guided Isolation of Antifungal Compounds from Disporopsis aspersa (Hua) Engl. ex Diels against Pseudoperonospora cubensis and Phytophthora infestans 下载免费PDF全文
Oomycetes are one type of the most highly destructive of the diseases that cause damage to some important crop plants, such as potato late blight, cucumber downy mildew, and grape downy mildew. As main approach of the ongoing search for new botanical fungicide from plant, the secondary metabolites of D. aspersa were investigated. Through efficient bioassay‐guided isolation, two new ( 1 and 2 ) and 12 known compounds ( 3 – 14 ) were isolated, and their structures were determined via extensive NMR, HR‐ESI‐MS, and IR. They were isolated from this genus for the first time except for compounds 11 and 12 . The biological properties of 1 – 14 were evaluated against Pseudoperonospora cubensis and Phytophthora infestans. Compounds 1 – 8 showed potent antifungal activity in vitro. Additionally, compound 3 has preferable control effect on cucumber downy mildew, showing dual effect of protection and treatment in vivo. 相似文献
9.
Laura Masini Laura J. Grenville‐Briggs Erik Andreasson Lars Rberg sa Lankinen 《Ecology and evolution》2019,9(8):4557-4567
Studies of infection by Phytophthora infestans—the causal agent of potato late blight—in wild species can provide novel insights into plant defense responses, and indicate how wild plants might be influenced by recurrent epidemics in agricultural fields. In the present study, our aim was to investigate if different clones of Solanum dulcamara (a relative of potato) collected in the wild differ in resistance and tolerance to infection by a common European isolate of P. infestans. We performed infection experiments with six S. dulcamara genotypes (clones) both in the laboratory and in the field and measured the degree of infection and plant performance traits. In the laboratory, the six evaluated genotypes varied from resistant to susceptible, as measured by degree of infection 20 days post infection. Two of the four genotypes susceptible to infection showed a quadratic (concave downward) relationship between the degree of infection and shoot length, with maximum shoot length at intermediate values of infection. This result suggests overcompensation, that is, an increase in growth in infected individuals. The number of leaves decreased with increasing degree of infection, but at different rates in the four susceptible genotypes, indicating genetic variation for tolerance. In the field, the inoculated genotypes did not show any disease symptoms, but plant biomass at the end of the growing season was higher for inoculated plants than for controls, in‐line with the overcompensation detected in the laboratory. We conclude that in S. dulcamara there are indications of genetic variation for both resistance and tolerance to P. infestans infection. Moreover, some genotypes displayed overcompensation. Learning about plant tolerance and overcompensation to infection by pathogens can help broaden our understanding of plant defense in natural populations and help develop more sustainable plant protection strategies for economically important crop diseases. 相似文献
10.
Priyank Hanuman Mhatre Divya K. Lekshmanan Venkatasalam E. Palanisamy Aarti Bairwa Sanjeev Sharma 《Journal of Phytopathology》2021,169(1):52-61
Late blight of potato is considered to be the most devastating problem causing severe yield losses in potato worldwide. Among the different management strategies, the use of resistant cultivars is the most viable option, but the non‐availability of enough quantity of quality seed materials of resistant cultivars forces the farmers to grow susceptible cultivars with proper fungicide scheduling. Therefore, in the present study, chemical control using fungicide has been attempted with newer molecules in the susceptible cultivar along with a resistant cultivar as a positive control. All the tested fungicides were found safe, and no phytotoxicity was observed with any chemical at the applied rate. In resistant cultivar, no late blight was appeared in both the years, whereas maximum AUDPC was observed in the untreated control (276.3) and minimum (41.7) in mancozeb‐cymoxanil + mancozeb based scheduling which was found on par with chlorothalonil‐famoxadone + cymoxanil (51.3) and chlorothalonil‐ametoctradin + dimethomorph (53.5) based scheduling. Among the treatments, resistant cultivar, Kufri Girdhari followed by chlorothalonil‐ametoctradin + dimethomorph and mancozeb‐cymoxanil + mancozeb based fungicidal scheduling were proven as the best treatments for both the crop seasons resulting in the highest yield parameters. The disease severity showed a strong negative correlation with the tuber yield of potatoes in both the years. Based on overall observations including BC ratio, it can be concluded that, wherever seed material of resistant cultivar is available farmers should grow the same or else with susceptible cultivars the fungicidal scheduling based on mancozeb‐cymoxanil + mancozeb or chlorothalonil‐ametoctradin + dimethomorph can be followed to obtain the maximum returns with effective management of late blight at the southern hills of India. 相似文献
11.
The potato transcription factor StbZIP61 regulates dynamic biosynthesis of salicylic acid in defense against Phytophthora infestans infection 总被引:1,自引:0,他引:1 下载免费PDF全文
Xin‐Tong Zhou Li‐Jia Jia Hai‐Yun Wang Pan Zhao Wen‐Yan Wang Ning Liu Shuang‐Wei Song Yao Wu Lei Su Jie Zhang Nai‐Qin Zhong Gui‐Xian Xia 《The Plant journal : for cell and molecular biology》2018,95(6):1055-1068
12.
I. Finiti M. O. Leyva J. López‐Cruz B. Calderan Rodrigues B. Vicedo C. Angulo A. B. Bennett M. Grant P. García‐Agustín C. González‐Bosch 《Plant biology (Stuttgart, Germany)》2013,15(5):819-831
Plant cell wall modification is a critical component in stress responses. Endo‐1,4‐β‐glucanases (EGs) take part in cell wall editing processes, e.g. elongation, ripening and abscission. Here we studied the infection response of Solanum lycopersicum and Arabidopsis thaliana with impaired EGs. Transgenic TomCel1 and TomCel2 tomato antisense plants challenged with Pseudomonas syringae showed higher susceptibility, callose priming and increased jasmonic acid pathway marker gene expression. These two EGs could be resistance factors and may act as negative regulators of callose deposition, probably by interfering with the defence‐signalling network. A study of a set of Arabidopsis EG T‐DNA insertion mutants challenged with P. syringae and Botrytis cinerea revealed that the lack of other EGs interferes with infection phenotype, callose deposition, expression of signalling pathway marker genes and hormonal balance. We conclude that a lack of EGs could alter plant response to pathogens by modifying the properties of the cell wall and/or interfering with signalling pathways, contributing to generate the appropriate signalling outcomes. Analysis of microarray data demonstrates that EGs are differentially expressed upon many different plant–pathogen challenges, hormone treatments and many abiotic stresses. We found some Arabidopsis EG mutants with increased tolerance to osmotic and salt stress. Our results show that impairing EGs can alter plant–pathogen interactions and may contribute to appropriate signalling outcomes in many different biotic and abiotic plant stress responses. 相似文献
13.
14.
Amanda Schrager‐Lavelle Natalie N. Gath Upendra K. Devisetty Esther Carrera Isabel Lpez‐Díaz Miguel A. Blzquez Julin N. Maloof 《The Plant journal : for cell and molecular biology》2019,97(3):603-615
A network of environmental inputs and internal signaling controls plant growth, development and organ elongation. In particular, the growth‐promoting hormone gibberellin (GA) has been shown to play a significant role in organ elongation. The use of tomato as a model organism to study elongation presents an opportunity to study the genetic control of internode‐specific elongation in a eudicot species with a sympodial growth habit and substantial internodes that can and do respond to external stimuli. To investigate internode elongation, a mutant with an elongated hypocotyl and internodes but wild‐type petioles was identified through a forward genetic screen. In addition to stem‐specific elongation, this mutant, named tomato internode elongated ‐1 (tie‐1) is more sensitive to the GA biosynthetic inhibitor paclobutrazol and has altered levels of intermediate and bioactive GAs compared with wild‐type plants. The mutation responsible for the internode elongation phenotype was mapped to GA2oxidase 7, a class III GA 2‐oxidase in the GA biosynthetic pathway, through a bulked segregant analysis and bioinformatic pipeline, and confirmed by transgenic complementation. Furthermore, bacterially expressed recombinant TIE protein was shown to have bona fide GA 2‐oxidase activity. These results define a critical role for this gene in internode elongation and are significant because they further the understanding of the role of GA biosynthetic genes in organ‐specific elongation. 相似文献
15.
S.‐F. Lv M.‐Z. Jia S.‐S. Zhang S. Han J. Jiang 《Plant biology (Stuttgart, Germany)》2019,21(4):595-603
- Ethylene and nitric oxide (NO) act as endogenous regulators during leaf senescence. Levels of ethylene or its precursor 1‐aminocyclopropane‐1‐carboxylate acid (ACC) depend on the activity of ACC synthases (ACS), and NO production is controlled by NO‐associated 1 (NOA1). However, the integration mechanisms of ACS and NOA1 activity still need to be explored during leaf senescence.
- Here, using experimental techniques, such as physiological and molecular detection, liquid chromatography‐tandem mass spectrometry and fluorescence measurement, we investigated the relevant mechanisms.
- Our observations showed that the loss‐of‐function acs1‐1 mutant ameliorated age‐ or dark‐induced leaf senescence syndrome, such as yellowing and loss of chlorophyll, that acs1‐1 reduced ACC accumulation mainly in mature leaves and that acs1‐1‐promoted NOA1 expression and NO accumulation mainly in juvenile leaves, when compared with the wild type (WT). But the leaf senescence promoted by the NO‐deficient noa1 mutant was not involved in ACS1 expression. There was a similar sharp reduction of ACS1 and NOA1 expression with the increase in WT leaf age, and this inflection point appeared in mature leaves and coincided with the onset of leaf senescence.
- These findings suggest that NOA1‐dependent NO accumulation blocked the ACS1‐induced onset of leaf senescence, and that ACS1 activity corresponds to the onset of leaf senescence in Arabidopsis.
16.
Ming‐Jen Hsu Yi‐Hsuan Wang Joen‐Rong Sheu 《Journal of cellular and molecular medicine》2014,18(7):1278-1289
The hydrophilic α‐tocopherol derivative, 2,2,5,7,8‐pentamethyl‐6‐hydroxychromane (PMC), is a promising alternative to vitamin E in clinical applications. Critical vascular inflammation leads to vascular dysfunction and vascular diseases, including atherosclerosis, hypertension and abdominal aortic aneurysms. In this study, we investigated the mechanisms of the inhibitory effects of PMC in vascular smooth muscle cells (VSMCs) exposed to pro‐inflammatory stimuli, lipopolysaccharide (LPS) combined with interferon (IFN)‐γ. Treatment of LPS/IFN‐γ‐stimulated VSMCs with PMC suppressed the expression of inducible nitric oxide synthase (iNOS) and matrix metalloproteinase‐9 in a concentration‐dependent manner. A reduction in LPS/IFN‐γ‐induced nuclear factor (NF)‐κB activation was also observed in PMC‐treated VSMCs. The translocation and phosphorylation of p65, protein phosphatase 2A (PP2A) inactivation and the formation of reactive oxygen species (ROS) were significantly inhibited by PMC in LPS/IFN‐γ‐activated VSMCs. However, neither IκBα degradation nor IκB kinase (IKK) or ribosomal s6 kinase‐1 phosphorylation was affected by PMC under these conditions. Both treatments with okadaic acid, a PP2A‐selective inhibitor, and transfection with PP2A siRNA markedly reversed the PMC‐mediated inhibition of iNOS expression, NF‐κB‐promoter activity and p65 phosphorylation. Immunoprecipitation analysis of the cellular extracts of LPS/IFN‐γ‐stimulated VSMCs revealed that p65 colocalizes with PP2A. In addition, p65 phosphorylation and PP2A inactivation were induced in VSMCs by treatment with H2O2, but neither IκBα degradation nor IKK phosphorylation was observed. These results collectively indicate that the PMC‐mediated inhibition of NF‐κB activity in LPS/IFN‐γ‐stimulated VSMCs occurs through the ROS‐PP2A‐p65 signalling cascade, an IKK‐IκBα‐independent mechanism. Therapeutic interventions using PMC may therefore be beneficial for the treatment of vascular inflammatory diseases. 相似文献
17.
Isolation and Identification of Bacillus amyloliquefaciens IBFCBF‐1 with Potential for Biological Control of Phytophthora Blight and Growth Promotion of Pepper 下载免费PDF全文
Mengjun Zhang Jilie Li Airong Shen Shiyong Tan Zhun Yan Yongting Yu Zhaodong Xue Taimeng Tan Liangbin Zeng 《Journal of Phytopathology》2016,164(11-12):1012-1021
In this study, 76 bacterial strains were isolated from the rhizosphere soil of pepper. Of these, 23 bacterial isolates capable of inhibiting Phytophthora capsici growth were selected. Among the antagonistic bacteria, one strain, IBFCBF‐1 showed the strongest antagonistic activity, and was identified as Bacillus amyloliquefaciens based on the results of 16S rRNA gene sequence analysis, physiological and biochemical testing, and morphological characteristics. When tested with a dual‐culture method and with laboratory greenhouse studies, the strain IBFCBF‐1 was found to be a potential biocontrol agent for controlling the plant pathogen, P. capsici. Moreover, it showed high efficiency and broad‐spectrum antifungal properties in vitro. Under greenhouse conditions, IBFCBF‐1 could significantly promote the growth of pepper seedlings, and was able to solubilize phosphate, and produce indole acetic acid (IAA) and ammonia. This study clearly demonstrated that IBFCBF‐1 is a potential candidate exhibiting phytophthora blight‐suppressive and plant growth‐promoting effects on pepper. 相似文献
18.
Chun Hong Yang Paul J. De Barro Fang Hao Wan 《Entomologia Experimentalis et Applicata》2013,147(3):282-292
The differences in the ability of the invading whitefly, Bemisia tabaci (Gennadius) (commonly known as biotype B and hereafter as B) and Trialeurodes vaporariorum (Westwood) (both Hemiptera: Aleyrodidae) to utilize salivary phenol‐oxidizing enzymes – polyphenol oxidase (PPO) and peroxidase (POD) to detoxify plant defensive phenolic compounds were explored. Polyphenol oxidase and POD were found in the saliva of both B and T. vaporariorum. For tomato colonies, the PPO and POD activities in the watery saliva of B were 2.27‐ and 1.34‐fold higher than those of T. vaporariorum. The PPO activities against specific phenolic compounds commonly found in plants were compared. The activities of those from B were significantly greater than those from T. vaporariorum. We also measured PPO activity in both species after they had fed on plants that were undamaged or had been previously damaged with either a plant pathogen [Phytophthora infestans (Mont.) de Bary (Peronosporales)] infection, mechanical damage, B infestation, or exogenous salicylic acid. For B, PPO activities in watery saliva increased 229, 184, 152, and 139% in response to the four treatments, whereas those of T. vaporariorum only increased 133, 119, 113, and 103%, respectively. Biotype B infestation significantly increased the total phenolic content of tomato leaves. Meanwhile, feeding on tomato infestation with B had no significant effect on the survival rate of B, but decreased the survival rate of T. vaporariorum significantly. These results suggest that B has stronger ability utilizing PPO to detoxify high concentrations of phenolics than T. vaporariorum, and this contributes to a significant advantage for B to hold high fitness on plants with induced resistance. Possible roles of salivary PPO in the competition between B and T. vaporariorum are discussed. 相似文献
19.