首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
We investigated the habitat selected by two Palaearctic migrants (Pied Flycatcher, Ficedula hypoleuca, Willow Warbler, Phylloscopus trochilus) in a patchy landscape in Ivory Coast and compared it with the habitat selection of Afrotropical species in the same foraging guilds. Transect counts were used to test the hypothesis that migrants use more open and more seasonal habitats and have a broader use of habitats compared with resident species. Habitats compared were, in order of decreasing tree density, gallery forest, an isolated forest and bush/tree savanna. The isolated forest had the most pronounced seasonal changes (deciduous trees) and was the one with the most diverse vegetation structure. The habitat where both migrants were most frequent was the isolated forest, and thus occurred in the habitat with the most pronounced seasonal change. Diversity of habitats selected was highest in migrants but in the Pied Flycatcher this was possibly an artefact due to subdominant individuals being excluded from the preferred habitat by territorial birds. Potential competition for habitat with Afrotropical species was found to be low.  相似文献   

2.
Capsule Migrant Willow Warblers occupy more woodland types and occur at higher densities than ecologically‐similar resident Afrotropical warblers.

Aims To compare population densities of Willow Warblers and eremomelas in adjacent acacia, mopane and miombo woodlands, and assess the abundance of potential invertebrate prey in each habitat type, in order to investigate whether Palearctic migrants use more open habitats and are more flexible in habitat use than their Afrotropical counterparts in the same feeding guild.

Methods Using distance sampling we carried out four replicated sets of point counts in acacia woodland and three sets of counts in miombo and mopane between December 1999 and February 2000. We noted the tree species in which we saw warblers foraging and took beating‐tray samples of potential arthropod prey present on tree foliage in each of the three habitats.

Results Willow Warbler density in acacia woodland increased from 1.80 ± 0.54 (se) birds/ha in early December to 7.15 ± 1.41 birds/ha in late January after influxes of later arrivals. Densities of Willow Warblers in miombo and mopane were much lower (1.14 ± 0.28 and 0.38 ± 0.23 birds/ha, respectively) and did not show significant changes. Burnt‐necked Eremomelas averaged 0.74 ± 0.34 birds/ha in acacia woodland, and in miombo densities of Green‐capped and Yellow‐bellied Eremomelas were 0.23 ± 0.17 and 0.34 ± 0.26 birds/ha, respectively. Densities in mopane were too low to estimate reliably. Willow Warblers and Green‐capped Eremomelas showed some apparent preferences in tree species used for foraging but differences in tree use were not obviously related to the abundance of arthropod taxa present as potential prey.

Conclusion Willow Warblers occupied more habitats at greater density than similar Afrotropical warblers. They appear to favour acacia, but their settlement patterns and the reasons for disparities between densities of immigrants and residents are unclear.  相似文献   

3.
Bird habitat conservation may require different management strategies for different seasonal bird assemblages. We studied habitat use by winter birds in forest and scrubland habitat patches in the northern Negev, Israel. Our goal was to assess whether differences in responses to landscape and habitat structure between breeding and non-breeding seasons require changes in future conservation plans that have been suggested for the Negev breeding bird community. We evaluated habitat and area effects on bird abundance and distribution and tested whether species habitat use during winter involves niche shifts. Compared with breeding birds, a larger proportion of winter bird species occupied both scrubland and forest. As in summer, forest bird species responded to habitat structure, whereas scrubland species were associated with both habitat structure and area. Resident birds disperse into habitats in which they were not present during summer. Consequently, for several species, the correlation between bird densities and environmental factors showed a better fit at the landscape rather than at the habitat scale. In addition, rather than niche shift, birds actually extended their niche breadth. Nest site selection may constrain bird distribution into a realized niche, smaller than their fundamental niche. Despite the scale differences in habitat use, the similar species diversity patterns between seasons suggest that both winter and summer birds would benefit from conservation of scrub patches larger than 50 ha, and enrichment of foliage layers within the planted forests.  相似文献   

4.
The threatened forest habitats of the tropical Andes are reportedly being modified and destroyed 30% faster than their lowland tropical counterparts, but impacts on the hyper-diverse resident avifauna have received little systematic study. We present a baseline analysis of the effects of habitat modification on birds in a lower montane forest landscape in Ecuador, comparing avian community composition in landscape elements subjected to different levels of human modification: primary forest, secondary forest, edge habitat and agricultural land. We use data from a point count survey of 300 counts at 150 sites to test whether community composition and density of birds with different reported habitat preferences and foraging strategies change among landscape elements. Species richness and diversity were lowest in agricultural land, but on some measures, equally low in primary forest. Richness and diversity peaked in secondary forest and edge habitat, but ordination and density analysis revealed clear differences in their species composition. While secondary forest contained mostly forest-preferring species, edge habitat harboured a mix of forest and open-land birds. There was a clearly structured gradient in species composition across landscape elements, with densities of habitat specialists, foraging guilds and families varying considerably from primary forest to agricultural land. Agricultural land was characterised by an assemblage of widespread, abundant species very different from that in core forest habitats. As such, while the majority of montane forest birds appear resilient to a certain level of habitat modification, they cannot persist, and are displaced, where forest has been cleared outright. We argue that, for Andean montane forests, preservation of mature secondary forest offers flexibility in supplementing preserved primary forest areas to provide sufficient habitat for the persistence of this incredibly diverse but severely threatened bird community.  相似文献   

5.
The probability of long‐term persistence of a population is strongly determined by adult survival rates, but estimates of survival are currently lacking for most species of birds in the tropical Andes, a global biodiversity hotspot. We calculated apparent survival rates of birds in the Ecuadorian tropical Andes using a moderately long‐term (11 yr) capture–recapture dataset from three habitats that varied in how much they had been modified by human activities (native forest, introduced forest, and shrubs). We fit mark–recapture models for 28 species with habitat as a covariable. For all species, recapture rates between sampling sessions were low and varied from 0.04 for Rainbow Starfrontlets (Coeligena iris) to 0.41 for Stripe‐headed Brushfinches (Arremon assimilis) when averaged across all occupied habitats. Annual survival rates varied from 0.07 for Black‐crested Warblers (Margarornis squamiger) to 0.75 for Violet‐throated Metaltails (Metallura baroni). We found no significant differences in survival rates either among habitats or species grouped by habitat specialization. Because we found similar survival rates in native forest and human‐modified habitats, our results support those of recent studies concerning the potential value of secondary habitats for the conservation of some species of birds in the tropics. However, our conclusions are tempered by the uncertainty around the estimates of survival rates. Despite the relatively long‐term nature of our study, obtaining survival estimates for bird species in this region was challenging, and either more years of study or modification of field protocols may be needed to obtain more precise survival estimates.  相似文献   

6.
Question: Disturbance effects on dry forest epiphytes are poorly known. How are epiphytic assemblages affected by different degrees of human disturbance, and what are the driving forces? Location: An inter‐Andean dry forest landscape at 2300 m elevation in northern Ecuador. Methods: We sampled epiphytic bryophytes and vascular plants on 100 trees of Acacia macracantha in five habitats: closed‐canopy mixed and pure acacia forest (old secondary), forest edge, young semi‐closed secondary woodland, and isolated trees in grassland. Results: Total species richness in forest edge habitats and on isolated trees was significantly lower than in closed forest types. Species density of vascular epiphytes (species per tree) did not differ significantly between habitat types. Species density of bryophytes, in contrast, was significantly lower in edge habitat and on isolated trees than in closed forest. Forest edge showed greater impoverishment than semi‐closed woodland and similar floristic affinity to isolated trees and to closed forest types. Assemblages were significantly nested; habitat types with major disturbance held only subsets of the closed forest assemblages, indicating a gradual reduction in niche availability. Distance to forest had no effect on species density of epiphytes on isolated trees, but species density was closely correlated with crown closure, a measure of canopy integrity. Main conclusions: Microclimatic changes but not dispersal constraints were key determinants of epiphyte assemblages following disturbance. Epiphytic cryptogams are sensitive indicators of microclimate and human disturbance in montane dry forests. The substantial impoverishment of edge habitat underlines the need for fragmentation studies on epiphytes elsewhere in the Tropics.  相似文献   

7.
Insectivorous birds may adjust their foraging strategies to exploit changes in resource distributions. Arthropod prey strongly influence habitat‐specific persistence of long‐distance migrant passerines in their wintering areas, and arthropods are strongly affected by rainfall. However, the effect of drought on the dynamics of avian foraging ecology as resources shift is not well understood. We captured female American Redstarts (Setophaga ruticilla) and studied their foraging behavior in high‐quality (evergreen black mangrove) and low‐quality (deciduous scrub) habitat in Jamaica during the winter of 1995–1996. As is typical in southwestern Jamaica, conditions became drier as spring approached and many trees in scrub lost most of their leaves; mangrove trees maintained most of their leaf cover. Birds in scrub lost more mass than those in mangrove, and scrub birds shifted to using more aerial (and fewer near‐perch) maneuvers. In scrub, but not in mangrove, the proportion of wing‐powered movements and aerial foraging maneuvers was positively correlated with mass corrected by body size. In both habitats, attack rate was negatively correlated with body condition. Therefore, redstarts in scrub that maintained body condition were likely better able to use energetically expensive aerial maneuvers and wing‐powered search movements to exploit large, calorie‐rich flying arthropods. As the scrub dried over the course of the winter, the shift in foraging tactic may have allowed some birds to forage more efficiently (i.e., lower attack rate), likely facilitating maintenance of good body condition.  相似文献   

8.
Individuals that settle in poor habitats may reduce resource investments in various life history traits; for example, resources may be withheld from costly advertisement signals. There may be geographic variation in advertisement levels that correspond with habitat quality; however, this is poorly documented and it is unclear whether such habitat effects have consequences for the function of mate‐choice signals within habitats. We examined song output of male black‐capped chickadees (Poecile atricapillus) during the dawn chorus in two contrasting habitats (mature forest vs. young forest) known to differ in quality. Dominance rank is indicative of phenotypic quality in this species and was assessed during the preceding winter. We measured the song output of males participating in the dawn chorus during the nesting/egg laying period. Males living in young forest had reduced song output; however, a habitat–rank interaction term showed that dominant birds accounted for most of this difference. This suggests that signal reliability might be lost in poor habitats. We generate several hypotheses to explain these findings.  相似文献   

9.
Large areas of tropical moist forests have been converted to cattle pastures, generating complex landscapes where different habitats are represented by small patches with an uneven spatial distribution. Here, we describe how bird communities respond to the different elements present in a livestock landscape that was originally dominated by tropical moist forest. We surveyed six habitats: open pastures, pastures with shrubs, early‐ and middle‐secondary forests, mature forest, and pastures invaded by bracken ferns (Pteridium aquilinum). Bird diversity was high in secondary and mature forests, and low in fern‐invaded sites and open pastures. Fern‐dominated sites had the lowest bird species richness, and trophic guild diversity of all habitats. Habitat structure affected both bird species richness and densities in similar ways. Tree species richness was the habitat attribute that had a bigger positive effect on bird species richness. Bird community structure varied among sampled habitats, separating habitats in two major groups (forests and pastures). Our data indicate that bracken fern‐invaded pastures were the worst habitat condition for avian communities. To increase bird diversity, we recommend to eliminate or manage bracken fern and to increase shrub and tree cover in open pastures to provide food resources and shelter for birds. Finally, we encourage the maintenance of secondary and mature forest remnants as a strategy to conserve resident birds within a landscape dominated by livestock activities.  相似文献   

10.
Much of the remaining “forest” vegetation in eastern Chiapas, Mexico is managed for coffee production. In this region coffee is grown under either the canopy of natural forest or under a planted canopy dominated by Inga spp. Despite the large differences in diversity of dominant plant species, both planted and rustic shade coffee plantations support a high overall diversity of bird species; we recorded approximately 105 species in each plantation type on fixed radius point counts. We accumulated a combined species list of 180 species on repeatedly surveyed transects through both coffee plantation types. These values are exceeded regionally only by moist tropical forest. Of the habitats surveyed, shade coffee was second only to acacia groves in the abundance and diversity of Nearctic migrants. The two plantation types have similar bird species lists and both are similar in composition to the dominant woodland—mixed pine-oak. Both types of shade coffee plantation habitats differ from other local habitats in supporting highly seasonal bird populations. Survey numbers almost double during the dry season—an increase that is found in omnivorous migrants and omnivorous, frugivorous, and nectarivorous resident species. Particularly large influxes were found for Tennessee warblers (Vermivora peregrina) and northern orioles (Icterus galbula) in Inga dominated plantations.  相似文献   

11.
When organisms with similar phenotypes have conflicting management and conservation initiatives, approaches are needed to differentiate among subpopulations or discrete groups. For example, the eastern metapopulation of the double‐crested cormorant (Phalacrocorax auritus) has a migratory phenotype that is culled because they are viewed as a threat to commercial and natural resources, whereas resident birds are targeted for conservation. Understanding the distinct breeding habitats of resident versus migratory cormorants would aid in identification and management decisions. Here, we use species distribution models (SDM: Maxent) of cormorant nesting habitat to examine the eastern P. auritus metapopulation and the predicted breeding sites of its phenotypes. We then estimate the phenotypic identity of breeding colonies of cormorants where management plans are being developed. We transferred SDMs trained on data from resident bird colonies in Florida and migratory bird colonies in Minnesota to South Carolina in an effort to identify the phenotype of breeding cormorants there based on the local landscape characteristics. Nesting habitat characteristics of cormorant colonies in South Carolina more closely resembled those of the Florida phenotype than those of birds of the Minnesota phenotype. The presence of the resident phenotype in summer suggests that migratory and resident cormorants will co‐occur in South Carolina in winter. Thus, there is an opportunity for separate management strategies for the two phenotypes in that state. We found differences in nesting habitat characteristics that could be used to refine management strategies and reduce human conflicts with abundant winter migrants and, at the same time, conserve less common colonies of resident cormorants. The models we use here show potential for advancing the study of geographically overlapping phenotypes with differing conservation and management priorities.  相似文献   

12.
ABSTRACT Large‐scale transformation of forested landscapes is a major factor in loss of biological diversity in the American tropics. Investigators examining the responses of species to deforestation rarely control for variation in the amount of forest relative to other habitats at the landscape‐level. Bellavista Reserve on the western slope of the Andes in Ecuador is located between similar‐sized areas of pristine, protected forest, and deforested landscapes. We used strip‐transect counts and mist netting to evaluate habitat use by passerine birds in a habitat mosaic consisting of abandoned pastures, forest edges, forest fragments, and large blocks of interior tropical montane cloud forest (TMCF). During 3600 net hours, we had 1476 captures, including 346 recaptures. Of 78 species captured in mist nets, 30 had sufficient counts for Poison Rate Regression (PRR) modeling (a statistical method for comparing counts). Twelve species (40%) had capture patterns indicative of an affinity for mature TMCF, and 6 species (20%) had significantly higher counts in degraded areas (forest edge, forest fragment, and regenerating pastures) than in interior TMCF. The remaining 40% showed no significant bias in detection among habitats. Combined with strip‐count data, our results suggest that about 38% of the 119 species sampled at the Bellavista Reserve occur primarily in mature TMCF, avoiding edges and early second‐growth forest. Populations of these species may be vulnerable to further loss, fragmentation, and degradation of TMCF and, as such, deserve additional study and a place on lists of species of conservation concern.  相似文献   

13.
Sam T. Ivande  Will Cresswell 《Ibis》2016,158(3):496-505
The specificity of an animal's habitat requirements will determine its ability to deal with anthropogenic climate and habitat change. Migratory birds are thought to be particularly vulnerable to such change, but theory predicts that they should be largely generalists. This prediction was tested with the aim of assessing whether migratory Palaearctic‐breeding birds wintering in the savannah biome of Africa are more or less generalist in their habitat use compared with taxonomically and ecologically similar Afro‐tropical resident species. The degree of specialization of these species groups to certain habitat characteristics was assessed and compared by calculating the relative occurrence of the species along habitat gradients, where wide occurrence indicates generalism and narrow occurrence indicates specialism. Palaearctic migrants as a group could not clearly be distinguished as generalists relative to Afro‐tropical residents with respect to habitat attributes. The only indication of greater flexibility in Palaearctic migrants was a significant tendency to use habitats over a wider latitudinal range. The results suggest that migrants are generalists, but not necessarily more generalist than taxonomically similar resident species that also occur over a wide range of habitat types within the savannah biome. The availability of specific habitat requirements on the wintering grounds in Africa is therefore unlikely to be a primary limiting factor for many Afro‐Palaearctic migratory bird species.  相似文献   

14.
Afromontane forests, like those in the Aberdare National Park (ANP) in Kenya, sustain unique avifaunal assemblages. There is a growing need for biodiversity inventories for Afromontane forests, especially through the utilisation of unskilled observers. Acoustic surveys are a potential aid to this, but more comparisons of this technique with that of traditional point counts are needed. We conducted a systematic survey of the ANP avifauna, assessing whether acoustic and traditional surveys resulted in different species richness scores, and whether this varied with habitat and species characteristics. We also investigated the role of habitat and elevation in driving variation in species richness. The ANP provides habitat types including scrub, moorland, montane, hagenia and bamboo forests. Overall, the surveys yielded 101 identified species. The acoustic method resulted in higher species richness scores compared to the traditional method across all habitats, and the relative performance of the two methods did not vary with habitat type or visibility. The methods detected different species, suggesting that they should be used together to maximise the range of species recorded. We found that habitat type was the primary driver of variation in species richness, with scrub and montane forest having higher species richness scores than other habitats.  相似文献   

15.
Pathogen exposure has been suggested as one of the factors shaping the myriad of migration strategies observed in nature. Two hypotheses relate migration strategies to pathogen infection: the ‘avoiding the tropics hypothesis’ predicts that pathogen prevalence and transmission increase with decreasing non‐breeding (wintering) latitude, while the “habitat selection hypothesis” predicts lower pathogen prevalence in marine than in freshwater habitats. We tested these scarcely investigated hypotheses by screening wintering and resident wading shorebirds (Charadriiformes) for avian malaria blood parasites (Plasmodium and Haemoproteus spp.) along a latitudinal gradient in Australia. We sequenced infections to determine if wintering migrants share malaria parasites with local shorebird residents, and we combined prevalence results with published data in a global comparative analysis. Avian malaria prevalence in Australian waders was 3.56% and some parasite lineages were shared between wintering migrants and residents, suggesting active transmission at wintering sites. In the global dataset, avian malaria prevalence was highest during winter and increased with decreasing wintering latitude, after controlling for phylogeny. The latitudinal gradient was stronger for waders that use marine and freshwater habitats (marine + freshwater) than for marine‐restricted species. Marine + freshwater wader species also showed higher overall avian malaria parasite prevalence than marine‐restricted species. By combining datasets in a global comparative analysis, we provide empirical evidence that migratory waders avoiding the tropics during the non‐breeding season experience a decreased risk of malaria parasite infection. We also find global support for the hypothesis that marine‐restricted shorebirds experience lower parasite pressures than shorebirds that also use freshwater habitats. Our study indicates that pathogen transmission may be an important driver of site selection for non‐breeding migrants, a finding that contributes new knowledge to our understanding of how migration strategies evolve.  相似文献   

16.
A major conservation challenge in mosaic landscapes is to understand how trait‐specific responses to habitat edges affect bird communities, including potential cascading effects on bird functions providing ecosystem services to forests, such as pest control. Here, we examined how bird species richness, abundance and community composition varied from interior forest habitats and their edges into adjacent open habitats, within a multi‐regional sampling scheme. We further analyzed variations in Conservation Value Index (CVI), Community Specialization Index (CSI) and functional traits across the forest‐edge‐open habitat gradient. Bird species richness, total abundance and CVI were significantly higher at forest edges while CSI peaked at interior open habitats, i.e., furthest from forest edge. In addition, there were important variations in trait‐ and species‐specific responses to forest edges among bird communities. Positive responses to forest edges were found for several forest bird species with unfavorable conservation status. These species were in general insectivores, understorey gleaners, cavity nesters and long‐distance migrants, all traits that displayed higher abundance at forest edges than in forest interiors or adjacent open habitats. Furthermore, consistently with predictions, negative edge effects were recorded in some forest specialist birds and in most open‐habitat birds, showing increasing densities from edges to interior habitats. We thus suggest that increasing landscape‐scale habitat complexity would be beneficial to declining species living in mosaic landscapes combining small woodlands and open habitats. Edge effects between forests and adjacent open habitats may also favor bird functional guilds providing valuable ecosystem services to forests in longstanding fragmented landscapes.  相似文献   

17.
Andean montane rain forests are among the most species‐rich terrestrial habitats. Little is known about their insect communities and how these respond to anthropogenic habitat alteration. We investigated exceptionally speciose ensembles of nocturnal tiger moths (Arctiidae) at 15 anthropogenically disturbed sites, which together depict a gradient of forest recovery and six closed‐forest understorey sites in southern Ecuador. At weak light traps we sampled 9211 arctiids, representing 287 species. Arctiid abundance and diversity were highest at advanced succession sites, where secondary scrub or young forest had re‐established, followed by early succession sites, and were lowest, but still high, in mature forest understorey. The proportion of rare species showed the reverse pattern. We ordinated moth samples by non‐metric multidimensional scaling using the chord‐normalized expected species shared index (CNESS) index at various levels of the sample size parameter m. A distinct segregation of arctiid ensembles at succession sites from those in mature forest consistently emerged only at high m‐values. Segregation between ensembles of early vs. late succession stages was also clear at high m values only, and was rather weak. Rare species were responsible for much of the faunal difference along the succession gradient, whereas many common arctiid species occurred in all sites. Matrix correlation tests as well as exploration of relationships between ordination axes and environmental variables revealed the degree of habitat openness, and to a lesser extent, elevation, as best predictors of faunal dissimilarity. Faunal differences were not related to geographical distances between sampling sites. Our results suggest that many of the more common tiger moths of Neotropical montane forests have a substantial recolonization potential at the small spatial scale of our study and accordingly occur also in landscape mosaics surrounding nature reserves. These species contribute to the unexpectedly high diversity of arctiid ensembles at disturbed sites, whereas the proportion of rare species declines outside mature forest.  相似文献   

18.
Aim Migration has been suggested to promote large breeding ranges among birds because of the greater mobility of migratory compared with non‐migratory species, but migration has also been suggested to restrict breeding ranges because of evolutionary constraints imposed by the genetically based migration control programme. We aim to investigate the association between migration and the breeding ranges of both land birds and pelagic birds breeding in the Arctic region. Location The Arctic region. Methods Information on breeding and wintering ranges and migratory status of bird species breeding in the arctic tundra biome was compiled from the literature. The association between breeding range, migration distance and primary winter habitat was tested using multivariate generalized linear models and pair‐wise Mann–Whitney U‐tests. Phylogenetic effects were tested for using Mantel’s permutation tests. Results We found different relationships depending on the species’ major winter habitat. Among birds that are pelagic during winter, long‐distance migrants have the largest breeding ranges, while among terrestrial birds, residents and short‐distance migrants have the largest breeding ranges. Breeding ranges of coastal birds of all migratory distance classes are comparatively restricted. Main conclusions As a new explanation for this pattern we suggest that the possibility of colonizing large winter ranges is a key factor for the subsequent expansion of breeding ranges in arctic bird communities and possibly also in bird communities of other regions of the world. Because of the reversal in the relative extent of continents and oceans between the hemispheres, longitudinally wide winter ranges are more likely for long‐distance than short‐distance migrants among pelagic birds, while the reverse holds true for birds that use terrestrial winter habitats. For coastal birds both continents and oceans form barriers restricting colonization of extensive winter quarters and consequently also of extensive breeding ranges, regardless of the distance to the winter quarters.  相似文献   

19.
It is well documented that irruptive and nomadic migrants move in response to resources that are distributed unpredictably in space, time or both. Increasing evidence, however, suggests that irruptive and nomadic species may use seasonal timing mechanisms to prepare for migrations, despite the more facultative nature of their movements. Here we use data from free‐living and captive Red Crossbills Loxia curvirostra, a typical irruptive nomad, to examine three hypotheses regarding control of facultative migration: (1) the facultative migration hypothesis, which states that both preparation and departure decisions are regulated by resource availability; (2) the seasonal preparation hypothesis, which states that preparation is initiated by seasonal factors (i.e. endogenous rhythms and/or photoperiod) but that departure decisions are dependent on local resource availability; and (3) the seasonal migration hypothesis, which states that both preparation and departure decisions are initiated by seasonal mechanisms and are independent of local food resources. Red Crossbills in North America are thought to make temporally consistent spring migrations in anticipation of conifer cone maturation. In this study, fat deposits of free‐living Red Crossbills peaked in May and June, exceeding even winter deposits. In agreement with the field data, captive birds on a natural photoperiod with constant food and temperature showed a peak in fat deposition and activity levels in June. These findings are consistent with the seasonal preparation and the seasonal migration hypotheses and contribute to a growing literature that suggests that facultative migrants may prepare for movements in similar ways to seasonal migrants.  相似文献   

20.
To determine use of riparian habitats by birds in the northern coniferous forest of British Columbia, we censused birds and vegetation along 500 m transects placed parallel and perpendicular to three second-order streams. Censuses were conducted during spring, summer, autumn, and winter to investigate how use of riparian habitat changed seasonally. Stream-side riparian zones were characterized by a dense understorey of deciduous vegetation not found in the upslope forest. Nine bird species preferred the riparian understorey for breeding, six preferred it only during migration. Neotropical migrants (16 of 46 species) were more closely associated with stream-sides than year-round residents (11 species). Some breeding birds (five species) were significantly negatively associated with riparian habitats. The density of riparian birds declined with distance upstream but did not decline up to 250 m away from the stream. The more extensive riparian areas downstream supported a greater density of birds in all seasons compared to upstream areas, but more species only in spring and autumn. Species that nested in non-riparian areas in summer used riparian habitat in autumn, making riparian corridors in the northern coniferous forest important during migration. Maintaining both riparian and upslope habitats is necessary to preserve species diversity al the landscape level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号