首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Several new genera originally classified as the genus Phormidium, a polyphyletic and taxonomically complex genus within the Oscillatoriales, were recently described. The simple morphology of Phormidium does not reflect its genetic diversity and the delimitation of a natural group is not possible with traditional classification systems based on morphology alone. Therefore, this study used morphological, ecological, and molecular approaches to evaluate four populations morphologically similar to Ammassolinea, Kamptonema, and Ancylothrix (simple, curved, and gradually attenuated at the ends trichome), found in subtropical and tropical Brazilian regions. 16S rRNA gene sequences grouped all the strains in a highly supported clade with other two European strains isolated from thermal springs surrounding areas. The 16S‐23S ITS secondary structure corroborated the phylogenetic analysis with all the strains having similar structures. Consequently, a genetically well‐defined and cryptic new genus, Koinonema gen. nov., is proposed containing the aquatic, mesophilic, and morphologically homogeneous new species, Koinonema pervagatum sp. nov.  相似文献   

2.
Late summer cyanobacterial blooms in the Baltic Sea contain Anabaena sp. together with Nodularia spumigena and Aphanizomenon flos-aquae. Although Anabaena is common especially in the Gulf of Finland, very little is known about its genetic diversity. Here we undertook a molecular phylogenetic study of 68 Anabaena strains isolated from the brackish Gulf of Finland. We sequenced the 16S rRNA genes from 54 planktonic and 14 benthic Anabaena strains, and rbcL and rpoC1 genes from a subset of these strains. Phylogenetic trees showed that Anabaena strains, from both planktonic and benthic habitats, were genetically diverse. Although the Anabaena strains were morphologically diverse, in our study only one genetically valid species was found to exist in the plankton. Evolutionary distances between benthic Anabaena strains were greater than between planktonic strains, suggesting that benthic habitats allow for the maintenance of greater genetic diversity than planktonic habitats. A number of novel lineages containing only sequences obtained in this study were compiled in the phylogenetical analyses. Thus, it seemed that novel lineages of the genus Anabaena may be present in the Baltic Sea. Our results demonstrate that the Baltic Sea Anabaena strains show surprisingly high genetic diversity.  相似文献   

3.
The present study describes two new Nostoc species, N. montejanii and N. tlalocii, based on a polyphasic approach that combines morphological, ecological, and genetic characteristics. The five investigated populations, including those from newly collected material from central Mexico, were observed to possess morphological features characteristic of the Nostoc genus. Results showed that both new species are strictly associated with running water, and they show clear differences in their habitat preferences. The 16S rRNA gene sequences of the five strains displayed between 98% and 99% similarity to the genus Nostoc sensu stricto. The 16S rRNA gene phylogenetic analyses inferred using Bayesian inference, maximum likelihood, and parsimony methods, placed these five strains in two separate clades distinct from other Nostoc species. The secondary structures of the 16S–23S internal transcribed spacer rRNA region in the two new species showed >10.5% dissimilarities in the operons when compared with other Nostoc species. In addition, clear morphological differences were observed between the two Mexican species, including the color of the colonies (black in N. montejanii and green in N. tlalocii), the size of the cells (greater in N. montejanii), and the number of polyphosphate granules present in the cells (one in N. montejanii and up to four in N. tlalocii).  相似文献   

4.
Cyanolichens are an assemblage of fungi and cyanobacteria from diverse, cosmopolitan habitats. Typically composed of a single species of cyanobacterium, with or without another eukaryotic alga, here we present two novel cyanobionts isolated from an undescribed tripartite lichen. This endolithic lichen was isolated from a granite cemetery tombstone from Jacksonville, FL, and contains two potentially nitrogen‐fixing cyanobionts. Employing a total evidence approach, we characterized the cyanobionts using molecular (the 16S rDNA and ITS gene region), morphological, and ecological data. Phylogenetic analyses revealed two novel taxa: Brasilonema lichenoides and Chroococcidiopsis lichenoides, both of which fell within well‐supported clades. To our knowledge, this represents the first instance of a tripartite lichen with two cyanobacterial and no eukaryotic members. These types of lichens may well represent an unexplored reservoir of cyanobacterial diversity. The specific epithets are proposed under the provisions of the International Code of Nomenclature for algae, fungi, and plants.  相似文献   

5.
Twenty‐six strains morphologically identified as Cylindrospermum as well as the closely related taxon Cronbergia siamensis were examined microscopically as well as phylogenetically using sequence data for the 16S rRNA gene and the 16S‐23S internal transcribed spacer (ITS) region. Phylogenetic analysis of the 16S rRNA revealed three distinct clades. The clade we designate as Cylindrospermum sensu stricto contained all five of the foundational species, C. maius, C. stagnale, C. licheniforme, C. muscicola, and C. catenatum. In addition to these taxa, three species new to science in this clade were described: C. badium, C. moravicum, and C. pellucidum. Our evidence indicated that Cronbergia is a later synonym of Cylindrospermum. The phylogenetic position of Cylindrospermum within the Nostocaceae was not clearly resolved in our analyses. Cylindrospermum is unusual among cyanobacterial genera in that the morphological diversity appears to be more evident than sequence divergence. Taxa were clearly separable using morphology, but had very high percent similarity among ribosomal sequences. Given the high diversity we noted in this study, we conclude that there is likely much more diversity remaining to be described in this genus.  相似文献   

6.
The occurrence and environmental factors responsible for the distribution of benthic cyanobacteria in running waters remain largely unexplored in comparison with those of other aquatic ecosystems. In this study, combined data of ecological characteristics, molecular analysis (based on 16S rRNA gene), and direct microscopic inspection of environmental samples were analyzed in parallel with the morphological characterization of the isolated strains to investigate benthic cyanobacterial diversity in the Guadarrama river (Spain). A total of 17 species were identified that belonged to the genera Aphanocapsa, Pleurocapsa, Chroococcus, Chamaesiphon, Cyanobium, Pseudan‐abaena, Leptolyngbya, Phormidium, Nostoc, and Tolypothrix. Phenotypic features were associated with the results of 16S rRNA gene sequencing, complementing existing morphological and genetic databases. A decrease in the cyanobacterial diversity was observed along a pollution gradient in the river. Water quality differed among the sampling sites, and variation in nutrient content was the principal difference among locations. These characteristics were closely associated with an upstream‐downstream eutrophic gradient. Canonical correspondence analysis distinguished three groups of species with respect to the eutrophication gradient. The first group (Tolypothrix cf. tenuis, Nostoc punctiforme, Nostoc piscinale, Chamaesiphon investiens, Chroococcus minor, Leptolyngbya nostocorum, and Leptolyngbya tenuis) was characteristic of waters with low levels of nutrients. The second group (Cyanobium sp., Chamaesiphon polymorphus, Leptolyngbya boryana, Phormidium autumnale, Phormidium sp., and Aphanocapsa cf. rivularis) was characteristic of polluted waters, its members appearing mainly in great abundance under eutrophic‐hypertrophic conditions. The third group of species (Pseudanabaena catenata, Aphanocapsa muscicola, and Nostoc carneum) was present at upstream and downstream sites.  相似文献   

7.
Five strains of Drouetiella (ACKU666, 667, 668, 669 and 670) were isolated from gravels in water, stone monument and coastal mudflat in Korea, and were studied using morphological and molecular traits. All five strains had thin and simple trichomes and exhibited false branching. From these strains, four strains (ACKU666, 667, 668 and 669) exhibited similar cell lengths with reddish–brown colored cells such as Drouetiella lurida. The 16S rRNA gene phylogeny showed the four strains formed a clade with Drouetiella lurida, and their DNA similarity was calculated to be 99.1–100%. The color of strain ACKU670 appeared to be in bright blue–green color like Drouetiella fasciculata, and their thylakoids showed a parietal arrangement, which is a characteristic feature of the family Oculatellaceae. Strain ACKU670 turned out to be a sister clade to the D. lurida according to the phylogenetic analysis of the 16S rRNA gene. The 16–23S rRNA internal transcribed spacer secondary folding structure (D1–D1′, Box-B and V3 helices) confirmed the uniqueness of strain ACKU670, therefore indicating differences from the related species. Considering all the results, we described our strain ACKU670 as Drouetiella epilithica sp. nov. in accordance with the International Code of Nomenclature for Algae, Fungi and Plants.  相似文献   

8.
9.
10.
True branching is a facultative characteristic only known from two cyanobacteria in the Aphanizomenonaceae, Umezakia natans and Dolichospermum brachiatum. In both cases, its expression has been associated with environmental stress, and its practical use as a diacritical feature has been previously evaluated. In this study, we undertook further evaluation of the phylogeny of Umezakia natans and its relationship to Chrysosporum ovalisporum as a previous study suggested the two were potentially congeneric. We used combined morphological, phylogenetic, and phylogenomic approaches to determine their relatedness using new strains available from a broad geographic range. Phylogenetic analysis based on 16S rRNA gene sequences showed that Australian C. ovalisporum and Japanese U. natans strains clustered together with accessions of C. ovalisporum originating from Australia, Israel, and Spain, with high p-distance similarity values (99.5%–99.9%). Additionally, differences between the two species in the 16S–23S ITS region was low (0%–2.5%). The average nucleotide identity of the U. natans and C. ovalisporum strains was also high (ANI of > 99.5 and AF > 0.9) and supported a genus-level separation from Chrysosporum bergii (83 ANI between clusters). Furthermore, in culture, strains of both species grown in vitamin-free media showed facultative true branching, a feature not previously known in C. ovalisporum. Collectively, the results support unification of C. ovalisporum and U. natans according to the principle of priority as Umezakia ovalisporum.  相似文献   

11.
We present a revision of the genus Troglophilus in the western part of the Balkan Peninsula based on morphological and genetic analysis, and provide distribution data for the species. The results of these analyses reduced the number of the known taxa within the genus Troglophilus in this area to five valid species: Troglophilus cavicola ( Kollar, 1833 ), Troglophilus neglectus Krauss, 1879 , Troglophilus ovuliformis Karny, 1907 , Troglophilus brevicauda Chopard, 1934, and Troglophilus lazaropolensis Karaman, 1958. A new species Troglophilus zorae sp. nov. is described and Troglophilus neglectus serbicus Maran, 1958, Troglophilus neglectus vlasinensis Maran, 1958, Troglophilus bukoviki Karaman, 1968 and Troglophilus pretneri Us, 1970 are synonymized. The distribution pattern of the western Balkan species supports a general east?west migration route. We also determined the centres of origin and spreading directions of particular species according to the distribution of the taxa and the structure of the haplotypes. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 163 , 1035–1063.  相似文献   

12.
Five cyanobacterial strains exhibiting Nostoc-like morphology were sampled from the biodiversity hotspots of the northeast region of India and characterized using a polyphasic approach. Molecular and phylogenetic analysis using the 16S rRNA gene indicated that the strains belonged to the genera Amazonocrinis and Dendronalium. In the present investigation, the 16S rRNA gene phylogeny clearly demarcated two separate clades of Amazonocrinis. The strain MEG8-PS clustered along with Amazonocrinis nigriterrae CENA67, which is the type strain of the genus. The other three strains ASM11-PS, RAN-4C-PS, and NP-KLS-5A-PS clustered in a different clade that was phylogenetically distinct from the Amazonocrinis sensu stricto clade. Interestingly, while the 16S rRNA gene phylogeny exhibited two separate clusters, the 16S–23S ITS region analysis did not provide strong support for the phylogenetic observation. Subsequent analyses raised questions regarding the resolving power of the 16S–23S ITS region at the genera level and the associated complexities in cyanobacterial taxonomy. Through this study, we describe a novel genus Ahomia to accommodate the members clustering outside the Amazonocrinis sensu stricto clade. In addition, we describe five novel species, Ahomia kamrupensis, Ahomia purpurea, Ahomia soli, Amazonocrinis meghalayensis, and Dendronalium spirale, in accordance with the International Code of Nomenclature for algae, fungi, and plants (ICN). Apart from further enriching the genera Amazonocrinis and Dendronalium, the current study helps to resolve the taxonomic complexities revolving around the genus Amazonocrinis and aims to attract researchers to the continued exploration of the tropical and subtropical cyanobacteria for interesting taxa and lineages.  相似文献   

13.
Oscillatoria kawamurae is an unusual freshwater cyanobacterium because of its large trichome and ambiguous gas vacuole. Because little is known about its phenotypic or genotypic characteristics, this study conducted morphological, biochemical, and genetic characterization of O. kawamurae strains isolated from Japan, Laos, and Myanmar. All strains displayed similar morphological characteristics; however some differences were observed in vegetative cell widths, trichome colors, and the distribution patterns of their gas vacuole‐like structures. The in vivo and phycobiliprotein absorption spectra revealed the two different trichome colors found in the four representative strains of O. kawamurae (Inle1, Lao7, Biwa6, and Inba3). These different trichome colors corresponded to the different ratios of phycoerythrin and phycocyanin, the two types of phycobilin pigments: 0.25 for olive‐green strain (Inle1) and 0.65–0.73 for brown‐green strains (Biwa6, Inba3, and Lao7). Cellular fatty acid compositions of the four strains were C14:0, C15:0, C16:0, C16:1c, C17:0, C18:0, C18:1c, C18:3α and C18:4, whereas two strains (Biwa6 and Inba3) lacked C17:0. Of the fatty acids, palmitic acid (C16:0) was predominant. PCR experiments using primers targeting a gas vesicle gene (gvpA) recovered gvpA fragments from all O. kawamurae strains, suggesting that this species has true gas vacuoles. The 16S rDNA sequences of all of the strains were identical regardless of their different trichome colors and/or geographic origins. Phylogenetic analyses based on the 16S rDNA sequences indicated that O. kawamurae forms a monophyletic clade with O. princeps CCALA 1115 clB1 and O. duplisecta ETS‐06. We discuss the taxonomy of O. kawamurae based on the data obtained in this study.  相似文献   

14.
15.
16.
ABSTRACT

Natural populations of a Rivularia-like cyanobacterium were collected from the carbonate deposits of the temporarily flooded littoral zone of a hypersaline, high elevation lake, The Laguna Negra, Andes, Argentina. Subsequently, the cyanobacterial strain PUNA-NP3, named after its origin (Puna Volcanic Plateau) was isolated from these Rivularia-like rounded, pillow-like, black microbial mats. None of the previously described species of the genus Rivularia occupy inland, hypersaline aquatic environments. After morphological examination of this strain, we found clear morphological autapomorphies, such as mucilaginous pads at the bases of the young trichomes, wide trichomes and filaments, and uniquely branched trichomes. Furthermore, based on results from 16S rRNA phylogeny and analysis of the 16S-23S ITS region, PUNA-NP3 was found to be an independent lineage of the evolutionary tree. Based on the combination of ecological, morphological and molecular evidence, we name strain PUNA-NP3 Rivularia halophila sp. nov. a new species under requirements of the International Code of Nomenclature for Algae, Fungi and Plants.  相似文献   

17.
The canal-bearing diatom genus Nagumoea, described based on only morphological evidence, was tentatively assigned to the order Bacillariales, although its phylogenetic position remained unclear. Because three isolates of Nagumoea (SK002, SK024 and SK053) were successfully established from Japanese coasts, we performed their morphological observations and molecular phylogenetic analyses to discuss the phylogeny and taxonomic position of this genus. Strains SK002 and SK024 were identified as Nagumoea africana, whereas SK053 conformed with Nagumoea serrata. There was high interspecific divergence between N. africana and N. serrata in the rbcL sequences (8.03–8.17%), indicating their distinctness. Furthermore, intraspecific variations were detected within N. africana (2.35%) in the rbcL, implying its cryptic diversity. The maximum likelihood and Bayesian phylogenetic trees inferred from the plastid rbcL, psbC and nuclear 18S rDNA genes recovered Nagumoea as monophyletic with strong statistical support and embedded within an unresolved, poorly supported lineage containing Achnanthes, Craspedostauros, Staurotropis and Undatella in the canal-bearing order Bacillariales (= the family Bacillariaceae). Although the constrained tree based on the monophyly of Nagumoea and the other canal-bearing clade (Surirellales and Rhopalodiales) was statistically rejected by the topology tests, the phylogenetic position of Nagumoea with other Bacillarialean members remains equivocal. The possession of two plastids positioned fore and aft, observed in the present study, and lack of keel, typical of the Bacillariales, indicate the possibility of Nagumoea being part of the ingroup of the Bacillariales or its closely related outgroup.  相似文献   

18.
Systematic studies on the family Phytoseiidae were first conducted at the beginning of the 20th century but increased greatly after the Second World War. Various classifications have been proposed based on different characters such as: dorsal, ventral, and leg chaetotaxy; the shape of ventrianal and sternal shields; the shape of the insemination apparatus (spermatheca) and spermatodactylus; the number of teeth on the movable digit of chelicera; and dorsal and ventral adenotaxy. The genus concepts developed over the last five decades can be divided into two main categories or hypotheses. The first, supported mainly by Chant and McMurtry, focuses on dorsal and ventral chaetotaxy, and the genera so defined usually include a great number of species. The second category, proposed by Athias‐Henriot, considers the shape of the insemination apparatus as the key character, and the genera so defined usually include a limited number of species. From a diagnostic point of view, both classifications have a valid structure, but the question investigated herein was: which of the two classifications or hypotheses fits phylogenetic evolution? To answer this, we conducted molecular phylogenetic analyses (using the genes ITS and 12S rRNA) on the genus Neoseiulus, which has been subjected to classification based on the two main genus concepts. The results showed that the first hypothesis (Chant and McMurtry) leads to polyphyly of the genus Neoseiulus, while the second (Athias‐Henriot) leads to paraphyly of the genus. The results show that acarologists who first decided that the insemination apparatus was of evolutive importance could be correct as the shape of the insemination apparatus seems to better fit evolutive clades than dorsal and ventral chaetotaxy. The morphology of this organ, however, must be more accurately studied to better define homologies. The present paper investigates the two main hypotheses proposed until now for classification of Phytoseiidae and thereby opens the way for improved classification. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 165 , 253–273.  相似文献   

19.
Two populations of Rivularia‐like cyanobacteria were isolated from ecologically distinct and biogeographically distant sites. One population was from an unpolluted stream in the Kola Peninsula of Russia, whereas the other was from a wet wall in the Grand Staircase‐Escalante National Monument, a desert park‐land in Utah. Though both were virtually indistinguishable from Rivularia in field and cultured material, they were both phylogenetically distant from Rivularia and the Rivulariaceae based on both 16S rRNA and rbcLX phylogenies. We here name the new cryptic genus Cyanomargarita gen. nov., with type species C. melechinii sp. nov., and additional species C. calcarea sp. nov. We also name a new family for these taxa, the Cyanomargaritaceae.  相似文献   

20.
应用nrDNA ITS和ETS序列探讨了樟科Lauraceae黄肉楠属Actinodaphne的系统演化关系。对得到的3个序列矩阵(ITS、ETS和ITS/ETS),采用MP(maximum parsimony),ML(maximum likelihood)和Bayesian33分析方法进行了系统发育分析。结果显示,本文选的黄肉楠属Actinodaphne物种与所选的月棒族中的外类群靠近并混和在一起,进一步证实了本属为一个复系类群。结合对传统的形态学性状的重新认识,认为花序类型特征可能是重新界定黄肉楠属的最重要的性状,具有相同化序类型的物种可能具有相同的起源。然而,由于取样数量相对较少以及对矩阵的中.独分析存在一定的差异,还需更详细的研究来验证本文对黄肉楠属系统演化关系的假设,并进一步更精确地重建本属的系统发育关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号