首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Wounds are known to serve as portals of entry for group A Streptococcus (GAS). Subsequent tissue colonization is mediated by interactions between GAS surface proteins and host extracellular matrix components. We recently reported that the streptococcal collagen‐like protein‐1, Scl1, selectively binds the cellular form of fibronectin (cFn) and also contributes to GAS biofilm formation on abiotic surfaces. One structural feature of cFn, which is predominantly expressed in response to tissue injury, is the presence of a spliced variant containing extra domain A (EDA/EIIIA). We now report that GAS biofilm formation is mediated by the Scl1 interaction with EDA‐containing cFn. Recombinant Scl1 proteins that bound cFn also bound recombinant EDA within the C‐C’ loop region recognized by the α9β1 integrin. The extracellular 2‐D matrix derived from human dermal fibroblasts supports GAS adherence and biofilm formation. Altogether, this work identifies and characterizes a novel molecular mechanism by which GAS utilizes Scl1 to specifically target an extracellular matrix component that is predominantly expressed at the site of injury in order to secure host tissue colonization.  相似文献   

2.
The collagen domain, which is defined by the presence of the Gly‐X‐Y triplet repeats, is amongst the most versatile and widespread known structures found in proteins from organisms representing all three domains of life. The streptococcal collagen‐like (Scl) proteins are widely present in pathogenic streptococci, including Streptococcus pyogenes, S. agalactiae, S. pneumoniae, and S. equi. Experiments and bioinformatic analyses support the hypothesis that all Scl proteins are homotrimeric and cell wall‐anchored. These proteins contain the rod‐shaped collagenous domain proximal to cell surface, as well as a variety of outermost non‐collagenous domains that generally lack predicted functions but can be grouped into one of six clusters based on sequence similarity. The well‐characterized Scl1 proteins of S. pyogenes show a dichotomous switch in ligand binding between human tissue and blood environments. In tissue, Scl1 adhesin specifically recognizes the wound microenvironment, promotes adhesion and biofilm formation, decreases bacterial killing by neutrophil extracellular traps, and modulates S. pyogenes virulence. In blood, ligands include components of complement and coagulation‐fibrinolytic systems, as well as plasma lipoproteins. In all, the Scl proteins signify a large family of structurally related surface proteins, which contribute to the ability of streptococci to colonize and cause diseases in humans and animals.  相似文献   

3.
In the chicken, three tenascin variants have been characterized that are generated by alternative splicing of 3 of its 11 fibronectin type III repeats. Using monoclonal antibodies that react with common regions versus extra repeats of tenascin, we could distinguish and separate tenascin variants and investigate their interaction with fibronectin using multiple experimental procedures. Interestingly, in all assays used the smallest tenascin variant bound more strongly to fibronectin than the larger ones. These biochemical data were paralleled by the observation that in chick embryo fibroblast cultures only the smallest form of tenascin could be detected in the fibronectin-rich extracellular matrix network laid down by the cells. Furthermore, each tissue present in adult chicken gizzard contained a distinct set of tenascin variants. Those tissues particularly rich in extracellular matrix, such as the tendon, contained the smallest tenascin only. Intermediate-sized tenascin was present in smooth muscle, whereas the largest form was exclusively detectable underneath the epithelial lining of the villi. Thus it appears that cell type-specific forms of tenascin exist that are appropriate for the functional requirements of the respective extracellular matrices.  相似文献   

4.
Tenascin-X is an extracellular matrix protein and binds a variety of molecules in extracellular matrix and on cell membrane. Tenascin-X plays important roles in regulating the structure and mechanical properties of connective tissues. Using single-molecule atomic force microscopy, we have investigated the mechanical properties of bovine tenascin-X in detail. Our results indicated that tenascin-X is an elastic protein and the fibronectin type III (FnIII) domains can unfold under a stretching force and refold to regain their mechanical stability upon the removal of the stretching force. All the 30 FnIII domains of tenascin-X show similar mechanical stability, mechanical unfolding kinetics, and contour length increment upon domain unfolding, despite their large sequence diversity. In contrast to the homogeneity in their mechanical unfolding behaviors, FnIII domains fold at different rates. Using the 10th FnIII domain of tenascin-X (TNXfn10) as a model system, we constructed a polyprotein chimera composed of alternating TNXfn10 and GB1 domains and used atomic force microscopy to confirm that the mechanical properties of TNXfn10 are consistent with those of the FnIII domains of tenascin-X. These results lay the foundation to further study the mechanical properties of individual FnIII domains and establish the relationship between point mutations and mechanical phenotypic effect on tenascin-X. Moreover, our results provided the opportunity to compare the mechanical properties and design of different forms of tenascins. The comparison between tenascin-X and tenascin-C revealed interesting common as well as distinguishing features for mechanical unfolding and folding of tenascin-C and tenascin-X and will open up new avenues to investigate the mechanical functions and architectural design of different forms of tenascins.  相似文献   

5.
6.
Tenascin and fibronectin are two major extracellular matrix glycoproteins. They both consist of large disulfide-linked subunits composed of multiple structural domains. More than half of each molecule consists of so-called fibronectin type III repeats, but the other domains differ. Fibronectin is a dimer, whereas tenascin is a hexamer. Often fibronectin and tenascin are colocalized in tissues, but the occurrence of tenascin is much more restricted when compared with fibronectin. Tenascin is transiently expressed in many developing organs such as connective tissues, the mesenchyme of epithelial organs, and also the central and peripheral nervous systems, and it reappears in the stroma of many tumors. The distinctive and highly regulated expression of tenascin has provoked interest in trying to identify possible functions of tenascin in cell-cell and cell-substratum adhesion, cell migration, growth, and cell differentiation during morphogenesis.  相似文献   

7.
Fibronectin and tenascin are extracellular matrix glycoproteins that play important roles in cell adhesion and motility. In a previous study we provided evidence that tenascin first appeared early in the chordate lineage. As tenascin has been proposed to act, in part, through modulation of cell-fibronectin interactions, we sought here to identify fibronectin genes in non-vertebrate chordates and other invertebrates to determine if tenascin and fibronectin evolved separately or together, and to identify phylogenetically conserved features of both proteins. We found that the genome of the urochordate Ciona savignyi contains both a tenascin gene and a gene encoding a fibronectin-like protein with fibronectin type 1, 2 and 3 repeats. The genome of the cephalochordate Branchiostoma floridae (amphioxus) also has a tenascin gene. However, we could not identify a fibronectin-like gene in B. floridae, nor could we identify fibronectin or tenascin genes in echinoderms, protostomes or cnidarians. If urochordates are more closely related to vertebrates, tenascin may have evolved before fibronectin in an ancestor common to tunicates and amphioxus. Alternatively, tenascin and fibronectin may have evolved in an ancestor common to B. floridae and C. savignyi and the fibronectin gene was subsequently lost in the cephalochordate lineage. The fibronectin-like gene from C. savignyi does not encode the RGD motif for integrin binding found in all vertebrate fibronectins, and it lacks most of the fibronectin type 1 domains believed to be critical for fibrillogenesis. In contrast, the tenascin gene in B. floridae encodes multiple RGD motifs, suggesting that integrin binding is fundamental to tenascin function.  相似文献   

8.
The extracellular matrix molecule tenascin has been implicated in neuron-glia recognition in the developing central and peripheral nervous system and in regeneration. In this study, its role in Bergmann glial process-mediated neuronal migration was assayed in vitro using tissue explants of the early postnatal mouse cerebellar cortex. Of the five mAbs reacting with nonoverlapping epitopes on tenascin, mAbs J1/tn1, J1/tn4, and J1/tn5, but not mAbs J1/tn2 and J1/tn3 inhibited granule cell migration. Localization of the immunoreactive domains by EM of rotary shadowed tenascin molecules revealed that the mAbs J1/tn4 and J1/tn5, like the previously described J1/tn1 antibody, bound between the third and fifth fibronectin type III homologous repeats and mAb J1/tn3 bound between the third and fifth EGF-like repeats. mAb J1/tn2 had previously been found to react between fibronectin type III homologous repeats 10 and 11 of the mouse molecule (Lochter, A., L. Vaughan, A. Kaplony, A. Prochiantz, M. Schachner, and A. Faissner. 1991. J. Cell Biol. 113:1159-1171). When postnatal granule cell neurons were cultured on tenascin adsorbed to polyornithine, both the percentage of neurite-bearing cells and the length of outgrowing neurites were increased when compared to neurons growing on polyornithine alone. This neurite outgrowth promoting effect of tenascin was abolished only by mAb J1/tn2 or tenascin added to the culture medium in soluble form. The other antibodies did not modify the stimulatory or inhibitory effects of the molecule. These observations indicate that tenascin influences neurite outgrowth and migration of cerebellar granule cells by different domains in the fibronectin type III homologous repeats.  相似文献   

9.
Induction of tenascin in healing wounds   总被引:18,自引:6,他引:12       下载免费PDF全文
《The Journal of cell biology》1988,107(6):2757-2767
The distribution of the extracellular matrix glycoprotein, tenascin, in normal skin and healing skin wounds in rats, has been investigated by immunohistochemistry. In normal skin, tenascin was sparsely distributed, predominantly in association with basement membranes. In wounds, there was a marked increase in the expression of tenascin at the wound edge in all levels of the skin. There was also particularly strong tenascin staining at the dermal-epidermal junction beneath migrating, proliferating epidermis. Tenascin was present throughout the matrix of the granulation tissue, which filled full-thickness wounds, but was not detectable in the scar after wound contraction was complete. The distribution of tenascin was spatially and temporally different from that of fibronectin, and tenascin appeared before laminin beneath migrating epidermis. Tenascin was not entirely codistributed with myofibroblasts, the contractile wound fibroblasts. In EM studies of wounds, tenascin was localized in the basal lamina at the dermal-epidermal junction, as well as in the extracellular matrix of the adjacent dermal stroma, where it was either distributed homogeneously or bound to the surface of collagen fibers. In cultured skin explants, in which epidermis migrated over the cut edge of the dermis, tenascin, but not fibronectin, appeared in the dermis underlying the migrating epithelium. This demonstrates that migrating, proliferating epidermis induces the production of tenascin. The results presented here suggest that tenascin is important in wound healing and is subject to quite different regulatory mechanisms than is fibronectin.  相似文献   

10.
The large, multidomain extracellular matrix protein tenascin displays a markedly restricted tissue distribution during embryogenesis and remains present only in a few adult tissues. The protein is reexpressed, however, during wound healing and in the stroma of malignant tumours. While a variety of studies have dealt with the important role of tenascin in the development of neural and non-neural tissues, there is growing evidence that tenascin expression may be associated with proliferation of cells lining these tissues. The presence of repeating domains in tenascin similar to those in epidermal growth factor prompted us to investigate the ability of tenascin to modulate the growth of different cell types. Tenascin was actually found to be mitogenic for several cell types. This mitogenic activity, however, appears to be associated with a region in the fibronectin type III domains. The mitogenic mechanism is clearly distinct from pathways used by peptide growth factors such as epidermal growth factor and platelet-derived growth factor, which activate the intrinsic tyrosine kinase activity of their cell-surface receptors. However, we show that this large extracellular matrix molecule is efficiently internalised and may be processed by responding cells.  相似文献   

11.
The native states of proteins exist as an ensemble of conformationally similar microstates. The fluctuations among different microstates are of great importance for the functions and structural stability of proteins. Here, we demonstrate that single molecule atomic force microscopy (AFM) can be used to directly probe the existence of multiple folded microstates. We used the AFM to repeatedly stretch and relax a recombinant tenascin fragment TNfnALL to allow the fibronectin type III (FnIII) domains to undergo repeated unfolding/refolding cycles. In addition to the native state, we discovered that some FnIII domains can refold from the unfolded state into a previously unrecognized microstate, N* state. This novel state is conformationally similar to the native state, but mechanically less stable. The native state unfolds at approximately 120 pN, while the N* state unfolds at approximately 50 pN. These two distinct populations of microstates constitute the ensemble of the folded states for some FnIII domains. An unfolded FnIII domain can fold into either one of the two microstates via two distinct folding routes. These results reveal the dynamic and heterogeneous picture of the folded ensemble for some FnIII domains of tenascin, which may carry important implications for the mechanical functions of tenascins in vivo.  相似文献   

12.
Cytotactin/tenascin is a multidomain extracellular matrix protein that inhibits both cell spreading and intracellular alkalinization. The protein has multiple different domains which are homologous to regions in epidermal growth factor, fibronectin, and fibrinogen. In previous studies, we produced nonoverlapping fusion proteins corresponding to these domains and examined their effects on cell attachment and spreading. Based on their ability either to promote or to inhibit cell attachment, two of these fusion proteins were shown to be adhesive and two were shown to be counteradhesive. To determine how the adhesive and counteradhesive activities of different cytotactin/tenascin domains alter intracellular pH (designated pHi), we have measured pHi in NIH3T3 and U251MG cells in the presence of the cytotactin/tenascin fusion proteins and intact cytototactin/tenascin, as well as fibronectin. Cells incubated in the presence of intact cytotactin/tenascin or of the counteradhesive fusion proteins had a pHi lower than control cells. In contrast, the presence of the adhesive fusion proteins or of fibronectin caused cells to have higher pHi values than control cells. When two fragments were simultaneously presented, one of which alone increased pHi and the other of which alone decreased pHi, the predominant effect was that of lowered pHi. Incubation with an RGD-containing peptide derived from the cytotactin/tenascin sequence inhibited alkalinization promoted by the adhesive fragment containing the second through sixth fibronectin type III repeats that was known to bind to integrins. Incubation of the cells with heparinase I or III inhibited the intracellular alkalinization of cells plated in the presence of the other adhesive fusion protein containing the fibrinogen domain, suggesting that heparan sulfate proteoglycans were involved in these pHi changes. The activity of protein kinase C appeared to be important for the changes in pHi mediated by all of the proteins. The protein kinase C inhibitor Calphostin C blocked the rise in pHi elicited by the adhesive fusion proteins and by fibronectin. Moreover, activation of protein kinase C by the addition of phorbol esters increased the pHi in cells plated on cytotactin/tenascin or counteradhesive fusion proteins and reversed their effects. The results of this study support the hypothesis that cytotactin/tenascin can bind to multiple cell surface receptors and thereby elicit different physiological responses. Decreases in pHi are correlated with the phenomenon of counteradhesion whereas the ability to increase pHi is associated with cell attachment via at least two different types of cell surface receptors. The data raise the possibility that binding of cytotactin/tenascin may influence primary cellular processes such as migration and proliferation through the differential regulation of pHi. © 1994 Wiley-Liss, Inc.  相似文献   

13.
Leukocyte antigen–related protein (LAR) is a prototype for a family of transmembrane protein tyrosine phosphatases whose extracellular domain is composed of three Ig and several fibronectin type III (FnIII) domains. Complex alternative splicing of the LAR-FnIII domains 4–8 has been observed. The extracellular matrix laminin–nidogen complex was identified as a ligand for the LAR-FnIII domain 5 (Fn5) using a series of GST-LAR-FnIII domain fusion proteins and testing them in in vitro ligand-binding assays. LAR– laminin–nidogen binding was regulated by alternative splicing of a small exon within the LAR-Fn5 so that inclusion of this exon sequence resulted in disruption of the laminin–nidogen-binding activity. Long cellular processes were observed when HeLa cells were plated on laminin–nidogen, but not when plated on a fibronectin surface. Indirect immunofluorescent antibody staining revealed high expression of LAR in a punctate pattern, throughout the length of these cellular processes observed on laminin–nidogen. Antibody-induced cross-linking of LAR inhibited formation of these cellular processes, and inhibition was correlated with changes in cellular actin cytoskeletal structure. Thus, LAR–laminin–nidogen binding may play a role in regulating cell signaling induced by laminin–nidogen, resulting in cell morphological changes.  相似文献   

14.
Type I collagen, fibronectin and tenascin C play an important role in regulating early osteoblast differentiation, but the temporal and spatial relationship of their localization during embryonic osteogenesis in vivo is not known. The present study was designed to localize these three molecules in the dentary of mandibles and tibias in rat embryos using immunohistochemistry. Serial paraffin sections were cut and adjacent sections were processed for von Kossa staining or immunohistochemistry for type I collagen, fibronectin and tenascin C. In the dentary, tenascin C was localized within and around the mesenchymal cell condensation in embryos at 14 days in utero. The bone matrix at 15 days showed immunoreactivity for both type I collagen and fibronectin. The immunoreactivity of type I collagen was persistent, whereas that of fibronectin decreased with age of embryos. In tibias, tenascin C was localized in the perichondral mesenchymal tissue at 17 days. Immunoreactivity for type I collagen was persistent in the bone matrix, whereas the tibial bone showed little immunoreactivity for fibronectin at any embryonic age examined. The present study demonstrated characteristic localization of type I collagen, fibronectin and tenascin C during embryonic osteogenesis in the dentary of mandibles and tibias.  相似文献   

15.

Background  

During wound repair, fibroblasts orchestrate replacement of the provisional matrix formed during clotting with tenascin, cellular fibronectin and collagen III. These, in turn, are critical for migration of endothelial cells, keratinocytes and additional fibroblasts into the wound site. Fibroblasts are also important in the deposition of collagen I during scar formation. The CXC chemokine chicken Chemotactic and Angiogenic Factor (cCAF), is highly expressed by fibroblasts after wounding and during development of the granulation tissue, especially in areas where extracellular matrix (ECM) is abundant. We hypothesized that cCAF stimulates fibroblasts to produce these matrix molecules.  相似文献   

16.
Fibronectin and tenascin are large extracellular matrix proteins that interact with each other and with integrin receptors to regulate cell growth and movement. They are both modular proteins composed of independently folded domains (modules) that are arranged in linear fashion. Fibronectin is a covalent dimer and tenascin is a hexamer. The site on tenascin to which fibronectin binds has been localized to type III modules 3-5. In this study we use surface plasmon resonance to examine the interaction between various fragments of fibronectin and tenascin to further characterize and localize the binding sites. We found that tenascin fragments that contain type III modules 3-5 bind primarily to the N-terminal 29-kDa hep-1/fib-1 domain, which contains the first five type I modules of fibronectin. The dissociation constant, K(d), is approximately 1 microm. The binding site on fibronectin appears to be cryptic in the whole molecule in solution but is exposed on the proteolytic fragments and probably when fibronectin is in the extended conformation.  相似文献   

17.
During the transition from a free-swimming, single-cell lifestyle to a sessile, multicellular state called a biofilm, bacteria produce and secrete an extracellular matrix comprised of nucleic acids, exopolysaccharides, and adhesion proteins. The Vibrio cholerae biofilm matrix contains three major protein components, RbmA, Bap1, and RbmC, which are unique to Vibrio cholerae and appear to support biofilm formation at particular steps in the process. Here, we focus on RbmA, a structural protein with an unknown fold. RbmA participates in the early cell-cell adhesion events and is found throughout the biofilm where it localizes to cell-cell contact sites. We determined crystal structures of RbmA and revealed that the protein folds into tandem fibronectin type III (FnIII) folds. The protein is dimeric in solution and in crystals, with the dimer interface displaying a surface groove that is lined with several positively charged residues. Structure-guided mutagenesis studies establish a crucial role for this surface patch for RbmA function. On the basis of the structure, we hypothesize that RbmA serves as a tether by maintaining flexible linkages between cells and the extracellular matrix.  相似文献   

18.
Adhesive interactions between neurons and extracellular matrix (ECM) play a key role in neuronal pattern formation. The prominent role played by the extracellular matrix protein tenascin/cytotactin in the development of the nervous system, tied to its abundance, led us to speculate that brain may contain yet unidentified tenascin receptors. Here we show that the neuronal cell adhesion molecule contactin/F11, a member of the immunoglobulin(Ig)-superfamily, is a cell surface ligand for tenascin in the nervous system. Through affinity chromatography of membrane glycoproteins from chick brain on tenascin-Sepharose, we isolated a major cell surface ligand of 135 kD which we identified as contactin/F11 by NH2-terminal sequencing. The binding specificity between contactin/F11 and tenascin was demonstrated in solid-phase assays. Binding of immunopurified 125I-labeled contactin/F11 to immobilized tenascin is completely inhibited by the addition of soluble tenascin or contactin/F11, but not by fibronectin. When the fractionated isoforms of tenascin were used as substrates, contactin/F11 bound preferentially to the 190-kD isoform. This isoform differs in having no alternatively spliced fibronectin type III domains. Our results imply that the introduction of these additional domains in some way disrupts the contactin/F11 binding site on tenascin. To localize the binding site on contactin/F11, proteolytic fragments were generated and characterized by NH2-terminal sequencing. The smallest contactin/F11 fragment which binds tenascin is 45 kD and also begins with the contactin/F11 NH2-terminal sequence. This implies that contactin/F11 binds to tenascin through a site within the first three Ig-domains.  相似文献   

19.
The extracellular matrix of lip wounds in fetal, neonatal and adult mice.   总被引:28,自引:0,他引:28  
Wound healing in the fetus occurs rapidly, by a regenerative process and without an inflammatory response, resulting in complete restitution of normal tissue function. By contrast, in the adult, wounds heal with scar formation, which may impair function and inhibit further growth. The cellular mechanisms underlying these differing forms of wound healing are unknown but the extracellular matrix (ECM), through its effects on cell function, may play a key role. We have studied the ECM in upper lip wounds of adult, neonatal and fetal mice at days 14, 16 and 18 of gestation. The spatial and temporal distribution of collagen types I, III, IV, V and VI, fibronectin, tenascin, laminin, chondroitin and heparan sulphates were examined immunohistochemically. Results from the fetal groups were essentially similar whilst there were distinct differences between fetus, neonate and adult. Fibronectin was present at the surface of the wound in all groups at 1 h post-wounding. Tenascin was also present at the wound surface but the time at which it was first present differed between fetus (1 h), neonate (12 h) and adult (24 h). The time of first appearance paralleled the rate of wound healing which was most rapid in the fetus and slowest in the adult. Tenascin inhibits the cell adhesion effect of fibronectin and during development the appearance of tenascin correlates with the initiation of cell migration. During wound healing the appearance of tenascin preceded cell migration and the rapid closure of fetal wounds may be due to the early appearance of tenascin in the wound. Collagen types I, III, IV, V and VI were present in all three wound groups but the timing and pattern of collagen deposition differed, with restoration of the normal collagen pattern in the fetus and a scar pattern in the adult. This confirms that lack of scarring in fetal wounds is due to the organisation of collagen within the wound and not simply lack of collagen formation. The distribution of chondroitin sulphate differed between normal fetal and adult tissues and between fetal and adult wounds. Its presence in the fetal wound may alter collagen fibril formation. No inflammatory response was seen in the fetal wounds. The differences in the ECM of fetal and adult wounds suggests that it may be possible to alter the adult wound so that it heals by a fetal-like process without scar formation, loss of tissue function or restriction of growth.  相似文献   

20.
Cell surface adhesion and extracellular matrix proteins are known to play a key role in the formation of cell condensations during skeletal development, and their formation is crucial for the expression of cartilage-specific genes. However, little is known about the relationship between adhesion molecules (N-cadherin and N-CAM), extracellular matrix proteins (fibronectin and tenascin) and TGF-beta1, TGF-beta2 and TGF-beta3 during in vitro precartilage condensations in mouse chondrogenesis. On these bases, we determined the participation of mammalian TGF-beta1, TGF-beta2 and TFG-beta3 and Xenopus TGF-beta5 on the expression of cell surface adhesion and extracellular matrix proteins during the formation of precartilage condensations. Also, we characterized the effects of TGF-betas on proteoglycan metabolism at different cellular densities in mouse embryonic limb bud mesenchymal cells. In TGF-beta1 and TGF-beta5-treated cultures, proteoglycan biosynthesis was higher than in controls, while there were no differences in proteoglycan catabolism, which caused the accumulation of cartilage extracellular matrix. When mesenchymal cells were seeded at three different cellular densities in the presence of TGF-betas, only high density cultures presented increased stimulation of proteoglycan biosynthesis, compared to low and intermediate densities. To determine whether the effect of TGF-betas on precartilage condensations is mediated through the expression of N-cadherin, N-CAM, fibronectin and tenascin, we evaluated their expression. Results showed that TGF-beta1, TGF-beta2, TGF-beta3, and TGF-beta5 differentially enhanced the expression of N-cadherin, N-CAM, fibronectin and tenascin in precartilage condensations, suggesting that TGF-beta isoforms play an important role in the establishment of cell-cell and cell-extracellular matrix interactions during precartilage condensations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号