共查询到20条相似文献,搜索用时 15 毫秒
1.
Yoko Mizuta Tetsuya Higashiyama 《The Plant journal : for cell and molecular biology》2014,78(3):516-526
Sexual reproduction is an essential biological event for proliferation of plants. The pollen tube (PT) that contained male gametes elongates and penetrates into the pistils for successful fertilization. However, the molecular mechanisms of plant fertilization remain largely unknown. Here, we report a transient inhibition of gene function using phosphorothioate antisense oligodeoxynucleotides (AS‐ODNs) without cytofectin, which is a simple way to study gene function in Arabidopsis thaliana PTs. The PTs treated with AS‐ODNs against both ANX1 and ANX2 showed short, knotted, and ruptured morphology in vitro/semi‐in vitro, whereas normal PT growth was shown in its sense control in vitro/semi‐in vitro. PT growth was impaired in a manner dependent on the dose of AS‐ODNs against both ANX1 and ANX2 above 10 μm . The treatment with AS‐ODNs against ROP1 and CalS5 resulted in waving PTs and in short PTs with a few callose plugs, respectively. The expression levels of the target genes in PTs treated with their AS‐ODNs were lower than or similar to those in the sense control, indicating that the inhibition was directly or indirectly related to the expression of each mRNA. The AS‐ODN against fluorescent protein (sGFP) led to reduced sGFP expression, suggesting that the AS‐ODN suppressed protein expression. This method will enable the identification of reproductively important genes in Arabidopsis PTs. 相似文献
2.
Rong Wang ChunLin Shi Xiaoyang Wang Ruizhen Li Yan Meng Lina Cheng Mingfang Qi Tao Xu Tianlai Li 《The Plant journal : for cell and molecular biology》2020,103(6):2100-2118
Anther development and pollen tube elongation are key steps for pollination and fertilization. The timing and spatial distribution of reactive oxygen species (ROS) and programmed cell death are central to these processes, but the regulatory mechanism of ROS production is not well understood. Inflorescence deficient in abscission (IDA) is implicated in many plant development and responses to environmental stimuli. However, their role in reproductive development is still unknown. We generated tomato knockout lines (CR‐slida) of an IDA homolog (SlIDA), which is expressed in the tapetum, septum and pollen tube, and observed a severe defect in male gametes. Further analysis indicated that there was a programmed cell death defect in the tapetum and septum and a failure of anther dehiscence in the CR‐slida lines, likely related to insufficient ROS signal. Liquid chromatography‐tandem mass spectrometry identified mature SlIDA as a 14‐mer EPIP peptide, which was shown to be secreted, and a complementation experiment showed that application of a synthetic 14‐mer EPIP peptide rescued the CR‐slida defect and enhanced the ROS signal. Moreover, the application of the ROS scavengers diphenyleneiodonium or Mn‐TMPP suppressed peptide function. Collectively, our results revealed that SlIDA plays an essential role in pollen development and pollen tube elongation by modulating ROS homeostasis. 相似文献
3.
Wenzhou Li Siwei Zhang Osamu Numata Yoshinori Nozawa Shulin Wang 《Cell biochemistry and function》2009,27(6):364-369
TpMRK was identified as a stress‐responsive mitogen activated protein kinase (MAPK)‐related kinase and has been shown to play a critical role in the stress signalling in Tetrahymena cells. Here, we found that the mRNA expression of TpMRK was correlated with cell division of Tetrahymena with decreased expression occurring in cells prior to entering synchronous cell division induced by heat treatment. Notably, cell division was delayed with a lower division index of 40% after exposure to hydrogen peroxide while 85% of cells underwent cell division synchronously at 75 min after heat treatment without the oxidative exposure. Furthermore, inactivation of TpMRK signalling by p38 MAPK inhibitor SB203580 or MEK inhibitor PD 98059 partially derepressed cell division induced by hydrogen peroxide. Our data suggest that oxidative stimuli might cause aberration of synchronous cell division of Tetrahymena through activating the TpMRK cascade. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
4.
Jasmina Kurepa Ryo Nakabayashi Tatjana Paunesku Makoto Suzuki Kazuki Saito Gayle E. Woloschak Jan A. Smalle 《The Plant journal : for cell and molecular biology》2014,77(3):443-453
Surface functionalization of nanoparticles has become an important tool for in vivo delivery of bioactive agents to their target sites. Here we describe the reverse strategy, nanoharvesting, in which nanoparticles are used as a tool to isolate bioactive compounds from living cells. Anatase TiO2 nanoparticles smaller than 20 nm form strong bonds with molecules bearing enediol and especially catechol groups. We show that these nanoparticles enter plant cells, conjugate enediol and catechol group‐rich flavonoids in situ, and exit plant cells as flavonoid‐nanoparticle conjugates. The source plant tissues remain viable after treatment. As predicted by the surface chemistry of anatase TiO2 nanoparticles, quercetin‐based flavonoids were enriched amongst the nanoharvested flavonoid species. Nanoharvesting eliminates the use of organic solvents, allows spectral identification of the isolated compounds, and opens new avenues for use of nanomaterials for coupled isolation and testing of bioactive properties of plant‐synthesized compounds. 相似文献
5.
- Pollen viability affects the probability that a pollen grain deposited on a plant's stigma will produce a viable seed. Because a mature seed is needed before a gene flow event can occur, pollen viability will influence the risk of escape for genetically engineered (GE) crops.
- Pollen viability was measured at intervals for up to 2 h following removal of the pollen from the anthers. It was quantified at three temperatures and for different alfalfa varieties, including both conventional and Roundup Ready (RR) varieties. Pollen viability was assessed using in vitro germination.
- Time since removal from the anthers was the most prevalent factor affecting pollen viability in alfalfa. Pollen viability declined with increasing time at all three temperatures and for all varieties tested. Pollen viability was not affected by temperatures ranging between 25 and 37 °C and did not vary among plant varieties, including conventional and RR varieties.
- Bee foraging behaviour suggested pollen viability within the first 10 min following pollen removal from a flower to most affect seed production. Pollen longevity was predicted to have little impact on seed set and gene flow. Linking pollinator behaviour to pollen viability improved our understanding of its impact on gene flow risk.
6.
Najia Zaman Kati Seitz Mohiuddin Kabir Lauren St. George‐Schreder Ian Shepstone Yidong Liu Shuqun Zhang Patrick J. Krysan 《The Plant journal : for cell and molecular biology》2019,97(5):970-983
The catalytic activity of mitogen‐activated protein kinases (MAPKs) is dynamically modified in plants. Since MAPKs have been shown to play important roles in a wide range of signaling pathways, the ability to monitor MAPK activity in living plant cells would be valuable. Here, we report the development of a genetically encoded MAPK activity sensor for use in Arabidopsis thaliana. The sensor is composed of yellow and blue fluorescent proteins, a phosphopeptide binding domain, a MAPK substrate domain and a flexible linker. Using in vitro testing, we demonstrated that phosphorylation causes an increase in the Förster resonance energy transfer (FRET) efficiency of the sensor. The FRET efficiency can therefore serve as a readout of kinase activity. We also produced transgenic Arabidopsis lines expressing this sensor of MAPK activity (SOMA) and performed live‐cell imaging experiments using detached cotyledons. Treatment with NaCl, the synthetic flagellin peptide flg22 and chitin all led to rapid gains in FRET efficiency. Control lines expressing a version of SOMA in which the phosphosite was mutated to an alanine did not show any substantial changes in FRET. We also expressed the sensor in a conditional loss‐of‐function double‐mutant line for the Arabidopsis MAPK genes MPK3 and MPK6. These experiments demonstrated that MPK3/6 are necessary for the NaCl‐induced FRET gain of the sensor, while other MAPKs are probably contributing to the chitin and flg22‐induced increases in FRET. Taken together, our results suggest that SOMA is able to dynamically report MAPK activity in living plant cells. 相似文献
7.
C. Y. Maurice Cheung Thomas C. R. Williams Mark G. Poolman David. A. Fell R. George Ratcliffe Lee J. Sweetlove 《The Plant journal : for cell and molecular biology》2013,75(6):1050-1061
Flux balance models of metabolism generally utilize synthesis of biomass as the main determinant of intracellular fluxes. However, the biomass constraint alone is not sufficient to predict realistic fluxes in central heterotrophic metabolism of plant cells because of the major demand on the energy budget due to transport costs and cell maintenance. This major limitation can be addressed by incorporating transport steps into the metabolic model and by implementing a procedure that uses Pareto optimality analysis to explore the trade‐off between ATP and NADPH production for maintenance. This leads to a method for predicting cell maintenance costs on the basis of the measured flux ratio between the oxidative steps of the oxidative pentose phosphate pathway and glycolysis. We show that accounting for transport and maintenance costs substantially improves the accuracy of fluxes predicted from a flux balance model of heterotrophic Arabidopsis cells in culture, irrespective of the objective function used in the analysis. Moreover, when the new method was applied to cells under control, elevated temperature and hyper‐osmotic conditions, only elevated temperature led to a substantial increase in cell maintenance costs. It is concluded that the hyper‐osmotic conditions tested did not impose a metabolic stress, in as much as the metabolic network is not forced to devote more resources to cell maintenance. 相似文献
8.
Using fluorescence lifetime microscopy to study the subcellular localization of anthocyanins 下载免费PDF全文
Alexandra Chanoca Brian Burkel Nik Kovinich Erich Grotewold Kevin W. Eliceiri Marisa S. Otegui 《The Plant journal : for cell and molecular biology》2016,88(5):895-903
Anthocyanins are flavonoid pigments that accumulate in most seed plants. They are synthesized in the cytoplasm but accumulate inside the vacuoles. Anthocyanins are pigmented at the lower vacuolar pH, but in the cytoplasm they can be visualized based on their fluorescence properties. Thus, anthocyanins provide an ideal system for the development of new methods to investigate cytoplasmic pools and association with other molecular components. We have analyzed the fluorescence decay of anthocyanins by fluorescence lifetime imaging microscopy (FLIM), in both in vitro and in vivo conditions, using wild‐type and mutant Arabidopsis thaliana seedlings. Within plant cells, the amplitude‐weighted mean fluorescence lifetime (τm) correlated with distinct subcellular localizations of anthocyanins. The vacuolar pool of anthocyanins exhibited shorter τm than the cytoplasmic pool. Consistently, lowering the pH of anthocyanins in solution shortened their fluorescence decay. We propose that FLIM is a useful tool for understanding the trafficking of anthocyanins and, potentially, for estimating vacuolar pH inside intact plant cells. 相似文献
9.
10.
The use of in vivo microscopy to image the cnidarian stress response in three octocoral species 下载免费PDF全文
Austin P. Parrin Emily L. Somova Peter M. Kern Therese A. Millet Lori S. Bross Neil W. Blackstone 《Invertebrate Biology》2017,136(3):330-344
Energy‐converting symbionts and organelles may be central to the cnidarian stress response. Stress may damage photochemistry in the endosymbiotic dinoflagellate Symbiodinium spp., leaving photosystems I and II relatively reduced and increasing reactive oxygen species (ROS). Alternatively, ROS may emanate from mitochondria of either the host or the symbiont, or both. These sources of ROS can be distinguished by using microscopy to examine the effects of light on stressed cnidarians incubated in the dark with a fluorescent, ROS‐detecting probe. Experiments were carried out with three species of alcyonacean octocoral, Phenganax parrini, Sarcothelia sp., and Sympodium sp. After incubation of colonies for 1 h at elevated temperature, imaging and illumination (excitation 450–490 nm, emission 515–565 nm) were begun simultaneously. Formation of ROS largely corresponded to the onset of illumination. On the other hand, chlorophyll fluorescence (excitation 530–580 nm, emission 620–690 nm) did not conform to this pattern. This difference is consistent with the expected rates of reaction. Remarkably, treatment with the inhibitor 3‐(3,4‐dichlorophenyl)‐1,1‐dimethylurea (DCMU) resulted in dramatically higher levels of light‐induced ROS. Chlorophyll fluorescence was higher in the DCMU treatment but not significantly so. By controlling for variation between individual symbionts, however, DCMU produced significantly greater levels of chlorophyll fluorescence, indicating the expected greater reduction of photosystem II. A brief exposure to light and thermal stress produced a similar effect in all three species. In addition to ROS being initiated by light, these results indicate that: (1) a brief period of stress shifts photosystem redox state toward reduction, (2) photosystem II can donate electrons to oxygen when blocked with DCMU, and (3) chlorophyll fluorescence is highly variable among individuals of Symbiodinium. Imaging of individual symbionts in hospite thus provides a powerful method for understanding the initial steps of the cnidarian stress response. 相似文献
11.
Chantal LeBlanc Fei Zhang Josefina Mendez Yamile Lozano Krishna Chatpar Vivian F. Irish Yannick Jacob 《The Plant journal : for cell and molecular biology》2018,93(2):377-386
The CRISPR/Cas9 system has greatly improved our ability to engineer targeted mutations in eukaryotic genomes. While CRISPR/Cas9 appears to work universally, the efficiency of targeted mutagenesis and the adverse generation of off‐target mutations vary greatly between different organisms. In this study, we report that Arabidopsis plants subjected to heat stress at 37°C show much higher frequencies of CRISPR‐induced mutations compared to plants grown continuously at the standard temperature (22°C). Using quantitative assays relying on green fluorescent protein (GFP) reporter genes, we found that targeted mutagenesis by CRISPR/Cas9 in Arabidopsis is increased by approximately 5‐fold in somatic tissues and up to 100‐fold in the germline upon heat treatment. This effect of temperature on the mutation rate is not limited to Arabidopsis, as we observed a similar increase in targeted mutations by CRISPR/Cas9 in Citrus plants exposed to heat stress at 37°C. In vitro assays demonstrate that Cas9 from Streptococcus pyogenes (SpCas9) is more active in creating double‐stranded DNA breaks at 37°C than at 22°C, thus indicating a potential contributing mechanism for the in vivo effect of temperature on CRISPR/Cas9. This study reveals the importance of temperature in modulating SpCas9 activity in eukaryotes, and provides a simple method to increase on‐target mutagenesis in plants using CRISPR/Cas9. 相似文献
12.
AN Run DONG ChenFang LEI YanJun HAN Lu LI Ping CHEN JianMing WANG GuiRong SHI Qi GAO Chen JIANG HuiYing ZHOU Wei HAN Jun CHU YongLie DONG XiaoPing School of Medicine Xi’an JiaoTong University Xi’an China State Key Laboratory for Infectious Disease Prevention Control National Institute for Viral Disease Control Prevention Chinese Center for Disease Control Prevention YingXin Rd Beijing China 《中国科学:生命科学英文版》2008,51(7):630-639
One of the physiological functions of cellular prion protein(PrP C )is believed to work as a cellular resistance to oxidative stress,in which the octarepeats region within PrP plays an important role.However,the detailed mechanism is less clear.In this study,the expressing plasmids of wild-type PrP (PrP-PG5)and various PrP mutants containing 0(PrP-PG0),9(PrP-PG9)and 12(PrP-PG12)octarepeats were generated and PrP proteins were expressed both in E.coli and in mammalian cells.Protein aggregation and formation of carbonyl groups were clearly seen in the recombinant PrPs expressed from E.coli after treatment of H2O2.MTT and trypan blue staining assays revealed that the cells expressing the mutated PrPs within octarepeats are less viable than the cells expressing wild-type PrP.Statistically significant high levels of intracellular free radicals and low levels of glutathione peroxidase were observed in the cells transfected with plasmids containing deleted or inserted octarepeats.Remarkably more productions of carbonyl groups were detected in the cells expressing PrPs with deleted and inserted octarepeats after exposing to H2O2.Furthermore,cells expressing wild-type PrP showed stronger resistant activity to the challenge of H2O2 at certain extent than the mutated PrPs and mock. These data provided the evidences that the octarepeats number within PrP is critical for maintaining its activity of antioxidation.Loss of its protective function against oxidative stress may be one of the possible pathways for the mutated PrPs to involve in the pathogenesis of familial Creutzfeldt-Jacob diseases. 相似文献
13.
Daniela Barro‐Trastoy Esther Carrera Jorge Baos Julia Palau‐Rodríguez Omar Ruiz‐Rivero Pablo Tornero Jos M. Alonso Isabel Lpez‐Díaz María Dolores Gmez Miguel A. Prez‐Amador 《The Plant journal : for cell and molecular biology》2020,102(5):1026-1041
Ovule primordia formation is a complex developmental process with a strong impact on the production of seeds. In Arabidopsis this process is controlled by a gene network, including components of the signalling pathways of auxin, brassinosteroids (BRs) and cytokinins. Recently, we have shown that gibberellins (GAs) also play an important role in ovule primordia initiation, inhibiting ovule formation in both Arabidopsis and tomato. Here we reveal that BRs also participate in the control of ovule initiation in tomato, by promoting an increase on ovule primordia formation. Moreover, molecular and genetic analyses of the co‐regulation by GAs and BRs of the control of ovule initiation indicate that two different mechanisms occur in tomato and Arabidopsis. In tomato, GAs act downstream of BRs. BRs regulate ovule number through the downregulation of GA biosynthesis, which provokes stabilization of DELLA proteins that will finally promote ovule primordia initiation. In contrast, in Arabidopsis both GAs and BRs regulate ovule number independently of the activity levels of the other hormone. Taken together, our data strongly suggest that different molecular mechanisms could operate in different plant species to regulate identical developmental processes even, as for ovule primordia initiation, if the same set of hormones trigger similar responses, adding a new level of complexity. 相似文献
14.
Proteogenomic analysis reveals alternative splicing and translation as part of the abscisic acid response in Arabidopsis seedlings 下载免费PDF全文
Fu‐Yuan Zhu Mo‐Xian Chen Neng‐Hui Ye Lu Shi Kai‐Long Ma Jing‐Fang Yang Yun‐Ying Cao Youjun Zhang Takuya Yoshida Alisdair R. Fernie Guang‐Yi Fan Bo Wen Ruo Zhou Tie‐Yuan Liu Tao Fan Bei Gao Di Zhang Ge‐Fei Hao Shi Xiao Ying‐Gao Liu Jianhua Zhang 《The Plant journal : for cell and molecular biology》2017,91(3):518-533
In eukaryotes, mechanisms such as alternative splicing (AS) and alternative translation initiation (ATI) contribute to organismal protein diversity. Specifically, splicing factors play crucial roles in responses to environment and development cues; however, the underlying mechanisms are not well investigated in plants. Here, we report the parallel employment of short‐read RNA sequencing, single molecule long‐read sequencing and proteomic identification to unravel AS isoforms and previously unannotated proteins in response to abscisic acid (ABA) treatment. Combining the data from the two sequencing methods, approximately 83.4% of intron‐containing genes were alternatively spliced. Two AS types, which are referred to as alternative first exon (AFE) and alternative last exon (ALE), were more abundant than intron retention (IR); however, by contrast to AS events detected under normal conditions, differentially expressed AS isoforms were more likely to be translated. ABA extensively affects the AS pattern, indicated by the increasing number of non‐conventional splicing sites. This work also identified thousands of unannotated peptides and proteins by ATI based on mass spectrometry and a virtual peptide library deduced from both strands of coding regions within the Arabidopsis genome. The results enhance our understanding of AS and alternative translation mechanisms under normal conditions, and in response to ABA treatment. 相似文献
15.
Maoyin Li Ethan Baughman Mary R. Roth Xianlin Han Ruth Welti Xuemin Wang 《The Plant journal : for cell and molecular biology》2014,77(1):160-172
Plant triacylglycerols (TAGs), or vegetable oils, provide approximately 25% of dietary calories to humans and are becoming an increasingly important source of renewable bioenergy and industrial feedstocks. TAGs are assembled by multiple enzymes in the endoplasmic reticulum from building blocks that include an invariable glycerol backbone and variable fatty acyl chains. It remains a challenge to elucidate the mechanism of synthesis of hundreds of different TAG species in planta. One reason is the lack of an efficient analytical approach quantifying individual molecular species. Here we report a rapid and quantitative TAG profiling approach for Arabidopsis seeds based on electrospray ionization tandem mass spectrometry with direct infusion and multiple neutral loss scans. The levels of 93 TAG molecular species, identified by their acyl components, were determined in Arabidopsis seeds. Quantitative TAG pattern analyses revealed that the TAG assembly machinery preferentially produces TAGs with one elongated fatty acid. The importance of the selectivity in oil synthesis was consistent with an observation that an Arabidopsis mutant overexpressing a patatin‐like phospholipase had enhanced seed oil content with elongated fatty acids. This quantitative TAG profiling approach should facilitate investigations aimed at understanding the biochemical mechanisms of TAG metabolism in plants. 相似文献
16.
The impact of mechanical compression on cortical microtubules in Arabidopsis: a quantitative pipeline 下载免费PDF全文
Marion Louveaux Sébastien Rochette Léna Beauzamy Arezki Boudaoud Olivier Hamant 《The Plant journal : for cell and molecular biology》2016,88(2):328-342
Exogenous mechanical perturbations on living tissues are commonly used to investigate whether cell effectors can respond to mechanical cues. However, in most of these experiments, the applied mechanical stress and/or the biological response are described only qualitatively. We developed a quantitative pipeline based on microindentation and image analysis to investigate the impact of a controlled and prolonged compression on microtubule behaviour in the Arabidopsis shoot apical meristem, using microtubule fluorescent marker lines. We found that a compressive stress, in the order of magnitude of turgor pressure, induced apparent microtubule bundling. Importantly, that response could be reversed several hours after the release of compression. Next, we tested the contribution of microtubule severing to compression‐induced bundling: microtubule bundling seemed less pronounced in the katanin mutant, in which microtubule severing is dramatically reduced. Conversely, some microtubule bundles could still be observed 16 h after the release of compression in the spiral2 mutant, in which severing rate is instead increased. To quantify the impact of mechanical stress on anisotropy and orientation of microtubule arrays, we used the nematic tensor based FibrilTool ImageJ/Fiji plugin. To assess the degree of apparent bundling of the network, we developed several methods, some of which were borrowed from geostatistics. The final microtubule bundling response could notably be related to tissue growth velocity that was recorded by the indenter during compression. Because both input and output are quantified, this pipeline is an initial step towards correlating more precisely the cytoskeleton response to mechanical stress in living tissues. 相似文献
17.
18.
19.
Hitomi Takagi Takehiro Kajihara Shiori Sugamata Aki Takashi Nobusawa Chikage Umeda‐Hara Masaaki Umeda 《The Plant journal : for cell and molecular biology》2014,80(3):541-552
Visualization of the spatiotemporal pattern of cell division is crucial to understand how multicellular organisms develop and how they modify their growth in response to varying environmental conditions. The mitotic cell cycle consists of four phases: S (DNA replication), M (mitosis and cytokinesis), and the intervening G1 and G2 phases; however, only G2/M‐specific markers are currently available in plants, making it difficult to measure cell cycle duration and to analyze changes in cell cycle progression in living tissues. Here, we developed another cell cycle marker that labels S‐phase cells by manipulating Arabidopsis CDT1a, which functions in DNA replication origin licensing. Truncations of the CDT1a coding sequence revealed that its carboxy‐terminal region is responsible for proteasome‐mediated degradation at late G2 or in early mitosis. We therefore expressed this region as a red fluorescent protein fusion protein under the S‐specific promoter of a histone 3.1‐type gene, HISTONE THREE RELATED2 (HTR2), to generate an S/G2 marker. Combining this marker with the G2/M‐specific CYCB1‐GFP marker enabled us to visualize both S to G2 and G2 to M cell cycle stages, and thus yielded an essential tool for time‐lapse imaging of cell cycle progression. The resultant dual‐color marker system, Cell Cycle Tracking in Plant Cells (Cytrap), also allowed us to identify root cells in the last mitotic cell cycle before they entered the endocycle. Our results demonstrate that Cytrap is a powerful tool for in vivo monitoring of the plant cell cycle, and thus for deepening our understanding of cell cycle regulation in particular cell types during organ development. 相似文献