首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent work has established a core ABA signaling pathway in which A‐type PP2C protein phosphatases act as central negative modulators. Although ABA signaling inhibits PP2C activity through ABA‐receptor complex, it remains unknown if other mechanisms exist to modulate the level of PP2Cs. Here, we identified a RING domain ubiquitin E3 ligase, PIR1 (PP2CA interacting RING finger protein 1), that interacted with PP2CA. Of the two splicing isoforms, PIR1.2 was isolated from leaf tissue. The PIR1.2 exhibited E3 ligase activity and determined PP2CA stability in the presence of ABA. Consistent with the conclusion that PIR1 promotes ABA signaling by removing PP2CA, a negative modulator, the pir1 knockout mutant displayed an ABA‐hyposensitive phenotype. We further showed that PIR2, the closest homologue of PIR1.2, also interacted with PP2CA. Although the pir2 knockout mutant did not display altered ABA response, the pir1‐1/pir2 double mutant became more insensitive to ABA than the wild‐type or pir1‐1 and pir2 single mutants. Using a cell‐free degradation assay, ABA promoted degradation of PP2CA, however, such degradation was delayed when incubated with protein extract prepared from the pir1‐1/pir2 double mutant. Our data suggest that PIR1 and PIR2 positively modulate ABA signaling by targeting PP2CA for degradation.  相似文献   

2.
3.
Membrane‐delimited events play a crucial role for ABA signaling and PYR/PYL/RCAR ABA receptors, clade A PP2Cs and SnRK2/CPK kinases modulate the activity of different plasma membrane components involved in ABA action. Therefore, the turnover of PYR/PYL/RCARs in the proximity of plasma membrane might be a step that affects receptor function and downstream signaling. In this study we describe a single‐subunit RING‐type E3 ubiquitin ligase RSL1 that interacts with the PYL4 and PYR1 ABA receptors at the plasma membrane. Overexpression of RSL1 reduces ABA sensitivity and rsl1 RNAi lines that impair expression of several members of the RSL1/RFA gene family show enhanced sensitivity to ABA. RSL1 bears a C‐terminal transmembrane domain that targets the E3 ligase to plasma membrane. Accordingly, bimolecular fluorescent complementation (BiFC) studies showed the RSL1–PYL4 and RSL1–PYR1 interaction is localized to plasma membrane. RSL1 promoted PYL4 and PYR1 degradation in vivo and mediated in vitro ubiquitylation of the receptors. Taken together, these results suggest ubiquitylation of ABA receptors at plasma membrane is a process that might affect their function via effect on their half‐life, protein interactions or trafficking.  相似文献   

4.
Ubiquitination is a critical post‐translational protein modification that has been implicated in diverse cellular processes, including abiotic stress responses, in plants. In the present study, we identified and characterized a T‐DNA insertion mutant in the At5g10650 locus. Compared to wild‐type Arabidopsis plants, at5g10650 progeny were hyposensitive to ABA at the germination stage. At5g10650 possessed a single C‐terminal C3HC4‐type Really Interesting New Gene (RING) motif, which was essential for ABA‐mediated germination and E3 ligase activity in vitro. At5g10650 was closely associated with microtubules and microtubule‐associated proteins in Arabidopsis and tobacco leaf cells. Localization of At5g10650 to the nucleus was frequently observed. Unexpectedly, At5g10650 was identified as JAV1‐ASSOCIATED UBIQUITIN LIGASE1 (JUL1), which was recently reported to participate in the jasmonate signaling pathway. The jul1 knockout plants exhibited impaired ABA‐promoted stomatal closure. In addition, stomatal closure could not be induced by hydrogen peroxide and calcium in jul1 plants. jul1 guard cells accumulated wild‐type levels of H2O2 after ABA treatment. These findings indicated that JUL1 acts downstream of H2O2 and calcium in the ABA‐mediated stomatal closure pathway. Typical radial arrays of microtubules were maintained in jul1 guard cells after exposure to ABA, H2O2, and calcium, which in turn resulted in ABA‐hyposensitive stomatal movements. Finally, jul1 plants were markedly more susceptible to drought stress than wild‐type plants. Overall, our results suggest that the Arabidopsis RING E3 ligase JUL1 plays a critical role in ABA‐mediated microtubule disorganization, stomatal closure, and tolerance to drought stress.  相似文献   

5.
Peroxisomes are dynamic organelles crucial for a variety of metabolic processes during the development of eukaryotic organisms, and are functionally linked to other subcellular organelles, such as mitochondria and chloroplasts. Peroxisomal matrix proteins are imported by peroxins (PEX proteins), yet the modulation of peroxin functions is poorly understood. We previously reported that, besides its known function in chloroplast protein import, the Arabidopsis E3 ubiquitin ligase SP1 (suppressor of ppi1 locus1) also targets to peroxisomes and mitochondria, and promotes the destabilization of the peroxisomal receptor–cargo docking complex components PEX13 and PEX14. Here we present evidence that in Arabidopsis, SP1's closest homolog SP1‐like 1 (SPL1) plays an opposite role to SP1 in peroxisomes. In contrast to sp1, loss‐of‐function of SPL1 led to reduced peroxisomal β‐oxidation activity, and enhanced the physiological and growth defects of pex14 and pex13 mutants. Transient co‐expression of SPL1 and SP1 promoted each other's destabilization. SPL1 reduced the ability of SP1 to induce PEX13 turnover, and it is the N‐terminus of SP1 and SPL1 that determines whether the protein is able to promote PEX13 turnover. Finally, SPL1 showed prevalent targeting to mitochondria, but rather weak and partial localization to peroxisomes. Our data suggest that these two members of the same E3 protein family utilize distinct mechanisms to modulate peroxisome biogenesis, where SPL1 reduces the function of SP1. Plants and possibly other higher eukaryotes may employ this small family of E3 enzymes to differentially modulate the dynamics of several organelles essential to energy metabolism via the ubiquitin‐proteasome system.  相似文献   

6.
E3 ubiquitin ligases select specific proteins for ubiquitin conjugation, and the modified proteins are commonly degraded through the 26S proteasome. XBAT32 is a RING-type E3 ligase involved in maintaining appropriate levels of ethylene. Previous work has suggested that XBAT32 modulates ethylene production by ubiquitinating two ethylene biosynthesis enzymes, ACS4 (type-II isoform) and ACS7 (type-III isoform). In Arabidopsis, conserved sequences within the C-terminal tail of type-I and -II 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS) isoforms influence ubiquitin-dependent proteolysis. ACS7, the sole Arabidopsis type-III ACS, contains a truncated C-terminal tail that lacks all known regulatory sequences, which suggests that this isoform may not be subject to ubiquitin-mediated proteasomal degradation. Here we demonstrate in planta that ACS7 is turned over in a 26S proteasome-dependent manner and that degradation of ACS7 requires the E3 ligase XBAT32. Furthermore, the ethylene-related phenotypes that result from overexpression of ACS7 in wild-type plants are greatly exaggerated in xbat32-1, suggesting that XBAT32 is required to attenuate the effect of overexpression of ACS7. This observation is consistent with a role for XBAT32 in the ubiquitin-mediated degradation of ACS7. The dark-grown phenotype of xbat32-1 seedlings overexpressing ACS7 can be effectively rescued by aminoethoxyvinylglycine, an inhibitor of ACS activity. The degradation rate of ACS4 is also significantly slower in the absence of XBAT32, further implicating XBAT32 in the ubiquitin-mediated degradation of ACS4. Altogether, these results demonstrate that XBAT32 targets ethylene biosynthetic enzymes for proteasomal degradation to maintain appropriate levels of hormone production.  相似文献   

7.
8.
9.
10.
11.
《Cell》2023,186(2):346-362.e17
  1. Download : Download high-res image (174KB)
  2. Download : Download full-size image
  相似文献   

12.
The phytohormone abscisic acid (ABA) plays an important role in regulating plant growth, development, and adaption to various environmental stresses. Regulatory components of ABA receptors (RCARs, also known as PYR/PYLs) sense ABA and initiate ABA signalling through inhibiting the activities of protein phosphatase 2C in Arabidopsis. However, the way in which ABA receptors are regulated is not well known. A DWD protein AtRAE1 (for RNA export factor 1 in Arabidopsis), which may act as a substrate receptor of CUL4–DDB1 E3 ligase, is an interacting partner of RCAR1/PYL9. The physical interaction between RCAR1 and AtRAE1 is confirmed in vitro and in vivo. Overexpression of AtRAE1 in Arabidopsis causes reduced sensitivity of plants to ABA, whereas suppression of AtRAE1 causes increased sensitivity to ABA. Analysis of protein stability demonstrates that RCAR1 is ubiquitinated and degraded in plant cells and AtRAE1 regulates the degradation speed of RCAR1. Our findings indicate that AtRAE1 likely participates in ABA signalling through regulating the degradation of ABA receptor RCAR1.  相似文献   

13.
14.
15.
Pollen formation is a complex developmental process that has been extensively investigated to unravel underlying fundamental developmental mechanisms and for genetic manipulation of the male‐sterility trait for hybrid crop production. Here we describe identification of AtPUB4, a U–box/ARM repeat‐containing E3 ubiquitin ligase, as a novel player in male fertility in Arabidopsis. Loss of AtPUB4 function causes hypertrophic growth of the tapetum layer. The Atpub4 mutation also leads to incomplete degeneration of the tapetal cells and strikingly abnormal exine structures of pollen grains. As a result, although the Atpub4 mutant produces viable pollen, the pollen grains adhere to each other and to the remnants of incompletely degenerated tapetal cells, and do not properly disperse from dehisced anthers for successful pollination. We found that the male‐sterility phenotype caused by the Atpub4 mutation is temperature‐dependent: the mutant plants are sterile when grown at 22°C but are partially fertile at 16°C. Our study also indicates that the AtPUB4‐mediated pathway acts in parallel with the brassinosteroid pathway in controlling developmental fates of the tapetal cells to ensure male fertility.  相似文献   

16.
17.
18.
Tob belongs to the anti-proliferative Tob/BTG family. The level of Tob throughout the cell cycle is regulated by the SCF (Skp1/Cullin/F-box protein)Skp2 ubiquitin ligase (E3) complex. Here, we show that Coronin7 (CRN7) is also involved in Tob degradation. We identified CRN7 as a Tob-interacting molecule. A sequence containing two of the six WD motifs in the middle of CRN7 was responsible for the interaction. CRN7 enhanced the polyubiquitination of Tob in vitro, and overexpression of CRN7 promoted proteasome-dependent degradation of Tob. Furthermore, CRN7 interacted with Cullin1 and Roc1 to form a novel SCF-like E3 complex, suggesting that Tob protein is regulated by multiple ubiquitination machineries.

Structured summary

Cullin1physically interacts with CRN7: shown by anti tag coimmunoprecipitation (view interaction)Roc1physically interacts with CRN7: shown by anti tag coimmunoprecipitation (view interaction)CRN7physically interacts with Tob1: shown by anti tag coimmunoprecipitation (view interaction)CDC34physically interacts with CRN7: shown by anti tag coimmunoprecipitation (view interaction)Tob1 and CRN7colocalize: shown by fluorescence microscopy (view interaction)Elongin Bphysically interacts with CRN7: shown by anti tag coimmunoprecipitation (view interaction)Elongin Cphysically interacts with CRN7: shown by anti tag coimmunoprecipitation (view interaction)Tob1physically interacts with CRN7: shown by two hybrid (view interaction)  相似文献   

19.
20.
Abscisic acid (ABA) is a key phytohormone that regulates plant growth and developmental processes, including seed germination and stomatal closing. Here, we report the identification and functional characterization of a novel type 2C protein phosphatase, CaADIP1 (Capsicum annuum A BA and D rought‐I nduced P rotein phosphatase 1). The expression of CaADIP1 was induced in pepper leaves by ABA, drought and NaCl treatments. Arabidopsis plants overexpressing CaADIP1 (CaADIP1‐OX) exhibited an ABA‐hyposensitive and drought‐susceptible phenotype. We used a yeast two‐hybrid screening assay to identify CaRLP1 (Capsicum annuum R CAR‐L ike P rotein 1), which interacts with CaADIP1 in the cytoplasm and nucleus. In contrast to CaADIP1‐OX plants, CaRLP1‐OX plants displayed an ABA‐hypersensitive and drought‐tolerant phenotype, which was characterized by low levels of transpirational water loss and increased expression of stress‐responsive genes relative to those of wild‐type plants. In CaADIP1‐OX/CaRLP1‐OX double transgenic plants, ectopic expression of the CaRLP1 gene led to strong suppression of CaADIP1‐induced ABA hyposensitivity during the germinative and post‐germinative stages, indicating that CaADIP1 and CaRLP1 act in the same signalling pathway and CaADIP1 functions downstream of CaRLP1. Our results indicate that CaADIP1 and its interacting partner CaRLP1 antagonistically regulate the ABA‐dependent defense signalling response to drought stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号