首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To conserve endangered species, information is needed on (meta)population responses to habitat quality and management. As possibilities for long-term studies are generally limited, it is important to obtain as much information as possible in a single field season.We obtained such single-census data for the orchid Liparis loeselii, a European Habitat Directive species. Stage structures of 15 Dutch dune and fen populations were related to vegetation structure, environmental indicators, and management. Botanical inventory records from 1930 to 2003 were used to infer population life spans.Cluster analysis did not reveal successional stage structure types. Dense populations with high recruitment mainly occurred in open, young-successional vegetation with high soil pH. High soil humidity and acidification negatively affected orchid densities. Early mowing was preferable over late mowing in dune slacks, because the latter reduced juvenile densities. The predominant population life span was three to eight years, and similar for dune slacks and fens. Longer life spans were occasionally observed at mown sites with influx of base-rich water.Our results suggest high metapopulation dynamics. Long-term metapopulation viability requires the formation of new habitat by dune slack formation in dunes and peat removal in fens. Population persistence can be prolonged to some extent by mowing, extensive grazing, or sod removal if natural habitat formation is impossible. Our study demonstrates that useful information on (meta)population ecology and viability can be obtained in a single field season.  相似文献   

2.
Pollination biology studies of the endangered orchid Cypripedium japonicum were conducted in its natural habitat using pollinator observation and hand‐pollination experiments. The observed fruit set was as follows: artificial outcross‐pollinated, 100%; artificial self‐pollinated, 100%; pollinator‐excluded, 0%; and emasculated flowers, 0%. These results show that this species, although self‐compatible, is neither autogamous nor agamospermous. The fruit set for open‐pollinated flowers was 14.9%, which suggests that the study population was subject to pollinator limitation. The nectarless flowers of C. japonicum were exclusively visited and pollinated by the queens of two bumblebee species (Bombus ardens and B. diversus diversus). It is probable that the nectarless flowers of C. japonicum attract pollinators through a generalized food deceptive system.  相似文献   

3.
Abstract

Chlorophyllous Mediterranean orchids share a habitat endangered by climate change and land use change. These orchids are characterized by two mechanisms of carbon assimilation, being autotrophic carbon fixation through photosynthesis supplemented by heterotrophic carbon fixation from mycorrhizal fungi. We investigated whether photosynthesis may sustain autotrophy of several species of orchids co-occurring in the same habitat (the understory of a chestnut forest in the Apennines range) along a vegetative season, and how photosynthesis responds to environmental parameters in the different species. Combined analysis of gas-exchange, chlorophyll fluorescence, optical properties, chlorophylls concentration, and Ribulose 1,5 bisphosphate carboxylase/oxygenase (Rubisco) activity were carried out to characterize the photosynthetic apparatus of the orchid species. Both in vivo and in vitro measurements indicated that in all orchids, in natural conditions and over the entire vegetative season (May to July), a detectable amount of carbon, typical of autotrophic shade leaves, is fixed. It is therefore suggested that these orchids are predominantly autotrophic. As an exception, however, Limodorum abortivum, a co-occurring orchid in the examined habitat, is unable to photosynthesize at rates compatible with autotrophy. At the low light intensity experienced in the understory habitat all orchids exhibited a similar quantum yield, but photosynthesis of Dactylorhiza saccifera and Cephalanthera longifolia was stimulated by light intensities higher than ambient, indicating that these species may better use sunflecks reaching the understory vegetation. Photosynthesis of all orchids, including Limodorum, positively responded to increasing CO2 concentration and temperature. Whether this will lead to a larger photosynthetic carbon fixation because of present and future climate change needs to be assessed with long-term experiments also including the impacts of climate on mychorrizal activity and host plants.  相似文献   

4.
Cremastra appendiculata var. variabilis is a self‐compatible, insect‐pollinated, terrestrial orchid that is a typical member of the warm‐temperate vegetation in the Korean Peninsula. Here we examine levels and partitioning of allozyme diversity (22 loci) in 12 populations of this orchid to gain insight into its genetic structure and post‐glacial colonization history in Korea. It harboured considerably higher levels of genetic variation within populations (%P = 48.1, A = 1.70 and He = 0.217) and lower degree of differentiation among populations (FST = 0.068) than those typical of allozyme‐based studies in other terrestrial orchid species. These patterns suggest that extant populations were derived from multiple source populations (i.e. from multiple glacial refugia), although further studies are needed to confirm this scenario. In addition to population history, traits such as high potential of seed dispersal, a mixed mating system and its occurrence in large and continuous populations would have contributed to the current levels and distribution of genetic diversity in Korean populations of C. appendiculata var. variabilis. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 721–732.  相似文献   

5.
Orchids live with mycorrhizal fungi in mutualism. This symbiotic relationship plays an essential role in the overall life cycle of orchids from germination, growth, settlement, and reproduction. Among the 1000 species of the orchid, the Korean lady’s slipper, Cypripedium japonicum, is known as an endangered species. Currently, only five natural habitats of the Korean lady’s slipper remain in South Korea, and the population of Korean lady’s slipper in their natural habitat is not increasing. To prevent extinction, this study was designed to understand the fungal community interacting in the rhizosphere of the Korean lady’s slipper living in the native and artificial habitats. In-depth analyses were performed to discover the vital mycorrhizal fungi contributing to habitat expansion and cultivation of the endangered orchid species. Our results suggested that Lycoperdon nigrescens contributed most to the increase in natural habitats and Russula violeipes as a characteristic of successful cultivation. And the fungi that helped L. nigrescens and R. violeipes to fit into the rhizosphere community in Korean lady’s slipper native place were Paraboeremia selaginellae and Metarhizium anisopliae, respectively. The findings will contribute to restoring and maintaining the endangered orchid population in natural habitats.  相似文献   

6.
Many terrestrial orchids are historically rare and occur in small, spatially isolated populations. Theory predicts that such species will harbour low levels of genetic variation within populations and will exhibit a high degree of population genetic divergence, primarily as a result of genetic drift. If the origin of the present‐day populations is relatively recent from the same genetically depauperate source population, a complete lack of genetic differentiation between conspecific populations is expected. If a terrestrial orchid was historically common with moderate or high levels of genetic diversity, but has experienced more recent anthropogenic disturbance as a result of over‐collection, it would still exhibit initial levels of genetic variation within populations and a low degree of genetic divergence between populations. To test these predictions, we examined the genetic diversity in six populations (N = 131) of the historically and currently rare Cypripedium japonicum and in four populations (N = 94) of the historically common but now rare C. macranthos from South Korea. Fourteen putative allozyme loci resolved from eight enzyme systems revealed no variation either within or among populations of C. japonicum, which supports the first prediction. In contrast, populations of C. macranthos harboured high levels of genetic variation (mean percentage of polymorphic loci %P = 46.7; mean expected heterozygosity He = 0.185) and exhibited a low degree of population genetic divergence (GST = 0.059), supporting the second prediction. The lack of genetic variation both within and among conspecific populations of C. japonicum may suggest that populations originated from the same genetically depauperate ancestral population. The high levels of genetic diversity maintained in populations of C. macranthos suggest that the collection‐mediated decrease in the number of individuals is still too recent for long‐term effects on genetic variation. Based on current demographic and genetic data, in situ and ex situ conservation strategies should be provided to preserve genetic variation and to ensure the long‐term survival of the two species in the Korean Peninsula. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 160 , 119–129.  相似文献   

7.
Rarely assessed in the success of ecological restoration projects is the maintenance of genetic variation in restored populations and, critically, their offspring. A founding population sourced from a limited genetic pool of nonlocal provenance seed can result in genetic bottlenecking and inbreeding, potentially reducing future population resilience and restoration success. We used microsatellite markers to assess the genetic variation of natural and restored populations, and their offspring, in Banksia attenuata R.Br. (Proteaceae), a keystone species of Banksia woodlands in south‐west Australia. Both natural and restored populations, and their offspring, displayed similarly high levels of heterozygosity (He range = 0.57–0.62) and allelic diversity (Ne range = 6.67–8.86) across 7 microsatellite loci. There was very weak population divergence (FST = 0.006) between the restored population and the adjacent natural population, indicating local provenance sourcing of seed. Genetic structuring within the natural population was weak, but detectable at 10 m and more strongly genetically structured than the restored population (Sp = 0.006 and 0.002, respectively). Complete outcrossing, low‐correlated paternity, and very low bi‐parental inbreeding were observed in both populations. Extensive pollen dispersal was observed within and among populations, with >50% of paternity assigned to sires beyond the local population. In a greenhouse experiment, differences in the overall performance of seedlings from natural and restored populations were negligible. Results indicate the successful genetic management of B. attenuata in this restoration project, from which general principles emphasizing the use of diverse local provenance seeds, genetic integration, and delivery of pollinator services are supported.  相似文献   

8.
Colonization is crucial to habitat restoration projects that rely on the spontaneous regeneration of the original vegetation. However, as a previously declining plant species spreads again, the likelihood of founder effects increases through recurrent population founding and associated serial bottlenecks. We related Amplified Fragment Length Polymorphism markers genetic variation and fitness to colonization history for all extant populations of the outcrossing terrestrial orchid Dactylorhiza incarnata in an isolated coastal dune complex. Around 1970, D. incarnata suffered a severe bottleneck yet ultimately persisted and gradually spread throughout the spatially segregated dune slacks, aided by the restoration of an open vegetation. Genetic assignment demonstrated dispersal to vacant sites from few nearby extant populations and very limited inflow from outside the spatially isolated reserve. Results further indicated that recurrent founding from few local sources resulted in the loss of genetic diversity and promoted genetic divergence (FST = 0.35) among populations, but did not influence population fitness. The few source populations initially available and the limited inflow of genes from outside the study reserve, as a consequence of habitat degradation and spatial isolation, may have magnified the genetic effects of recurrent population founding.  相似文献   

9.
膝柄木是我国极度濒危植物,也是广西滨海过渡带天然植被的重要组成树种.为了解光因子对膝柄木天然更新的限制影响,该文对林缘、林窗、林下三种不同光照生境下膝柄木幼树的生理和生长指标的年际变化特征进行了研究.结果表明:(1)光合有效辐射不足影响了膝柄木幼树的生长.林下幼树的地径、株高和叶面积增长量显著降低,而生长于光照充足林缘...  相似文献   

10.
Summary In many ecosystems, increases in vegetation density and the resulting closure of forest canopies are threatening the viability of species that depend upon open, sunlight‐exposed habitats. Consequently, we need to develop management strategies that recreate open habitats while minimizing the impacts on non‐target areas. Selective logging creates canopy gaps, but may result in undesirable effects in other respects. Thus, chainsaws have not been a popular tool for conservation. We conducted a landscape‐scale experiment to test whether selective tree removal can restore patch‐level habitat quality for Australia’s most endangered snake (Hoplocephalus bungaroides) and its main prey (the lizard Oedura lesueurii). We selectively removed canopy trees surrounding 25 overgrown rock outcrops and compared the resultant habitat structure and abiotic conditions to 30 overgrown, shady outcrops and 20 open, sunny outcrops. Removing vegetation decreased canopy cover by 19% in experimental plots and increased incident radiation and thermal regimes. These changes increased the availability of suitable shelter sites for our target species by 131%. At the landscape scale, our manipulations had a trivial effect on forest habitat; by increasing the area of sun‐exposed outcrops, we decreased forest cover by <0.1%. Our results show that targeted canopy removal can increase the availability of sun‐exposed habitat patches for endangered species in biologically meaningful ways. Thus, selective tree felling may be an effective conservation tool for open‐habitat specialists threatened by vegetation overgrowth.  相似文献   

11.
Though translocations of rare populations should be considered only as the last resort for species’ conservation, when habitat destruction is imminent, it may be the only means to preserve a species. With over half the known, wild federally endangered Crenulate leadplant (Amorpha herbacea var. crenulata), Fabaceae, growing on unprotected land slated for development, preserving this unprotected population was critical. We rescued whole plants, cuttings, and seeds for an experimental translocation. Into a restored pine rockland, once dominated by the invasive exotic tree Brazilian pepper (Schinus terebinthifolius), we transplanted plants from different sources and of different sizes. Plants used were rescued from an unprotected site, seedlings, and 1‐, 2‐, and 7‐year‐old plants from Fairchild Tropical Botanic Garden’s ex situ collection, creating a novel population in a new habitat. We also evaluated which propagule type and source had the best survival, growth, and reproduction. After 40 months, overall transplant survival was 71%. Large whole plants, rescued and nursery grown, had the best survival rates (86 and 78%), whereas cuttings had 67% survival and seedlings had only 26% survival. The restored site, once nearly a monoculture of S. terebinthifolius, is now dominated by 104 native plant species, including 17 naturally recruited state listed, plus the one translocated federally endangered plant species. In addition, one federally threatened snake species was observed on the site. These studies demonstrate that botanic garden collections not only play a vital role in the conservation of species’ genetic diversity but also can be used as source material for habitat restoration.  相似文献   

12.
Questions: What influence does mechanical mastication and other fuel treatments have on: (1) canopy and forest floor response variables that influence understory plant development; (2) initial understory vegetation cover, diversity, and composition; and (3) shrub and non‐native species density in a second‐growth ponderosa pine forest. Location: Challenge Experimental Forest, northern Sierra Nevada, California, USA. Methods: We compared the effects of mastication only, mastication with supplemental treatments (tilling and prescribed fire), hand removal, and a control on initial understory vegetation response using a randomized complete block experimental design. Each block (n=4) contained all five treatments and understory vegetation was surveyed within 0.04‐ha plots for each treatment. Results: While mastication alone and hand removal dramatically reduced the midstory vegetation, these treatments had little effect on understory richness compared with control. Prescribed fire after mastication increased native species richness by 150% (+6.0 species m2) compared with control. However, this also increased non‐native species richness (+0.8 species m2) and shrub seedling density (+24.7 stems m2). Mastication followed by tilling resulted in increased non‐native forb density (+0.7 stems m2). Conclusions: Mechanical mastication and hand removal treatments aided in reducing midstory fuels but did not increase understory plant diversity. The subsequent treatment of prescribed burning not only further reduced fire hazard, but also exposed mineral soil, which likely promoted native plant diversity. Some potential drawbacks to this treatment include an increase of non‐native species and stimulation of shrub seed germination, which could alter ecosystem functions and compromise fire hazard reduction in the long‐term.  相似文献   

13.
Cypripedium japonicum Thunb. (Orchidaceae), once a common perennial herb, is now designated as endangered throughout most of its distribution due to habitat destruction and fragmentation, and the impacts of horticultural collection. We investigated the genetic characteristics of this species for conservation purposes, using microsatellite markers to examine the genetic diversity and structure of 15 native and 5 ex situ populations in Japan. The results imply that although allelic variation is low in Japanese C. japonicum, sexual reproduction by seed, as well as clonal propagation, may occur in some populations. Both native and ex situ populations were found to be genetically differentiated, indicating that some populations may have experienced recent population declines, genetic fragmentation, or bottlenecks. The degree of genetic drift from the putative ancestral population, inferred through STRUCTURE analysis, was more pronounced in northern populations than in southern populations. Some of the ex situ conserved populations exhibited a low degree of differentiation from ancestral native populations. Our results imply that conservation of C. japonicum in Japan is best supported by maintaining individual populations and their unique genetic characteristics.  相似文献   

14.
Shifts in plant‐community composition following habitat degradation and species invasions can alter ecosystem structure and performance of ecosystem services. In temperate North American woodlands, invasion by aggressive Eurasian shrubs has produced dense thickets with depauperate understory vegetation and increased rates of litter decomposition and nutrient cycling, attributes that could impair storage of carbon as soil organic matter (SOM). It is important to know if such impairment has occurred and, if so, the extent to which restoration can return this service. We used an oak‐woodland restoration chronosequence in northeastern Illinois to contrast structural and functional attributes of unrestored areas dominated by Rhamnus cathartica (common buckthorn) with areas that had undergone buckthorn removal and ongoing, active management for less than 1 to 14 years. With increasing age, restored areas had higher understory plant diversity and cover (p < 0.0001 and 0.005, respectively) and higher litter mass (p = 0.018). These structural differences were associated with some evidence of reduced soil erosion (p = 0.027–0.135) but greater soil CO2 efflux (p = 0.020–0.033). Total particulate organic matter (POM) in the soil increased with restoration age, which was driven by increases in the slow‐turnover, mineral‐associated SOM fraction. However, variance was high and relationships were only weakly significant (p = 0.082 and 0.083 for total POM and mineral‐associated SOM, respectively). Our results suggest that, in addition to better documented biodiversity benefits, beneficial changes to ecosystem properties and processes may also occur with active, long‐term restoration of degraded woodlands.  相似文献   

15.
Population viability analysis is an important tool to assess the extinction risk in small populations of highly specialized primates. The blue‐eyed black lemur (Eulemur flavifrons) is critically endangered with a restricted range in the north‐western dry deciduous forest of Madagascar, where habitat fragmentation and loss of forest connectivity threaten its survival. We performed a population viability analysis (PVA) of this lemur in Ankarafa Forest in the Sahamalaza Peninsula National Park, north‐western Madagascar, to determine the demographic parameters most influential for population persistence and to assess extinction probabilities. We conducted PVA analyses using different demographic parameters which characterize the species including reproduction, lifespan and population size using the software VORTEX for six scenarios with 100 iterations and simulated over 100 years. The simulations suggested the first extinction within 13 years when the percentage of habitat destruction increased up to 12%. Severe habitat destruction such as fire and logging was the major cause which led to the risk of population extinction. Conservation strategies, in particular measures to reduce habitat destruction, are proposed to ensure the survival of this critically endangered lemur.  相似文献   

16.
The Orchidaceae is characterised by a diverse range of life histories, reproductive strategies and geographic distribution, reflected in a variety of patterns in the population genetic structure of different species. In this study, the genetic diversity and structure was assessed within and among remnant populations of the critically endangered sexually deceptive orchid, Caladenia huegelii. This species has experienced severe recent habitat loss in a landscape marked by ancient patterns of population fragmentation within the Southwest Australian Floristic Region, a global biodiversity hotspot. Using seven polymorphic microsatellite loci, high levels of within-population diversity (mean alleles/locus = 6.73; mean H E = 0.690), weak genetic structuring among 13 remnant populations (F ST = 0.047) and a consistent deficit of heterozygotes from Hardy–Weinberg expectation were found across all populations (mean F IS = 0.22). Positive inbreeding coefficients are most likely due to Wahlund effects and/or inbreeding effects from highly correlated paternity and typically low fruit set. Indirect estimates of gene flow (Nm = 5.09 using F ST; Nm = 3.12 using the private alleles method) among populations reflects a historical capacity for gene flow through long distance pollen dispersal by sexually deceived wasp pollinators and/or long range dispersal of dust-like orchid seed. However, current levels of gene flow may be impacted by habitat destruction, fragmentation and reduced population size. A genetically divergent population was identified, which should be a high priority for conservation managers. Very weak genetic differentiation indicates that the movement and mixing of seeds from different populations for reintroduction programs should result in minimal negative genetic effects.  相似文献   

17.
Identification of habitat features that are strongly associated with the occurrence of threatened species is important in terms of predicting impacts of habitat change and identifying key habitats for conservation. In this paper, we apply habitat‐based statistical models to predict occupancy patterns of the endangered southern bell frog (Litoria raniformis) across inland New South Wales (Australia). Litoria raniformis previously occupied a wide range of natural and man‐made waterbodies across a large geographic range, including flood plain wetlands, oxbow lagoons, irrigation canals and rice bays. Alteration of natural flooding regimes has affected a large proportion of habitats within the historical range of Litoria raniformis, but it is not clear how these changes have influenced habitat occupancy patterns. Fifty‐two waterbodies were surveyed for presence/absence of Litoria raniformis in 2001 and 2004. Stepwise logistic regression models were generated to select a subset of variables that best predicted occupancy. Using three predictor variables, vacant and occupied habitats could be predicted with an accuracy of 90% and 70%, respectively. The predictor variables were: the interaction between wetland hydrology and complexity of aquatic vegetation, complexity of fringing vegetation and water temperature. While this study demonstrated that a range of waterbody types were occupied by Litoria raniformis, these habitats shared common hydrological conditions and vegetation characteristics. Altered flooding regimes and reductions in the complexity of aquatic and fringing vegetation are likely to increase the probability of localized extinctions of Litoria raniformis populations.  相似文献   

18.
Habitat fragmentation weakens the connection between populations and is accompanied with isolation by distance (IBD) and local adaptation (isolation by adaptation, IBA), both leading to genetic divergence between populations. To understand the evolutionary potential of a population and to formulate proper conservation strategies, information on the roles of IBD and IBA in driving population divergence is critical. The putative ancestor of Asian cultivated rice (Oryza sativa) is endangered in China due to habitat loss and fragmentation. We investigated the genetic variation in 11 Chinese Oryza rufipogon populations using 79 microsatellite loci to infer the effects of habitat fragmentation, IBD and IBA on genetic structure. Historical and current gene flows were found to be rare (mh = 0.0002–0.0013, mc = 0.007–0.029), indicating IBD and resulting in a high level of population divergence (FST = 0.343). High within‐population genetic variation (HE = 0.377–0.515), relatively large effective population sizes (Ne = 96–158), absence of bottlenecks and limited gene flow were found, demonstrating little impact of recent habitat fragmentation on these populations. Eleven gene‐linked microsatellite loci were identified as outliers, indicating local adaptation. Hierarchical AMOVA and partial Mantel tests indicated that population divergence of Chinese O. rufipogon was significantly correlated with environmental factors, especially habitat temperature. Common garden trials detected a significant adaptive population divergence associated with latitude. Collectively, these findings imply that IBD due to historical rather than recent fragmentation, followed by local adaptation, has driven population divergence in O. rufipogon.  相似文献   

19.
Freshwater species often show high levels of endemism and risk of extinction owing to their limited dispersal abilities. This is exemplified by the stenotopic freshwater crab, Johora singaporensis which is one of the world's 100 most threatened species, and currently inhabits less than 0.01 km2 of five low order hill streams within the highly urbanized island city‐state of Singapore. We compared populations of J. singaporensis with that of the non‐threatened, widespread, abundant, and eurytopic freshwater crab, Parathelphusa maculata, and found surprisingly high congruence between their population genomic histories. Based on 2,617 and 2,470 genome‐wide SNPs mined via the double‐digest restriction‐associated DNA sequencing method for ~90 individuals of J. singaporensis and P. maculata, respectively, the populations are strongly isolated (FST = 0.146–0.371), have low genetic diversity for both species (also for COI), and show signatures of recent genetic bottlenecks. The most genetically isolated populations for both species are separated from other populations by one of the oldest roads in Singapore. These results suggest that anthropogenic developments may have impacted stream‐dependent species in a uniform manner, regardless of ubiquity, habitat preference, or dispersal modes of the species. While signs of inbreeding were not detected for the critically endangered species, the genetic distinctiveness and low diversity of the populations call for genetic rescue and connecting corridors between the remaining fragments of the natural habitat.  相似文献   

20.
Abstract

Chasmophytic vegetation growing on the cracks of cliffs in the Mediterranean and in the Euro-Siberian phytogeographic regions shows a great regional diversity, with a large number of endemic plant species, many of them endangered and at risk of extinction. Moehringia papulosa is an example of a threatened plant living in this kind of habitat. It is an endemism of the Marche region in central Italy, whose natural populations are considered as critically endangered (CR) under the IUCN criteria and the habitat is protected by the E.U. (Directive 92/43/EEC) with the habitat 8210 “calcareous rocky slopes with chasmophytic vegetation”. The phenology of natural populations was analyzed, seed morphology is described and type and level of seed dormancy were determined. The effects of different collecting dates, localities and the influence of elaiosome on germination responses were also considered in order to establish germination requirements to provide optimal protocols for conservation and restoration programmes. Interpopulation differences on seed morphological features were not found and our results also confirm the fact that removal of the elaiosome stimulates germination. The seeds of this species show a non-deep physiological dormancy. The pretreatments proposed as optimal for germination are as follows: a combination of scarification and gibberellins, and 12 weeks of cold stratification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号