首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
As one of the most serious diseases in grape, downy mildew caused by Plasmopara viticola is a worldwide grape disease. Much effort has been focused on improving susceptible grapevine resistance, and wild resistant grapevine species are important for germplasm improvement of commercial cultivars. Using yeast two‐hybrid screen followed by a series of immunoprecipitation experiments, we identified voltage‐dependent anion channel 3 (VDAC3) protein from Vitis piasezkii ‘Liuba‐8’ as an interacting partner of VpPR10.1 cloned from Vitis pseudoreticulata ‘Baihe‐35‐1’, which is an important germplasm for its resistance to a range of pathogens. Co‐expression of VpPR10.1/VpVDAC3 induced cell death in Nicotiana benthamiana, which accompanied by ROS accumulation. VpPR10.1 transgenic grapevine line showed resistance to P. viticola. We conclude that the VpPR10.1/VpVDAC3 complex is responsible for cell death‐mediated defence response to P. viticola in grapevine.  相似文献   

4.
5.
The most economically important diseases of grapevine cultivation worldwide are caused by the fungal pathogen powdery mildew (Erysiphe necator syn. Uncinula necator) and the oomycete pathogen downy mildew (Plasmopara viticola). Currently, grapegrowers rely heavily on the use of agrochemicals to minimize the potentially devastating impact of these pathogens on grape yield and quality. The wild North American grapevine species Muscadinia rotundifolia was recognized as early as 1889 to be resistant to both powdery and downy mildew. We have now mapped resistance to these two mildew pathogens in M. rotundifolia to a single locus on chromosome 12 that contains a family of seven TIR‐NB‐LRR genes. We further demonstrate that two highly homologous (86% amino acid identity) members of this gene family confer strong resistance to these unrelated pathogens following genetic transformation into susceptible Vitis vinifera winegrape cultivars. These two genes, designated r esistance to P lasmopara v iticola (MrRPV1) are the first resistance genes to be cloned from a grapevine species. Both MrRUN1 and MrRPV1 were found to confer resistance to multiple powdery and downy mildew isolates from France, North America and Australia; however, a single powdery mildew isolate collected from the south‐eastern region of North America, to which M. rotundifolia is native, was capable of breaking MrRUN1‐mediated resistance. Comparisons of gene organization and coding sequences between M. rotundifolia and the cultivated grapevine V. vinifera at the MrRUN1/MrRPV1 locus revealed a high level of synteny, suggesting that the TIR‐NB‐LRR genes at this locus share a common ancestor.  相似文献   

6.
Pathogen attack represents a major problem for viticulture and for agriculture in general. At present, the use of phytochemicals is more and more restrictive, and therefore it is becoming essential to control disease by having a thorough knowledge of resistance mechanisms. The present work focused on the trans-regulatory proteins potentially involved in the control of the plant defence response, the WRKY proteins. A full-length cDNA, designated VvWRKY1, was isolated from a grape berry library (Vitis vinifera L. cv. Cabernet Sauvignon). It encodes a polypeptide of 151 amino acids whose structure is characteristic of group IIc WRKY proteins. VvWRKY1 gene expression in grape is regulated in a developmental manner in berries and leaves and by various signal molecules involved in defence such as salicylic acid, ethylene, and hydrogen peroxide. Biochemical analysis indicates that VvWRKY1 specifically interacts with the W-box in various nucleotidic contexts. Functional analysis of VvWRKY1 was performed by overexpression in tobacco, and transgenic plants exhibited reduced susceptibility to various fungi but not to viruses. These results are consistent with a possible role for VvWRKY1 in grapevine defence against fungal pathogens.  相似文献   

7.
8.
9.
10.
11.
12.
13.
Chitin, a major component of fungal cell walls, is a well‐known pathogen‐associated molecular pattern (PAMP) that triggers defense responses in several mammal and plant species. Here, we show that two chitooligosaccharides, chitin and chitosan, act as PAMPs in grapevine (Vitis vinifera) as they elicit immune signalling events, defense gene expression and resistance against fungal diseases. To identify their cognate receptors, the grapevine family of LysM receptor kinases (LysM‐RKs) was annotated and their gene expression profiles were characterized. Phylogenetic analysis clearly distinguished three V. vinifera LysM‐RKs (VvLYKs) located in the same clade as the Arabidopsis CHITIN ELICITOR RECEPTOR KINASE1 (AtCERK1), which mediates chitin‐induced immune responses. The Arabidopsis mutant Atcerk1, impaired in chitin perception, was transformed with these three putative orthologous genes encoding VvLYK1‐1, ‐2, or ‐3 to determine if they would complement the loss of AtCERK1 function. Our results provide evidence that VvLYK1‐1 and VvLYK1‐2, but not VvLYK1‐3, functionally complement the Atcerk1 mutant by restoring chitooligosaccharide‐induced MAPK activation and immune gene expression. Moreover, expression of VvLYK1‐1 in Atcerk1 restored penetration resistance to the non‐adapted grapevine powdery mildew (Erysiphe necator). On the whole, our results indicate that the grapevine VvLYK1‐1 and VvLYK1‐2 participate in chitin‐ and chitosan‐triggered immunity and that VvLYK1‐1 plays an important role in basal resistance against E. necator.  相似文献   

14.
15.
16.
Methoxypyrazines are a family of potent volatile compounds of diverse biological significance. They are used by insects and plants in chemical defence, are present in many vegetables and fruit and, in particular, impart herbaceous/green/vegetal sensory attributes to wines of certain varieties, including Cabernet Sauvignon. While pathways for methoxypyrazine biosynthesis have been postulated, none of the steps have been confirmed genetically. We have used the F2 progeny of a cross between a rapid flowering grapevine dwarf mutant, which does not produce 3‐isobutyl‐2‐methoxypyrazine (IBMP), and Cabernet Sauvignon to identify the major locus responsible for accumulation of IBMP in unripe grape berries. Two candidate methyltransferase genes within the locus were identified and one was significantly associated with berry IBMP levels using association mapping. The enzyme encoded by this gene (VvOMT3) has high affinity for hydroxypyrazine precursors of methoxypyrazines. The gene is not expressed in the fruit of Pinot varieties, which lack IBMP, but is expressed in Cabernet Sauvignon at the time of accumulation of IBMP in the fruit. The results suggest that VvOMT3 is responsible for the final step in methoxypyrazine synthesis in grape berries and is the major determinant of IBMP production.  相似文献   

17.
Grapevine is one of the most widely grown fruit crops in the world. At present, however, there is much concern regarding chemical pollution in viticulture due to the application of chemical fungicides and fertilizers. One viticultural practice to resolve this issue is the application of micro‐organisms to grapevine as a substitute for chemicals. Some micro‐organisms act as an enhancer of grape berry quality as well as a suppresser of disease in grapevine through their antagonistic ability and/or systemic resistance inducing ability. Herein, we review current and prospective applications of micro‐organisms in viticulture.

Significance and Impact of the Study

In this review, we evaluate the applicability of micro‐organisms in viticulture. Micro‐organisms can improve grape berry quality through grapevine disease protection and grape berry quality alteration. Because the use of micro‐organisms to protect grapevine from plant diseases is safer than the use of chemical fungicides, the use of biofungicides in viticulture is expected to be enhanced by the increasing consumer concern towards chemical fungicides. Micro‐organisms also modify plant secondary metabolites for use as flavours, pharmaceuticals and food additives. Studies of micro‐organisms that promote polyphenol, anthocyanin and aroma compound biosynthesis are in progress with an eye to improving grape berry quality.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号