首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We analysed mating system in an annual and colonizing plant, Crepis sancta, that occupies different successional stages in the French Mediterranean region. Based on a previous experiment, we hypothesized that low inbreeding depression measured in young successional stages should select for selfing whereas higher inbreeding depression in old stages should select for outcrossing. Nine populations of C. sancta (Asteraceae) from contrasting successional stages were used to analyse (1) Seed set after autonomous and enforced selfing in controlled conditions and (2) outcrossing rates in natural conditions using allozymes (progeny array analysis). We found that C. sancta possesses a pseudo‐self‐incompatibility system and that mating system varies among populations. Allozymes revealed that the population multilocus outcrossing rates vary from 0.77 to 0.99. The lowest outcrossing rates occur in the youngest successional stages and complete outcrossing is found in old stages. The data partially agree with the predictions we made and the results are more generally discussed in the light of factors changing during succession. We did not find any evidence of reproductive assurance in the nine populations, contrary to what is often assumed as a major factor governing mating system evolution in colonizing species. We propose that mating system variation can be interpreted as the result of the balance between the cost of outcrossing and inbreeding depression in a metapopulation context.  相似文献   

2.
Hodgins KA  Barrett SC 《Heredity》2006,96(3):262-270
Mating patterns in plant populations are influenced by interactions between reproductive traits and ecological conditions, both factors that are likely to vary geographically. Narcissus triandrus, a wide-ranging heterostylous herb, exhibits populations with either two (dimorphic) or three (trimorphic) style morphs and displays substantial geographical variation in demographic attributes and floral morphology. Here, we investigate this variation to determine if demography, morphology, and mating system differ between the two sexual systems. Our surveys in Portugal and NW Spain indicated that dimorphic populations were less dense, of smaller size, and had larger plants and flowers compared to trimorphic populations. Outcrossing rates estimated using allozyme markers revealed similar outcrossing rates in dimorphic and trimorphic populations (t(m) dimorphic=0.759; t(m) trimorphic=0.710). All populations experienced significant inbreeding in progeny (mean F=0.143). In contrast, parental estimates of inbreeding were not significantly different from zero (mean F=0.062), implying that few inbred offspring survive to reproductive maturity due to inbreeding depression. Although the majority of inbreeding results from selfing, significant levels of biparental inbreeding were also detected in eight of the nine populations (mean s(s)-s(m)=0.081). Density was negatively associated with levels of selfing but positively associated with biparental inbreeding. Population size was positively associated with outcrossing but not biparental inbreeding. There were no consistent differences among the style morphs in outcrossing or biparental inbreeding indicating that the maintenance of trimorphism vs dimorphism is unlikely to be associated with inbreeding of maternal parents.  相似文献   

3.
H W Deng 《Genetics》1998,150(2):945-956
Deng and Lynch recently proposed estimating the rate and effects of deleterious genomic mutations from changes in the mean and genetic variance of fitness upon selfing/outcrossing in outcrossing/highly selfing populations. The utility of our original estimation approach is limited in outcrossing populations, since selfing may not always be feasible. Here we extend the approach to any form of inbreeding in outcrossing populations. By simulations, the statistical properties of the estimation under a common form of inbreeding (sib mating) are investigated under a range of biologically plausible situations. The efficiencies of different degrees of inbreeding and two different experimental designs of estimation are also investigated. We found that estimation using the total genetic variation in the inbred generation is generally more efficient than employing the genetic variation among the mean of inbred families, and that higher degree of inbreeding employed in experiments yields higher power for estimation. The simulation results of the magnitude and direction of estimation bias under variable or epistatic mutation effects may provide a basis for accurate inferences of deleterious mutations. Simulations accounting for environmental variance of fitness suggest that, under full-sib mating, our extension can achieve reasonably well an estimation with sample sizes of only approximately 2000-3000.  相似文献   

4.
High inbreeding depression is thought to be one of the major factors preventing evolutionary transitions in hermaphroditic plants from self‐incompatibility (SI) and outcrossing toward self‐compatibility (SC) and selfing. However, when selfing does evolve, inbreeding depression can be quickly purged, allowing the evolution of complete self‐fertilization. In contrast, populations that show intermediate selfing rates (a mixed‐mating system) typically show levels of inbreeding depression similar to those in outcrossing species, suggesting that selection against inbreeding might be responsible for preventing the transition toward complete self‐fertilization. By implication, crosses among populations should reveal patterns of heterosis for mixed‐mating populations that are similar to those expected for outcrossing populations. Using hand‐pollination crosses, we compared levels of inbreeding depression and heterosis between populations of Linaria cavanillesii (Plantaginaceae), a perennial herb showing contrasting mating systems. The SI population showed high inbreeding depression, whereas the SC population displaying mixed mating showed no inbreeding depression. In contrast, we found that heterosis based on between‐population crosses was similar for SI and SC populations. Our results are consistent with the rapid purging of inbreeding depression in the derived SC population, despite the persistence of mixed mating. However, the maintenance of outcrossing after a transition to SC is inconsistent with the prediction that populations that have purged their inbreeding depression should evolve toward complete selfing, suggesting that the transition to SC in L. cavanillesii has been recent. SC in L. cavanillesii thus exemplifies a situation in which the mating system is likely not at an equilibrium with inbreeding depression.  相似文献   

5.
Summary The mating system of Hydrophyllum appendiculatum (Hydrophyllaceae), a protandrous, self-compatible, monocarpic plant was examined using progeny arrays assayed at three polymorphic allozyme loci. We were particularly interested in the effect of ecological factors on spatial and temporal variation in outcrossing rates. Multilocus estimates of outcrossing rates in three populations ranged from 0.62–0.81 indicating that the majority of seeds are produced via outcrossing. The population estimates did not differ significantly from each other indicating that there is little or no spatial variation in the mating system of this species. The estimates were, however, significantly less than unity, which demonstrates that although mainly outcrossing, a significant fraction of seeds are produced by selfing. Estimates suggested that biparental inbreeding occurred, although it was statistically significant in only one population. Individuals of H. appendiculatum may remain in anthesis 3–4 weeks and produce up to 30 inflorescences. As a result, the possibility exists for the mating system to vary through the flowering season. Although the mean outcrossing rate was highest in the middle of the flowering phenology than at the beginning or end, there was no evidence for statistically significant temporal heterogeneity. We were also interested in determining if the size of the floral display (number of inflorescences produced by a plant) influenced the outcrossing rate. The results obtained by two different statistical analyses were contradictory; there was a significant positive correlation between size of floral display and outcrossing rate, but the outcrossing rates of large plants (\s> 8 inflorescences) did not differ significantly from small plants (> 8 inflorescences).  相似文献   

6.
Jokela J  Wiehn J  Kopp K 《Heredity》2006,97(4):275-282
Mixed-mating animals self-fertilize a proportion of their offspring. Outcrossing rate may covary with the ecological and historical factors affecting the population. Theory predicts that outcrossing is favored when inbreeding depression is high and when individual heterozygosity is important. Self-fertilization is predicted to be favored when costs of male function, or mate finding are high, for example, when empty patches are colonized by few individuals. In this study, we assessed primary (after hatching) and secondary (after juvenile mortality) outcrossing rates of two mixed-mating snail populations. Our purpose was to assess the variation in mating-system parameters and estimate significance of inbreeding depression for secondary outcrossing rate (the realized outcrossing rate of parents that produce the next generation). Secondary outcrossing rate was higher than the primary outcrossing rate in one of the two populations, suggesting considerable inbreeding depression. In the other study population, secondary outcrossing rates were found to increase when initially low, or decrease when initially high, depending on the family. Moderate outcrossing rates were found to be more stable. Parental inbreeding coefficients were close to zero in both populations. Outcrossing rate was much more variable among families in the population with the lower average outcrossing rate, suggesting that individuals differed considerably in their mating system. Our results add to recent studies suggesting that populations of mixed-mating animals may differ in their mating system parameters and expression of inbreeding depression.  相似文献   

7.
Polymorphic allozyme loci were used to estimate outcrossing rates for three tree species from a disturbed dry forest in southern Costa Rica. Estimates of the multilocus outcrossing rates of Cedrela odorata and Jacaranda copaia were 0.969 and 0.982, respectively, and suggest that these species may be self-incompatible. The subcanopy tree Stemmadenia donnell-smithii also demonstrated little self-fertilization based on an estimated outcrossing rate of 0.896. Significant heterogeneity in pollen allele frequencies among maternal trees was detected for at least two enzyme loci for each species. A test of correlated mating between progeny of S. donnell-smithii revealed that all seeds within a fruit were singly sired. In addition, the low estimates of biparental inbreeding and significant differences in pollen and ovule allele frequencies for this species suggest that gene flow into the sampled forest fragment may occur. The implications of deforestation on the mating systems of these tropical tree taxa are discussed.  相似文献   

8.
Michalski SG  Durka W 《Molecular ecology》2007,16(22):4715-4727
The mating system of a plant is the prime determinant of its population genetic structure. However, mating system effects may be modified by postzygotic mechanisms like inbreeding depression. Furthermore, historical as well as contemporary ecological factors and population characteristics, like the location within the species range can contribute to genetic variability. Using microsatellite markers we assessed the population genetic structure of the wind-pollinated Juncus atratus in 16 populations from peripheral and nearly central areas of the distribution range and studied the mating system of the species. In three peripheral populations, outcrossing rates at seeds stage were low (mean t(m) = 5.6%), suggesting a highly autogamous mating system. Despite this fact, on adult stage both individual heterozygosity (mean H(O) = 0.48) and gene diversity (mean H(E) = 0.58) were high even in small populations. Inbreeding coefficients were consistently low among all populations (mean F(IS) = 0.15). Within the three peripheral populations indirect estimates of lifetime inbreeding depression were surprisingly high (delta(eq) = 0.96) and inbreeding depression could be shown to act mostly on early seedling establishment. Similar conditions of autogamy combined with high inbreeding depression are typical for plants with a large lifetime genomic mutation rate that cannot avoid selfing by geitonogamy. However, the results presented here are unexpected for small-statured, herbaceous plants. Substantial genetic differentiation among all populations was found (mean F(ST) = 0.24). An isolation-by-distance pattern was apparent on large scale but not on local scale suggesting that the overall pattern was largely influenced by historical factors, e.g. colonization, whereas locally genetic drift was of greater importance than gene flow. Peripheral populations exhibited lower genetic diversity and higher inbreeding coefficients when compared with subcentral populations.  相似文献   

9.
Genome duplication resulting in polyploidy can have significant consequences for the evolution of mating systems. Most theory predicts that self‐fertilization will be selectively favored in polyploids; however, many autopolyploids are outcrossing or mixed‐mating. Here, we examine the hypothesis that the evolution of selfing is restricted in autopolyploids because the genetic cost of selfing (i.e., inbreeding depression) increases monotonically with successive generations of inbreeding. Using the herbaceous, autotetraploid plant Chamerion angustifolium, we generated populations with different inbreeding coefficients (F= 0, 0.17 and 0.36) through three consecutive generations of selfing and compared their magnitudes of inbreeding depression in a common environment. Mating system estimates for four natural populations confirmed that tetraploid selfing rates (sm= 0.25, SE = 0.02) are similar to those of diploids (sm= 0.12, SE = 0.12; F1,2= 1.34, P= 0.37) indicating that both cytotypes are predominantly outcrossing. Compared to an outbred control line, mean inbreeding depression for seed production, survival, and height (vegetative and total) in the inbred line differed among generations (inbreeding coefficients). Across all stages, inbreeding depression (relative to control) was positively related to generation (inbreeding coefficient). Although the initial costs of inbreeding in extant and newly synthesized polyploids may be low compared to diploids, the monotonic increase in inbreeding depression with repeated inbreeding may limit the extent to which selfing variants are favored.  相似文献   

10.
There is a long-recognized association in plants between small stature and selfing, and large stature and outcrossing. Inbreeding depression is central to several hypotheses for this association, but differences in the evolutionary dynamics of inbreeding depression associated with differences in stature are rarely considered. Here, we propose and test the Phi model of plant mating system evolution, which assumes that the per-generation mutation rate of a plant is a function of the number of mitoses (Phi) that occur from zygote to gamete, and predicts fundamental differences between low-Phi (small-statured) and high-Phi (large-statured) plants in the outcomes of the joint evolution of outcrossing rate and inbreeding depression. Using a large dataset of published population genetic studies of angiosperms and conifers, we compute fitted values of inbreeding depression and deleterious mutation rates for small- and large-statured plants. Consistent with our Phi model, we find that populations of small-statured plants exhibit a range of mating systems, significantly lower mutation rates, and intermediate inbreeding depression, while large-statured plants exhibit very high mutation rates and the maximum inbreeding depression of unity. These results indicate that (i) inbred progeny typically observed in large-statured plant populations are completely lost prior to maturity in nearly all populations; (ii) evolutionary shifts from outcrossing to selfing are generally not possible in large-statured species, rather, large-statured species are more likely to evolve mating systems that avoid selfing such as self-incompatibility and dioecy; (iii) destabilization of the mating system-high selfing rate with high-inbreeding depression-might be a common occurrence in large-statured species; and (iv) large-statured species in fragmented populations might be at higher risk of extinction than previously thought. Our results help to unify and simplify a large and diverse field of research, and serve to emphasize the importance that developmental and genetic constraints play in the evolution of plant mating systems.  相似文献   

11.
Thompson SL  Ritland K 《Heredity》2006,97(2):119-126
We have developed a new model for mating system analysis, which attempts to distinguish among alternative modes of self-oriented mating within populations. This model jointly estimates the rates of outcrossing, selfing, automixis and apomixis, through the use of information in the family structure given by dominant genetic marker data. The method is presented, its statistical properties evaluated, and is applied to three arctic Easter daisy populations, one consisting of diploids, the other two of tetraploids. The tetraploids are predominantly male sterile and reported to be apomictic while the diploids are male fertile. In each Easter daisy population, 10 maternal arrays of six progeny were assayed for amplified fragment length polymorphism markers. Estimates, confirmed with likelihood ratio tests of mating hypotheses, showed apomixis to be predominant in all populations (ca. 70%), but selfing or automixis was moderate (ca. 25%) in tetraploids. It was difficult to distinguish selfing from automixis, and simulations confirm that with even very large sample sizes, the estimates have a very strong negative statistical correlation, for example, they are not independent. No selfing or automixis was apparent in the diploid population, instead, moderate levels of outcrossing were detected (23%). Low but significant levels of outcrossing (2-4%) seemed to occur in the male-sterile tetraploid populations; this may be due to genotyping error of this level. Overall, this study shows apomixis can be partial, and provides evidence for higher levels of inbreeding in polyploids compared to diploids and for significant levels of apomixis in a diploid plant population.  相似文献   

12.
Experimental analysis of biparental inbreeding in a self-fertilizing plant   总被引:2,自引:0,他引:2  
Abstract.— Localized dispersal and mating may genetically structure plant populations, resulting in matings among related individuals. This biparental inbreeding has significant consequences for the evolution of mating systems, yet is difficult to estimate in natural populations. We estimated biparental inbreeding in two populations of the largely self-fertilizing plant Aquilegia canadensis using standard inference as well as a novel experiment comparing apparent selfing between plants that were randomly relocated within populations to experimental control plants. Using two allozyme markers, biparental inbreeding ( b ) inferred from the difference between single-locus and multilocus estimates of selfing ( b = ss – sm ) was low. Less than 3% of matings involved close relatives (mean b = 0.029). In contrast, randomly relocating plants greatly reduced apparent selfing (mean ss = 0.674) compared to control plants that had been dug up and replanted in their original locations ( ss = 0.953, P = 0.002). Based on this difference in ss , we estimated that approximately 30% of all matings involved close relatives (mean b = 0.279, 95% CL = 0.072–0.428). Inference from ss – sm underestimated b in these populations by more than an order of magnitude. Biparental inbreeding is thought to influence the evolution of self-fertilization primarily through reducing the genetic cost of outcrossing. This is unlikely to be of much significance in A. canadensis because inbreeding depression (a major cost of selfing) is much stronger than the cost of outcrossing. However, biparental inbreeding combined with strong inbreeding depression may influence selection on dispersal.  相似文献   

13.
Hymenaea stigonocarpa is a neotropical tree that is economically important due to its high‐quality wood; however, because it has been exploited extensively, it is currently considered threatened. Microsatellite loci were used to investigate the pollen and seed dispersal, mating patterns, spatial genetic structure (SGS), genetic diversity, and inbreeding depression in H. stigonocarpa adults, juveniles, and open‐pollinated seeds, which were sampled from isolated trees in a pasture and trees within a forest fragment in the Brazilian savannah. We found that the species presented a mixed mating system, with population and individual variations in the outcrossing rate (0.53–1.0). The studied populations were not genetically isolated due to pollen and seed flow between the studied populations and between the populations and individuals located outside of the study area. Pollen and seed dispersal occurred over long distances (>8 km); however, the dispersal patterns were isolated by distance, with a high frequency of mating occurring between near‐neighbor trees and seeds dispersed near the parent trees. The correlated mating for individual seed trees was higher within than among fruits, indicating that fruits present a high proportion of full‐sibs. Genetic diversity and SGS were similar among the populations, but offspring showed evidence of inbreeding, mainly originating from mating among related trees, which suggests inbreeding depression between the seed and adult stages. Selfing resulted in a higher inbreeding depression than mating among relatives, as assessed through survival and height. As the populations are not genetically isolated, both are important targets for in situ conservation to maintain their genetic diversity; for ex situ conservation, seeds can be collected from at least 78 trees in both populations separated by at least 250 m.  相似文献   

14.
Ward M  Dick CW  Gribel R  Lowe AJ 《Heredity》2005,95(4):246-254
Despite the typically low population densities and animal-mediated pollination of tropical forest trees, outcrossing and long-distance pollen dispersal are the norm. We reviewed the genetic literature on mating systems and pollen dispersal for neotropical trees to identify the ecological and phylogenetic correlates. The 36 studies surveyed found >90% outcrossed mating for 45 hermaphroditic or monoecious species. Self-fertilization rates varied inversely with population density and showed phylogenetic and geographic trends. The few direct measures of pollen flow (N=11 studies) suggest that pollen dispersal is widespread among low-density tropical trees, ranging from a mean of 200 m to over 19 km for species pollinated by small insects or bats. Future research needs to examine (1) the effect of inbreeding depression on observed outcrossing rates, (2) pollen dispersal in a wide range of pollination syndromes and ecological classes, (3) and the range of variation of mating system expression at different hierarchical levels, including individual, seasonal, population, ecological, landscape and range wide.  相似文献   

15.
Mating patterns in heterodichogamous species are generally considered to be disassortative between flowering morphs, but this hypothesis has hitherto not been vigorously tested. Here, mating patterns and pollen dispersal were studied in Juglans mandshurica, a heterodichogamous wind-pollinated species that is widely distributed in northern and north-eastern China. Paternity analyses carried out on 11 microsatellite loci were used to estimate morph-specific rates of outcrossing and disassortative mating. Pollen dispersal and genetic structure were also investigated in the population under study. The mating pattern of J. mandshurica was highly outcrossing and disassortative. Pairwise values of intramorph relatedness were much higher than those of intermorph relatedness, and a low level of biparental inbreeding was detected. There was no significant difference in outcrossing and disassortative mating rates between the two morphs. The effective pollen dispersal distribution showed an excess of near-neighbor matings, and most offspring of individual trees were sired by one or two nearby trees. These results corroborate the previous suggestion that mating in heterodichogamous plant species is mainly disassortative between morphs, which not only prevents selfing but also effectively reduces intramorph inbreeding.  相似文献   

16.
The majority of plant species and many animals are hermaphrodites, with individuals expressing both female and male function. Although hermaphrodites can potentially reproduce by self‐fertilization, they have a high prevalence of outcrossing. The genetic advantages of outcrossing are described by two hypotheses: avoidance of inbreeding depression because selfing leads to immediate expression of recessive deleterious mutations, and release from drift load because self‐fertilization leads to long‐term accumulation of deleterious mutations due to genetic drift and, eventually, to extinction. I tested both hypotheses by experimentally crossing Arabidopsis lyrata plants (self‐pollinated, cross‐pollinated within the population, or cross‐pollinated between populations) and measuring offspring performance over 3 years. There were 18 source populations, each of which was either predominantly outcrossing, mixed mating, or predominantly selfing. Contrary to predictions, outcrossing populations had low inbreeding depression, which equaled that of selfing populations, challenging the central role of inbreeding depression in mating system shifts. However, plants from selfing populations showed the greatest increase in fitness when crossed with plants from other populations, reflecting higher drift load. The results support the hypothesis that extinction by mutational meltdown is why selfing hermaphroditic taxa are rare, despite their frequent appearance over evolutionary time.  相似文献   

17.
Knowledge of mating systems is required in order to understand the genetic composition and evolutionary potential of plant populations. Outcrossing in a population may co-vary with the ecological and historical factors influencing it. However, literature on the outcrossing rate is limited in terms of wild sorghum species coverage and eco-geographic reference. This study investigated the outcrossing rates in wild sorghum populations from different ecological conditions of Kenya. Twelve wild sorghum populations were collected in four sorghum growing regions. Twenty-four individuals per population were genotyped using six polymorphic simple sequence repeat (SSR) markers to compute their indirect equilibrium estimates of outcrossing rate as well as population structure. In addition, the 12 populations were planted in a field in a randomised block design with five replications. Their progeny (250 individuals per population) were genotyped with the six SSR markers to estimate multi-locus outcrossing rates. Equilibrium estimates of outcrossing rates ranged from 7.0 to 75.0%, while multi-locus outcrossing rates (t m) ranged from 8.9 to 70.0% with a mean of 49.7%, indicating that wild sorghum exhibits a mixed mating system. The wide range of estimated outcrossing rates in wild sorghum populations indicate that environmental conditions may exist under which fitness is favoured by outcrossing and others under which selfing is more advantageous. The genetic structure of the populations studied is concordant with that expected for a species displaying mixed mating system.  相似文献   

18.
Abstract Island populations of Campanula microdonta and mainland Honshu populations of C. punctata have several different mating systems: self-incompatible (SI) and therefore obligately outcrossing in mainland Honshu and Oshima Island; self-compatible (SC) and largely outcrossing in the northern islands of Toshima and Niijima; and SC and predominantly inbreeding southern ones of Miyake and Hachijo. Several features possibly associated with the mating systems are described. A hypothesis is proposed that the mean and variance of pollinator availability together with inbreeding depression could explain the observed patterns of mating system as the results of evolution.  相似文献   

19.
The amounts of inbreeding depression upon selfing and of heterosis upon outcrossing determine the strength of selection on the selfing rate in a population when this evolves polygenically by small steps. Genetic models are constructed which allow inbreeding depression to change with the mean selfing rate in a population by incorporating both mutation to recessive and partially dominant lethal and sublethal alleles at many loci and mutation in quantitative characters under stabilizing selection. The models help to explain observations of high inbreeding depression (> 50%) upon selfing in primarily outcrossing populations, as well as considerable heterosis upon outcrossing in primarily selfing populations. Predominant selfing and predominant outcrossing are found to be alternative stable states of the mating system in most plant populations. Which of these stable states a species approaches depends on the history of its population structure and the magnitude of effect of genes influencing the selfing rate.  相似文献   

20.
Basic models of mating‐system evolution predict that hermaphroditic organisms should mostly either cross‐fertilize, or self‐fertilize, due to self‐reinforcing coevolution of inbreeding depression and outcrossing rates. However transitions between mating systems occur. A plausible scenario for such transitions assumes that a decrease in pollinator or mate availability temporarily constrains outcrossing populations to self‐fertilize as a reproductive assurance strategy. This should trigger a purge of inbreeding depression, which in turn encourages individuals to self‐fertilize more often and finally to reduce male allocation. We tested the predictions of this scenario using the freshwater snail Physa acuta, a self‐compatible hermaphrodite that preferentially outcrosses and exhibits high inbreeding depression in natural populations. From an outbred population, we built two types of experimental evolution lines, controls (outcrossing every generation) and constrained lines (in which mates were often unavailable, forcing individuals to self‐fertilize). After ca. 20 generations, individuals from constrained lines initiated self‐fertilization earlier in life and had purged most of their inbreeding depression compared to controls. However, their male allocation remained unchanged. Our study suggests that the mating system can rapidly evolve as a response to reduced mating opportunities, supporting the reproductive assurance scenario of transitions from outcrossing to selfing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号