首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Campylobacter jejuni helical shape is important for colonization and host interactions with straight mutants having altered biological properties. Passage on calcofluor white (CFW) resulted in C. jejuni 81‐176 isolates with morphology changes: either a straight morphology from frameshift mutations and single nucleotide polymorphisms in peptidoglycan hydrolase genes pgp1 or pgp2 or a reduction in curvature due a frameshift mutation in cjj81176_1105, a putative peptidoglycan endopeptidase. Shape defects were restored by complementation. Whole genome sequencing of CFW‐passaged strains showed no specific changes correlating to CFW exposure. The cjj81176_1279 (recR; recombinational DNA repair) and cjj81176_1449 (unknown function) genes were highly variable in all 81‐176 strains sequenced. A frameshift mutation in pgp1 of our laboratory isolate of the straight genome sequenced variant of 11168 (11168‐GS) was also identified. The PG muropeptide profile of 11168‐GS was identical to that of Δpgp1 in the original minimally passaged 11168 strain (11168‐O). Introduction of wild type pgp1 into 11168‐GS did not restore helical morphology. The recR gene was also highly variable in 11168 strains. Microbial cell‐to‐cell heterogeneity is proposed as a mechanism of ensuring bacterial survival in sub‐optimal conditions. In certain environments, changes in C. jejuni morphology due to genetic heterogeneity may promote C. jejuni survival.  相似文献   

2.
The non‐glycolytic food‐borne pathogen Campylobacter jejuni successfully colonizes the intestine of various hosts in spite of its restricted metabolic properties. While several amino acids are known to be used by C. jejuni as energy sources, none of these have been found to be essential for growth. Here we demonstrated through phenotype microarray analysis that cysteine utilization increases the metabolic activity of C. jejuni. Furthermore, cysteine was crucial for its growth as C. jejuni was unable to synthesize it from sulphate or methionine. Our study showed that C. jejuni compensates this limited anabolic capacity by utilizing sulphide, thiosulphate, glutathione and the dipeptides γGlu–Cys, Cys–Gly and Gly–Cys as sulphur sources and cysteine precursors. A panel of C. jejuni mutants in putative peptidases and peptide transporters were generated and tested for their participation in the catabolism of the cysteine‐containing peptides, and the predicted transporter protein CJJ81176_0236 was discovered to facilitate the growth with the dipeptide Cys–Gly, Ile–Arg and Ile–Trp. It was named Campylobacter peptide transporter A (CptA) and is the first representative of the oligopeptide transporter OPT family demonstrated to participate in the glutathione‐derivative Cys–Gly catabolism in prokaryotes. Our study provides new insights into how host‐ and microbiota‐derived substrates like sulphide, thiosulphate and short peptides are used by C. jejuni to compensate its restricted metabolic capacities.  相似文献   

3.
Despite the importance of Campylobacter jejuni as a pathogen, little is known about the fundamental aspects of its peptidoglycan (PG) structure and factors modulating its helical morphology. A PG dl-carboxypeptidase Pgp1 essential for maintenance of C. jejuni helical shape was recently identified. Bioinformatic analysis revealed the CJJ81176_0915 gene product as co-occurring with Pgp1 in several organisms. Deletion of cjj81176_0915 (renamed pgp2) resulted in straight morphology, representing the second C. jejuni gene affecting cell shape. The PG structure of a Δpgp2 mutant showed an increase in tetrapeptide-containing muropeptides and a complete absence of tripeptides, consistent with ld-carboxypeptidase activity, which was confirmed biochemically. PG analysis of a Δpgp1Δpgp2 double mutant demonstrated that Pgp2 activity is required to generate the tripeptide substrate for Pgp1. Loss of pgp2 affected several pathogenic properties; the deletion strain was defective for motility in semisolid agar, biofilm formation, and fluorescence on calcofluor white. Δpgp2 PG also caused decreased stimulation of the human nucleotide-binding oligomerization domain 1 (Nod1) proinflammatory mediator in comparison with wild type, as expected from the reduction in muropeptide tripeptides (the primary Nod1 agonist) in the mutant; however, these changes did not alter the ability of the Δpgp2 mutant strain to survive within human epithelial cells or to elicit secretion of IL-8 from epithelial cells after infection. The pgp2 mutant also showed significantly reduced fitness in a chick colonization model. Collectively, these analyses enhance our understanding of C. jejuni PG maturation and help to clarify how PG structure and cell shape impact pathogenic attributes.  相似文献   

4.
The PctA and PctB chemoreceptors of Pseudomonas aeruginosa mediate chemotaxis toward amino acids. A general feature of signal transduction processes is that a signal input is converted into an output. We have generated chimeras combining the Tar signaling domain with either the PctA or PctB ligand binding domain (LBD). Escherichia coli harboring either PctA‐Tar or PctB‐Tar mediated chemotaxis toward amino acids. The responses of both chimeras were determined using fluorescence resonance energy transfer, and the derived EC50 values are a measure of output. PctA‐Tar and PctB‐Tar responded to 19 and 11 L‐amino acids respectively. The EC50 values of PctA‐Tar responses differed by more than three orders of magnitude, whereas PctB‐Tar responded preferentially to L‐Gln. The comparison of amino acid binding constants and the corresponding EC50 values for both receptors revealed statistically significant correlations between inputs and outputs. PctA and PctB possess a double PDC (PhoQ‐DcuS‐CitA) LBD – a family of binding domain found in various other amino acid chemoreceptors. Similarly, various chemoreceptors share the preferential response to certain amino acids (e.g. L‐Cys, L‐Ser and L‐Thr) that we observed for PctA. Defining the specific inputs and outputs of these chemoreceptors is an important step toward better understanding of their physiological role.  相似文献   

5.
Campylobacter jejuni is a highly motile bacterium that responds via chemotaxis to environmental stimuli to migrate towards favourable conditions. Previous in silico analysis of the C. jejuni strain NCTC11168 genome sequence identified 10 open reading frames, tlp1‐10, that encode putative chemosensory receptors. We describe the characterization of the role and specificity of the Tlp1 chemoreceptor (Cj1506c). In vitro and in vivo models were used to determine if Tlp1 had a role in host colonization. The tlp1 isogenic mutant was more adherent in cell culture, however, showed reduced colonization ability in chickens. Specific interactions between the purified sensory domain of Tlp1 and l ‐aspartate were identified using an amino acid array and saturation transfer difference nuclear magnetic resonance spectroscopy. Chemotaxis assays showed differences between migration of wild‐type C. jejuni cells and that of a tlp1 isogenic mutant, specifically towards aspartate. Furthermore, using yeast two‐hybrid and three‐hybrid systems for analysis of protein–protein interactions, the cytoplasmic signalling domain of Tlp1 was found to preferentially interact with CheV, rather than the CheW homologue of the chemotaxis signalling pathway; this interaction was confirmed using immune precipitation assays. This is the first identification of an aspartate receptor in bacteria other than Escherichia coli and Salmonella enterica serovar Typhimurium.  相似文献   

6.
Campylobacter jejuni and Campylobacter coli are zoonotic pathogens once considered asaccharolytic, but are now known to encode pathways for glucose and fucose uptake/metabolism. For C. jejuni, strains with the fuc locus possess a competitive advantage in animal colonization models. We demonstrate that this locus is present in > 50% of genome‐sequenced strains and is prevalent in livestock‐associated isolates of both species. To better understand how these campylobacters sense nutrient availability, we examined biofilm formation and chemotaxis to fucose. C. jejuni NCTC11168 forms less biofilms in the presence of fucose, although its fucose permease mutant (fucP) shows no change. In a newly developed chemotaxis assay, both wild‐type and the fucP mutant are chemotactic towards fucose. C. jejuni 81‐176 naturally lacks the fuc locus and is unable to swim towards fucose. Transfer of the NCTC11168 locus into 81‐176 activated fucose uptake and chemotaxis. Fucose chemotaxis also correlated with possession of the pathway for C. jejuni RM1221 (fuc+) and 81116 (fuc‐). Systematic mutation of the NCTC11168 locus revealed that Cj0485 is necessary for fucose metabolism and chemotaxis. This study suggests that components for fucose chemotaxis are encoded within the fuc locus, but downstream signals only in fuc + strains, are involved in coordinating fucose availability with biofilm development.  相似文献   

7.
Bacteriophage receptor‐binding proteins (RBPs) confer host specificity. We previously identified a putative RBP (Gp047) from the campylobacter lytic phage NCTC 12673 and demonstrated that Gp047 has a broader host range than its parent phage. While NCTC 12673 recognizes the capsular polysaccharide (CPS) of a limited number of Campylobacter jejuni isolates, Gp047 binds to a majority of C. jejuni and related Campylobacter coli strains. In this study, we demonstrate that Gp047 also binds to acapsular mutants, suggesting that unlike the parent phage, CPS is not the receptor for Gp047. Affinity chromatography and far‐western analyses of C. jejuni lysates using Gp047 followed by mass spectrometry indicated that Gp047 binds to the major flagellin protein, FlaA. Because C. jejuni flagellin is extensively glycosylated, we investigated this binding specificity further and demonstrate that Gp047 only recognizes flagellin decorated with acetamidino‐modified pseudaminic acid. This binding activity is localized to the C‐terminal quarter of the protein and both wild‐type and coccoid forms of C. jejuni are recognized. In addition, Gp047 treatment agglutinates vegetative cells and reduces their motility. Because Gp047 is highly conserved among all campylobacter phages sequenced to date, it is likely that this protein plays an important role in the phage life cycle.  相似文献   

8.
The Mre11–Rad50 nuclease–ATPase is an evolutionarily conserved multifunctional DNA double‐strand break (DSB) repair factor. Mre11–Rad50's mechanism in the processing, tethering, and signaling of DSBs is unclear, in part because we lack a structural framework for its interaction with DNA in different functional states. We determined the crystal structure of Thermotoga maritima Rad50NBD (nucleotide‐binding domain) in complex with Mre11HLH (helix‐loop‐helix domain), AMPPNP, and double‐stranded DNA. DNA binds between both coiled‐coil domains of the Rad50 dimer with main interactions to a strand‐loop‐helix motif on the NBD. Our analysis suggests that this motif on Rad50 does not directly recognize DNA ends and binds internal sites on DNA. Functional studies reveal that DNA binding to Rad50 is not critical for DNA double‐strand break repair but is important for telomere maintenance. In summary, we provide a structural framework for DNA binding to Rad50 in the ATP‐bound state.  相似文献   

9.
Protein‐primed DNA replication constitutes a strategy to initiate viral DNA synthesis in a variety of prokaryotic and eukaryotic organisms. Although the main function of viral terminal proteins (TPs) is to provide a free hydroxyl group to start initiation of DNA replication, there are compelling evidences that TPs can also play other biological roles. In the case of Bacillus subtilis bacteriophage ?29, the N‐terminal domain of the TP organizes viral DNA replication at the bacterial nucleoid being essential for an efficient phage DNA replication, and it contains a nuclear localization signal (NLS) that is functional in eukaryotes. Here we provide information about the structural properties of the ?29 TP N‐terminal domain, which possesses sequence‐independent DNA‐binding capacity, and dissect the amino acid residues important for its biological function. By mutating all the basic residues of the TP N‐terminal domain we identify the amino acids responsible for its interaction with the B. subtilis genome, establishing a correlation between the capacity of DNA‐binding and nucleoid localization of the protein. Significantly, these residues are important to recruit the DNA polymerase at the bacterial nucleoid and, subsequently, for an efficient phage DNA replication.  相似文献   

10.
Flagella are nanofibers that drive bacterial movement. The filaments are generally composed of thousands of tightly packed flagellin subunits with a terminal cap protein, named FliD. Here, we report that the FliD protein of the bacterial pathogen Campylobacter jejuni binds to host cells. Live‐cell imaging and confocal microscopy showed initial contact of the bacteria with epithelial cells via the flagella tip. Recombinant FliD protein bound to the surface of intestinal epithelial cells in a dose‐dependent fashion. Search for the FliD binding site on the host cell using cells with defined glycosylation defects indicated glycosaminoglycans as a putative target. Heparinase treatment of wild type cells and an excess of soluble heparin abolished FliD binding. Binding assays showed direct and specific binding of FliD to heparin. Addition of an excess of purified FliD or heparin reduced the attachment of viable Cjejuni to the host cells. The host cell binding domain of FliD was mapped to the central region of the protein. Overall, our results indicate that the Cjejuni flagellar tip protein FliD acts as an attachment factor that interacts with cell surface heparan sulfate glycosaminoglycan receptors.  相似文献   

11.
The class‐II AP‐endonuclease (XthA) acts on abasic sites of damaged DNA in bacterial base excision repair. We identified that the sliding DNA β‐clamp forms in vivo and in vitro complexes with XthA in Mycobacterium tuberculosis. A novel 239QLRFPKK245 motif in the DNA‐binding domain of XthA was found to be important for the interactions. Likewise, the peptide binding‐groove (PBG) and the C‐terminal of β‐clamp located on different domains interact with XthA. The β‐clamp‐XthA complex can be disrupted by clamp binding peptides and also by a specific bacterial clamp inhibitor that binds at the PBG. We also identified that β‐clamp stimulates the activities of XthA primarily by increasing its affinity for the substrate and its processivity. Additionally, loading of the β‐clamp onto DNA is required for activity stimulation. A reduction in XthA activity stimulation was observed in the presence of β‐clamp binding peptides supporting that direct interactions between the proteins are necessary to cause stimulation. Finally, we found that in the absence of DNA, the PBG located on the second domain of the β‐clamp is important for interactions with XthA, while the C‐terminal domain predominantly mediates functional interactions in the substrate's presence.  相似文献   

12.
Invasion of intestinal epithelial cells by Campylobacter jejuni is a critical step during infection of the intestine by this important human pathogen. In this study we investigated the role played by DNA supercoiling in the regulation of invasion of epithelial cells and the mechanism by which this could be mediated. A significant correlation between more relaxed DNA supercoiling and an increased ability of C. jejuni strains to penetrate human epithelial cells was demonstrated. Directly inducing relaxation of DNA supercoiling in C. jejuni was shown to significantly increase invasion of epithelial cells. Mutants in the fibronectin binding proteins CadF and FlpA still displayed an increased invasion after treatment with novobiocin suggesting these proteins were not essential for the observed phenotype. However, a large increase in protein secretion from multiple C. jejuni strains upon relaxation of DNA supercoiling was demonstrated. This increase in protein secretion was not mediated by outer membrane vesicles and appeared to be dependent on an intact flagellar structure. This study identifies relaxation of DNA supercoiling as playing a key role in enhancing C. jejuni pathogenesis during infection of the human intestine and identifies proteins present in a specific invasion associated secretome induced by relaxation of DNA supercoiling.  相似文献   

13.
14.
15.
Guanosine triphosphate (GTP) binding and hydrolysis events often act as molecular switches in proteins, modulating conformational changes between active and inactive states in many signaling molecules and transport systems. The P element transposase of Drosophila melanogaster requires GTP binding to proceed along its reaction pathway, following initial site‐specific DNA binding. GTP binding is unique to P elements and may represent a novel form of transpositional regulation, allowing the bound transposase to find a second site, looping the transposon DNA for strand cleavage and excision. The GTP‐binding activity has been previously mapped to the central portion of the transposase protein; however, the P element transposase contains little sequence identity with known GTP‐binding folds. To identify soluble, active transposase domains, a GFP solubility screen was used testing the solubility of random P element gene fragments in E. coli. The screen produced a single clone spanning known GTP‐binding residues in the central portion of the transposase coding region. This clone, amino acids 275–409 in the P element transposase, was soluble, highly expressed in E.coli and active for GTP‐binding activity, therefore is a candidate for future biochemical and structural studies. In addition, the chimeric screen revealed a minimal N‐terminal THAP DNA‐binding domain attached to an extended leucine zipper coiled‐coil dimerization domain in the P element transposase, precisely delineating the DNA‐binding and dimerization activities on the primary sequence. This study highlights the use of a GFP‐based solubility screen on a large multidomain protein to identify highly expressed, soluble truncated domain subregions.  相似文献   

16.
The type III secretion system (T3SS) is essential for the pathogenesis of many bacteria including Salmonella and Shigella, which together are responsible for millions of deaths worldwide each year. The structural component of the T3SS consists of the needle apparatus, which is assembled in part by the protein–protein interaction between the tip and the translocon. The atomic detail of the interaction between the tip and the translocon proteins is currently unknown. Here, we used NMR methods to identify that the N‐terminal domain of the Salmonella SipB translocon protein interacts with the SipD tip protein at a surface at the distal region of the tip formed by the mixed α/β domain and a portion of its coiled‐coil domain. Likewise, the Shigella IpaB translocon protein and the IpaD tip protein interact with each other using similar surfaces identified for the Salmonella homologs. Furthermore, removal of the extreme N‐terminal residues of the translocon protein, previously thought to be important for the interaction, had little change on the binding surface. Finally, mutations at the binding surface of SipD reduced invasion of Salmonella into human intestinal epithelial cells. Together, these results reveal the binding surfaces involved in the tip‐translocon protein–protein interaction and advance our understanding of the assembly of the T3SS needle apparatus. Proteins 2016; 84:1097–1107. © 2016 Wiley Periodicals, Inc.  相似文献   

17.
Helicobacter pylori, an important human pathogen, is capable of causing persistent infection with minimal immune response. The first line of defense during H. pylori infection is through gastric epithelial cells that present TLR, A family of bacterial proteins that share homology with the Toll/IL‐1 receptor (TIR) domain were identified. Bacterial TIR proteins (BTP) mimic human TIR domain proteins and act on myeloid differentiation primary response gene 88 (MyD88) signaling pathways to suppress TLR signaling. H. pylori may also produce a similar protein. A putative H. pylori BTP was found based on sequence homology. The corresponding gene hp1437 was inserted into an expression vector in fusion with an N‐terminal cleavable 6his‐tag. The recombinant protein, 6his‐HP1437, was purified using nickel affinity chromatography with a yield of 8 mg/L culture. Oligomerization of HP1437 was investigated by size‐exclusion chromatography. It was found that HP1437 forms dimers in solution similar to other BTPs. Furthermore, glutathione S‐transferase pull down assays identified an interaction between HP1437 and human TIR domain adaptor MyD88. These findings suggest that HP1437 has the characteristic features of BTPs and may play a direct role in reducing immune response against H. pylori by binding to MyD88 and pave the way for an in‐depth characterization of this putative novel H. pylori virulence factor.  相似文献   

18.
Zoospore chemotaxis to soybean isoflavones is essential in the early stages of infection by the oomycete pathogen Phytophthora sojae. Previously, we have identified a G‐protein α subunit encoded by PsGPA1 which regulates the chemotaxis and pathogenicity of P. sojae. In the present study, we used affinity purification to identify PsGPA1‐interacting proteins, including PsHint1, a histidine triad (HIT) domain‐containing protein orthologous to human HIT nucleotide‐binding protein 1 (HINT1). PsHint1 interacted with both the guanosine triphosphate (GTP)‐ and guanosine diphosphate (GDP)‐bound forms of PsGPA1. An analysis of the gene‐silenced transformants revealed that PsHint1 was involved in the chemotropic response of zoospores to the isoflavone daidzein. During interaction with a susceptible soybean cultivar, PsHint1‐silenced transformants displayed significantly reduced infectious hyphal extension and caused a strong cell death in plants. In addition, the transformants displayed defective cyst germination, forming abnormal germ tubes that were highly branched and exhibited apical swelling. These results suggest that PsHint1 not only regulates chemotaxis by interacting with PsGPA1, but also participates in a Gα‐independent pathway involved in the pathogenicity of P. sojae.  相似文献   

19.
20.
Processive DNA synthesis by the αεθ core of the Escherichia coli Pol III replicase requires it to be bound to the β2 clamp via a site in the α polymerase subunit. How the ε proofreading exonuclease subunit influences DNA synthesis by α was not previously understood. In this work, bulk assays of DNA replication were used to uncover a non‐proofreading activity of ε. Combination of mutagenesis with biophysical studies and single‐molecule leading‐strand replication assays traced this activity to a novel β‐binding site in ε that, in conjunction with the site in α, maintains a closed state of the αεθ–β2 replicase in the polymerization mode of DNA synthesis. The ε–β interaction, selected during evolution to be weak and thus suited for transient disruption to enable access of alternate polymerases and other clamp binding proteins, therefore makes an important contribution to the network of protein–protein interactions that finely tune stability of the replicase on the DNA template in its various conformational states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号