首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We sampled mosquitoes across 18 sites established at different elevations and stretching from the north to the south of Isla Santa Cruz, Galápagos. Two commonly occurring species, Ae. taeniorhynchus and Cx. quinquefasciatus, were collected along with environmental variables characteristic of the trapping sites to assess their influence on mosquito abundance and occurrence in the dry season of 2015. We captured Ae. taeniorhynchus at 14 out of 18 sites and Cx. quinquefasciatus at low and high elevation sites on Santa Cruz. We utilized two generalized linear models; the first assessed the influence of environmental variables on abundances of Ae. taeniorhynchus and the second assessed the influence of these variables on the presence of Cx. quinquefasciatus. Populations of both mosquito species declined with elevation. Rainfall data were limited, as we sampled during the dry season of 2015. Distance to mangroves and maximum humidity were significant in influencing the abundance of Ae. taeniorhynchus, while maximum humidity was found to significantly influence the presence of Cx. quinquefasciatus. Both species occurred in sites where temperature, precipitation, and humidity should allow for mosquito development as well as parasitic development of the protozoan parasites that cause avian malaria. Further research involving year‐round sampling of mosquitoes and accompanying meteorological data as well as experimental studies on vector competence are required to understand disease dynamics of parasites such as avian malaria in Galápagos.  相似文献   

2.
Infectious disease emergence represents a global threat to human, agricultural animal and wildlife health. West Nile virus (WNV) first emerged in the Americas in 1999 following its introduction to New York from the Old World. This flavivirus rapidly spread across much of North America, causing human, equine and avian mortalities and population declines of multiple wild bird species. It has now spread to Central and South America, and there is concern that the virus will reach the Galápagos Islands, a UNESCO World Heritage Site famous for its unique biodiversity, with potentially catastrophic results. Here, we use wild bird surveillance to examine the current WNV status in the Galapagos Islands and around the Ecuadorian city of Guayaquil (the main air and sea port serving Galápagos). We conducted serosurveys of wild birds on three Galápagos Islands (Baltra, San Cristobal and Santa Cruz) with direct transport links to the South American continent. In addition, dead birds killed by car collisions on Santa Cruz were tested for WNV infection. On mainland Ecuador, serosurveys of wild birds were conducted at three sites around Guayaquil. No evidence of WNV seropositivity or infection was detected. Although wider testing is recommended on the mainland, the study highlights a limit of WNV spread within South America. Our results indicate the continued absence of WNV on Galápagos and suggest the current likelihood of human-mediated transport of WNV to Galápagos to be low. The risk of emergence will almost certainly increase over time, however, and stringent biosecurity and surveillance measures should be put in place to minimise the risk of the introduction of WNV (and other alien pathogens) to Galápagos.  相似文献   

3.
On Floreana, the smallest inhabited island in the Galápagos, populations of several species of birds have either been extirpated or, based on anecdotal evidence and small‐scale surveys, are declining. Our objective, therefore, was to conduct a comprehensive survey of landbirds encompassing the entire island during three breeding seasons (2014–2016). We conducted surveys at 59 points in 2014, 257 in 2015, and 295 in 2016. Each survey point was sampled once. We detected 12 species during our surveys. Galápagos Flycatchers, Yellow Warblers, Small and Medium ground‐finches, and Small Tree‐Finches were widely distributed over the entire island. Common Cactus‐Finches and Medium Tree‐Finches had more restricted distributions in the lower or higher parts of the island. Few Dark‐billed Cuckoos (Coccyzus melacoryphus), Paint‐billed Crakes (Neocrex erythrops), Galápagos Doves (Zenaida galapagoensis), and Galápagos Short‐eared Owls (Asio flammeus galapagoensis) were recorded. Small Ground‐Finches and Small Tree‐Finches were found at densities comparable to those on other Galápagos Islands, whereas densities of Galápagos Flycatchers and Yellow Warblers were higher on Floreana than on other islands. Endemic Medium Tree‐Finches were confined to an area of 24 km², mainly in the highlands, but were still widespread and common in their restricted habitat, with the number of territories estimated to be between 3900 and 4700. Of 22 originally occurring landbirds on Floreana, no fewer than 10 species have either been extirpated or are likely to have been extirpated since the arrival of the first human inhabitants. The combined effects of introduced mammals, large‐scale habitat destruction, and direct human persecution were responsible for the extirpation of six species during the 19th century. Three additional species have been extirpated since 1960, likely due to the introduction of the parasitic fly Philornis downsi, and this fly remains a major threat for the remaining bird species. Developing strategies for reducing the impact of these flies on the birds of the Galapagos Islands must be a high priority. In addition, habitat management and restoration, including the control of invasive plants and promotion of native tree species, will be critically important in conserving landbird populations on Floreana.  相似文献   

4.
Aim  To infer the most plausible explanations for the presence of 14 species of the Neotropical cucurbit genus Sicyos on the Hawaiian Islands, two on the Galápagos Islands, two in Australia, and one in New Zealand. Location  Neotropics, the Hawaiian and Galápagos archipelagos, Australia and New Zealand. Methods  We tested long‐problematic generic boundaries in the tribe Sicyoeae and reconstructed the history of Sicyos using plastid and nuclear DNA sequences from 87 species (many with multiple accessions) representing the group’s generic and geographic diversity. Maximum likelihood and Bayesian approaches were used to infer relationships, divergence times, biogeographic history and ancestral traits. Results  Thirteen smaller genera, including Sechium, are embedded in Sicyos, which when re‐circumscribed as a monophyletic group comprises 75 species. The 14 Hawaiian species of Sicyos descended from a single ancestor that arrived c. 3 million years ago (Ma), Galápagos was reached twice at c. 4.5 and 1 Ma, the species in Australia descended from a Neotropical ancestor (c. 2 Ma), and New Zealand was reached from Australia. Time since arrival thus does not correlate with Sicyos species numbers on the two archipelagos. Main conclusions  A plausible mechanism for the four trans‐Pacific dispersal events is adherence to birds of the tiny hard fruit with retrorsely barbed spines found in those lineages that underwent long‐distance migrations. The Hawaiian clade has lost these spines, resulting in a lower dispersal ability compared with the Galápagos and Australian lineages, and perhaps favouring allopatric speciation.  相似文献   

5.
6.
We report eight novel microsatellite loci for Colpocephalum turbinatum, a parasitic louse of the endangered Galápagos hawk (Buteo galapagoensis). Two island populations of C. turbinatum (N = 30) were genotyped for each locus. We found between two and 12 alleles per locus, polymorphic information content from 0.268 to 0.798, observed heterozygosity from 0.067 to 0.667 and no linkage disequilibrium was detected between loci. These markers will be useful in understanding contemporary gene flow of C. turbinatum among islands in the Galápagos and in understanding transmission dynamics between B. galapagoensis hosts, within and between social groups. Because this louse is unusually widespread among avian host taxa, parasitizing at least 53 bird species in the Falconiformes, Strigiformes and Columbiformes, these markers are likely to be useful outside the context of the Galápagos Islands.  相似文献   

7.
This study puts together genetic data and an approximate bayesian computation (ABC) approach to infer the time at which the tree Geoffroea spinosa colonized the Galápagos Islands. The genetic diversity and differentiation between Peru and Galápagos population samples, estimated using three chloroplast spacers and six microsatellite loci, reveal significant differences between two mainland regions separated by the Andes mountains (Inter Andean vs. Pacific Coast) as well as a significant genetic differentiation of island populations. Microsatellites identify two distinct geographical clusters, the Galápagos and the mainland, and chloroplast markers show a private haplotype in the Galápagos. The nuclear distinctiveness of the Inter Andean populations suggests current restricted pollen flow, but chloroplast points to cross‐Andean dispersals via seeds, indicating that the Andes might not be an effective biogeographical barrier. The ABC analyses clearly point to the colonization of the Galápagos within the last 160 000 years and possibly as recently as 4750 years ago (475 generations). Founder events associated with colonization of the two islands where the species occurs are detected, with Española having been colonized after Floreana. We discuss two nonmutually exclusive possibilities for the colonization of the Galápagos, recent natural dispersal vs. human introduction.  相似文献   

8.
The diatoms (Bacillariophyta) from a coastal lagoon from the Diablas wetlands (Isla Isabela, the Galápagos Islands) were studied in material from surface samples and a sediment core spanning the past 2,700 years in order to examine evidence of diatom evolution under geographic isolation. The total number of taxa found was ~100. Ultrastructural variation in valve morphology between members of Galápagos taxa was used to describe 10 species from the genus Navicula sensu stricto, which are new to science. Four taxa: N. isabelensis, N. isabelensoides, N. isabelensiformis, and N. isabelensiminor, shared several key characteristics that may be indicative of a common evolutionary heritage; these species therefore provide possible evidence for the in situ evolution of diatoms in the Galápagos coastal lagoons. Shared morphological characteristics include: (i) stria patterning in the central area, (ii) an elevated and thickened external raphe‐sternum, (iii) external central raphe endings that are slightly deflected toward the valve primary side, and (iv) an arched valve surface. To explain these findings, two models were proposed. The first suggested limited lateral diatomaceous transport of Navicula species between the Galápagos and continental South America. Alternatively, these new species may be ecological specialists arising from the unique environmental conditions of the Galápagos coastal lagoons, which restrict the colonization of common diatom taxa and enable the establishment of novel, rare species. The Diablas wetlands are an important site for diatom research, where local‐scale environmental changes have combined with global‐scale biogeographic processes resulting in unique diatom assemblages.  相似文献   

9.
Avian malaria (Plasmodium spp.) has been implicated in the decline of avian populations in the Hawaiian Islands and it is generally agreed that geographically isolated and immunologically naïve bird populations are particularly vulnerable to the pathogenic effects of invasive malaria parasites. In order to assess the potential disease risk of malaria to the avifauna of Socorro Island, México, we surveyed for Plasmodium isolates from 1,300 resident field‐caught mosquitoes. Most of them were identified as Aedes (Ochlerotatus) taeniorhynchus (Wiedemann, 1821), which were abundant in the salt marshes. We also collected Culex quinquefasciatus Say, 1823 close to human dwellings. Mitochondrial ND5 and COII gene sequences of Ae. taeniorhynchus were analyzed and compared to corresponding sequences of mosquitoes of the Galápagos Islands, Latin America, and the North American mainland. Aedes lineages from Socorro Island clustered most closely with a lineage from the continental U.S. Plasmodium spp. DNA was isolated from both species of mosquitoes. From 38 positive pools, we isolated 11 distinct mitochondrial Cytb lineages of Plasmodium spp. Seven of the Plasmodium lineages represent previously documented avian infective strains while four were new lineages. Our results confirm a potential risk for the spread of avian malaria and underscore the need to monitor both the mosquito and avian populations as a necessary conservation measure to protect endangered bird species on Socorro Island.  相似文献   

10.
The Galápagos Islands constitute one of the most pristine tropical systems on Earth. However, the complex and fragile equilibrium of native species is threatened by invasive species, among which is one of the most successful ants in the world, the tropical fire ant, Solenopsis geminata. We characterized the genetic structure and diversity of populations of S. geminata in the Galápagos Islands and unravelled the archipelago colonization by combining Bayesian clustering methods and coalescent-based scenario testing. Using 12 microsatellite markers and one mitochondrial DNA fragment (COI), we analysed individuals collected in all main invaded islands of the archipelago and from the native areas in Costa Rica and mainland Ecuador. We also used mitochondrial DNA to infer evolutionary relationships of samples collected in Galápagos Islands, Ecuador, Costa Rica and other Latin American countries. Our results showed that genetic diversity was significantly lower in Galápagos Islands and mainland Ecuador populations when compared to Costa Rican populations, and that samples from Galápagos Islands and mainland Ecuador (Guayaquil) clustered in a single group and all share a single mtDNA haplotype. Approximate Bayesian Computation favoured a scenario assuming that populations from Galápagos Islands diverged from mainland Ecuador. The city of Guyaquil, an obligatory hub for tourism and trade, could act as a bridgehead.  相似文献   

11.
Giant tortoises were once a megafaunal element widespread in tropical and subtropical ecosystems. The role of giant tortoises as herbivores and seed dispersers, however, is poorly known. We evaluated tortoise impacts on Opuntia cactus (Cactaceae) in the Galápagos Islands, one of the last areas where giant tortoises remain extant, where the cactus is a keystone resource for many animals. We contrasted cactus populations immediately inside and outside natural habitats where tortoises had been held captive for several decades. Through browsing primarily and trampling secondarily tortoises strongly reduced densities of small (0.5–1.5 m high) cacti, especially near adult cacti, and thereby reduced densities of cacti in larger size classes. Tortoises also caused a shift from vegetative to sexual modes of reproduction in cacti. We conclude that giant tortoises promote a sparse and scattered distribution in Opuntia cactus and its associated biota in the Galápagos Islands.  相似文献   

12.
This supplement to a bibliography published in 1973 lists 112 new references on Galápagos botany. The availability of accurate information in a new flora of the Galápagos Islands has brought about an increase in botanical research. Very little new work has been done on cryptogams. Many recent studies concentrate on ecology and conservation of the unique Galápagos plants.  相似文献   

13.
Notes on the Poaceae of the Robinson Crusoe (Juan Fernández) Islands, Chile, Brittonia 54: 154–163. 2001.—Poaceae in the Robinson Crusoe (=Juan Fernández) Islands number 53 species in 32 genera, of which 9% of the species are endemic, 9% indigenous, and 81% adventitious. The endemic taxa (and their conservation status) are:Agrostis masafuerana (rare),Chusquea fernandeziana (not endangered),Megalachne berteroana (not endangered),M. masafuerana (not endangered), andPodophorus bromoides (extinct).Megalachne andPodophorus are endemic genera. Comparisons with Poaceae in the Bonin and Volcano Islands, Canary Islands, Galápagos Islands, and Hawaiian Islands show different levels of endemism: number of endemic taxa, respectively, 5, 10, 12, 40; percent specific endemism, 8, 6, 21, 19. No endemic genera occur.Anthoxanthum odoratum, Avena barbata andHordeum murinum are noxious weeds in the Robinson Crusoe Islands. Many adventives are shared among floras of the archipelagos, with the highest ties of Robinson Crusoe being to the Canaries (53% of total Poaceae known in Juan Fernández) and the Hawaiian Islands (47%). Low levels of adventives occur within the Bonin (5%) and Galápagos (7%) Islands. In contrast, there are many endemic genera of Asteraceae in these same archipelagos: Bonin and Volcano Islands (1), Canary Islands (8), Galápagos Islands (5), and Hawaiian Islands (6); percent of specific endemism is also higher (20, 53, 54 and 56, respectively). Hypotheses for greater levels of endemics among oceanic island Asteraceae include more efficient dispersal mechanisms by wind and birds, animal pollination systems that result in greater degrees of geographic populational genetic isolation, and a vascular cambium that offers enhanced growth-form evolutionary opportunities.  相似文献   

14.
Since nobody has witnessed the arrival of early plant colonists on isolated islands, the actual long‐distance dispersal (hereafter LDD) has historically been a matter of speculation. In the present study, we offer a new approach that evaluates whether particular syndromes for LDD (i.e. the set of traits related to diaspore dispersal by animals, wind and sea currents) have been favourable in the natural colonization of the Galápagos Islands by plants. Dispersal syndromes of the 251 native genera (509 angiosperm species) presently acknowledged as native were carefully studied, combining data from floristic lists of the Galápagos Islands, diaspore traits, characteristics of continental relatives and our own observations. We used these genera (and occasionally infrageneric groups) as the working units to infer the number of introductions and colonists. A final number of native plants was inferred and analysed after correcting by pollen records of six species from six genera previously considered exotic (palaeobotanical correction). The number of early colonists was also corrected by incorporating information from the few (n= 12) phylogenetic studies of genera from both the Galápagos Islands and the Americas (phylogenetic correction). A total of 372 colonization events were inferred for the native flora using the latest check‐list. The proportions of native colonists grouped into five categories were: endozoochory 16.4%, epizoochory 15.7%, hydrochory 18.6%, anemochory 13.3%, and unassisted diaspores 36.0%. These figures did not vary significantly on analysing only the 99 genera that include endemic species in order to rule out any human‐mediated introductions. Irrespective of the roles of the different agents involved in LDD, diaspores with no special syndrome for LDD (unassisted diapores), such as many dry fruits, have been successful in reaching and colonizing the Galápagos archipelago. This finding leads us to suggest that unpredictable and so far unknown LDD mechanisms should be further considered in the theory of island biogeography.  相似文献   

15.
This study reports the first records of cowsharks (Hexanchidae) in the Galápagos Islands, in particular Notorynchus cepedianus and Hexanchus griseus, observed between depths of 210 and 418 m on footage from free-falling autonomous deep-ocean cameras. These sightings provide new information on the habitat preferences and range distribution for N. cepedianus and the first records of H. griseus in Ecuadorian waters. The findings support the formulation of regional conservation strategies for these large apex predator species and highlight the limited biological knowledge of Galápagos' deep-water ecosystems.  相似文献   

16.
Heterostylous reproductive systems are usually absent on oceanic island. Self-compatibility would, generally, be advantageous for long-distance dispersing species, as it provides reproductive assurance when density of mates is low. The heterostylous reproductive system, often associated with an incompatibility system, may be a constraint on the colonization of remote habitats. It is, therefore, surprising that the distylous shrub Waltheria ovata has colonized all of the Galápagos Islands, situated more than a thousand kilometres off the shore of Ecuador. The present study confirmed the reciprocal herkogamy of W. ovata. A comparison of mainland and the Galápagos Island populations showed a reduction in flower size, including distance between anthers and stigmas and size of anthers on the islands. Some reductions are quite large but not significantly different, mainly due to a high degree of variation among populations on the islands. The pin morph of W. ovata has undergone the most radical adaptive changes in morphology. Pollination experiments of W. ovata disclosed a leak in the incompatibility system on the Galápagos Islands, allowing higher selfing rates as well as intra-morph seed set compared to the mainland populations. This was most pronounced in the thrum morph. The deficient distylous reproductive system may be an adaptation to a pollinator and mate sparse environment on the Galápagos Islands. We conclude that the heterostylous mating system has changed in response to colonization of the Galápagos Islands, giving room for reproductive assurance by seed set after selfings and intra-morph pollinations.  相似文献   

17.
We investigated the effect of West Nile virus (WNV) infection on survival in two colonies of Culex pipiens quinquefasciatus Say (Diptera: Culicidae) originating from Vero Beach and Gainesville, FL. Mosquitoes were fed West Nile virus‐infected blood and checked daily for survival. Exposure to WNV decreased survival among Cx. p. quinquefasciatus from Gainesville relative to unexposed individuals at 31° C. In contrast, exposure to WNV enhanced survival among Cx. p. quinquefasciatus from Vero Beach relative to unexposed individuals at 27° C. These results may suggest that exposure to WNV and associated infection could increase or decrease components of fitness, dependent on environmental temperature and intraspecific variation in Cx. p. quinquefasciatus. The relationship between lifespan (time of death in days) and WNV titer differed in the colonies at 31° C and 27° C, suggesting that intraspecific species variation in response to temperature impacts interactions with WNV. While further work is needed to determine if similar effects occur under field conditions, this suggests intraspecific variation in vector competence for WNV and adult survival of Cx. p. quinquefasciatus, both aspects of vectorial capacity.  相似文献   

18.
In the traditional biogeographic model, the Galápagos Islands appeared a few million years ago in a sea where no other islands existed and were colonized from areas outside the region. However, recent work has shown that the Galápagos hotspot is 139 million years old (Early Cretaceous), and so groups are likely to have survived at the hotspot by dispersal of populations onto new islands from older ones. This process of metapopulation dynamics means that species can persist indefinitely in an oceanic region, as long as new islands are being produced. Metapopulations can also undergo vicariance into two metapopulations, for example at active island arcs that are rifted by transform faults. We reviewed the geographic relationships of Galápagos groups and found 10 biogeographic patterns that are shared by at least two groups. Each of the patterns coincides spatially with a major tectonic structure; these structures include: the East Pacific Rise; west Pacific and American subduction zones; large igneous plateaus in the Pacific; Alisitos terrane (Baja California), Guerrero terrane (western Mexico); rifting of North and South America; formation of the Caribbean Plateau by the Galápagos hotspot, and its eastward movement; accretion of Galápagos hotspot tracks; Andean uplift; and displacement on the Romeral fault system. All these geological features were active in the Cretaceous, suggesting that geological change at that time caused vicariance in widespread ancestors. The present distributions are explicable if ancestors survived as metapopulations occupying both the Galápagos hotspot and other regions before differentiating, more or less in situ.  相似文献   

19.
1. We investigated ant communities in all main vegetation zones of the model island of Santa Cruz in the Galápagos archipelago (155 collection points, spread over 21 sites; 28 ant species collected), and evaluated the distribution, coexistence, and effect of environmental factors in a community composed of endemic, probably endemic, and introduced ants of the New World and exotic origin. 2. Introduced species were the most frequent, occurring in 98% of the samples, yet endemic and probably endemic species still occurred in 54% of the samples, and constituted one of three most common species. The present study revealed that the habitat type along with altitude and the tree cover are the primary factors shaping ant community composition. Little evidence was found for a competitively structured assemblage of ant species. 3. The present study confirmed the predominance of two dominant invasive species, Solenopsis geminata Fabricius and Wasmannia auropunctata Roger, whose abundances are negatively correlated. The abundance of S. geminata is positively correlated with the overall species richness, and with the proportion of other introduced species. The presence of both invasive ants is associated with a low evenness of ant communities. 4. The present study (i) stresses the dominance of introduced species and the relative resistance of endemic species, (ii) highlights the on‐going processes of species introductions and (iii) points out the need for adequate monitoring and conservation of the pristine and threatened environments that constitute the Galápagos Islands.  相似文献   

20.
Human activity has facilitated the introduction of a number of alien mammal species to the Galápagos Archipelago. Understanding the phylogeographic history and population genetics of invasive species on the Archipelago is an important step in predicting future spread and designing effective management strategies. In this study, we describe the invasion pathway of Rattus rattus across the Galápagos using microsatellite data, coupled with historical knowledge. Microsatellite genotypes were generated for 581 R. rattus sampled from 15 islands in the archipelago. The genetic data suggest that there are at least three genetic lineages of R. rattus present on the Galápagos Islands. The spatial distributions of these lineages correspond to the main centers of human settlement in the archipelago. There was limited admixture among these three lineages, and these finding coupled with low rates of gene flow among island populations suggests that interisland movement of R. rattus is rare. The low migration among islands recorded for the species will have a positive impact on future eradication efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号