共查询到20条相似文献,搜索用时 0 毫秒
1.
Philip D. Lamb Ewan Hunter John K. Pinnegar Simon Creer Richard G. Davies Martin I. Taylor 《Molecular ecology》2019,28(2):420-430
Metabarcoding has been used in a range of ecological applications such as taxonomic assignment, dietary analysis and the analysis of environmental DNA. However, after a decade of use in these applications there is little consensus on the extent to which proportions of reads generated corresponds to the original proportions of species in a community. To quantify our current understanding, we conducted a structured review and meta‐analysis. The analysis suggests that a weak quantitative relationship may exist between the biomass and sequences produced (slope = 0.52 ± 0.34, p < 0.01), albeit with a large degree of uncertainty. None of the tested moderators, sequencing platform type, the number of species used in a trial or the source of DNA, were able to explain the variance. Our current understanding of the factors affecting the quantitative performance of metabarcoding is still limited: additional research is required before metabarcoding can be confidently utilized for quantitative applications. Until then, we advocate the inclusion of mock communities when metabarcoding as this facilitates direct assessment of the quantitative ability of any given study. 相似文献
2.
3.
4.
5.
Terrestrial arthropods comprise the most species‐rich communities on Earth, and grassland flowers provide resources for hundreds of thousands of arthropod species. Diverse grassland ecosystems worldwide are threatened by various types of environmental change, which has led to decline in arthropod diversity. At the same time, monitoring grassland arthropod diversity is time‐consuming and strictly dependent on declining taxonomic expertise. Environmental DNA (eDNA) metabarcoding of complex samples has demonstrated that information on species compositions can be efficiently and non‐invasively obtained. Here, we test the potential of wild flowers as a novel source of arthropod eDNA. We performed eDNA metabarcoding of flowers from several different plant species using two sets of generic primers, targeting the mitochondrial genes 16S rRNA and COI. Our results show that terrestrial arthropod species leave traces of DNA on the flowers that they interact with. We obtained eDNA from at least 135 arthropod species in 67 families and 14 orders, together representing diverse ecological groups including pollinators, parasitoids, gall inducers, predators, and phytophagous species. Arthropod communities clustered together according to plant species. Our data also indicate that this experiment was not exhaustive, and that an even higher arthropod richness could be obtained using this eDNA approach. Overall, our results demonstrate that it is possible to obtain information on diverse communities of insects and other terrestrial arthropods from eDNA metabarcoding of wild flowers. This novel source of eDNA represents a vast potential for addressing fundamental research questions in ecology, obtaining data on cryptic and unknown species of plant‐associated arthropods, as well as applied research on pest management or conservation of endangered species such as wild pollinators. 相似文献
6.
Frédéric Boyer Céline Mercier Aurélie Bonin Yvan Le Bras Pierre Taberlet Eric Coissac 《Molecular ecology resources》2016,16(1):176-182
DNA metabarcoding offers new perspectives in biodiversity research. This recently developed approach to ecosystem study relies heavily on the use of next‐generation sequencing (NGS) and thus calls upon the ability to deal with huge sequence data sets. The obitools package satisfies this requirement thanks to a set of programs specifically designed for analysing NGS data in a DNA metabarcoding context. Their capacity to filter and edit sequences while taking into account taxonomic annotation helps to set up tailor‐made analysis pipelines for a broad range of DNA metabarcoding applications, including biodiversity surveys or diet analyses. The obitools package is distributed as an open source software available on the following website: http://metabarcoding.org/obitools . A Galaxy wrapper is available on the GenOuest core facility toolshed: http://toolshed.genouest.org . 相似文献
7.
Avery McCarthy Hoda Rajabi Beverly McClenaghan Nicole A. Fahner Emily Porter Gregory A. C. Singer Mehrdad Hajibabaei 《Molecular ecology resources》2023,23(3):581-591
Environmental DNA (eDNA)-based methods of species detection are enabling various applications in ecology and conservation including large-scale biomonitoring efforts. qPCR is widely used as the standard approach for species-specific detection, often targeting a fish species of interest from aquatic eDNA. However, DNA metabarcoding has the potential to displace qPCR in certain eDNA applications. In this study, we compare the sensitivity of the latest Illumina NovaSeq 6000 NGS platform to qPCR TaqMan assays by measuring limits of detection and by analysing eDNA from water samples collected from Churchill River and Lake Melville, NL, Canada. Species-specific, targeted next generation sequencing (NGS) assays had significantly higher sensitivity than qPCR, with limits of detection 14- to 29-fold lower. For example, when analysing eDNA, qPCR detected Gadus ogac (Greenland cod) in 21% of samples, but targeted NGS detected this species in 29% of samples. General NGS assays were as sensitive as qPCR, while simultaneously detecting 15 fish species from eDNA samples. With over 34,000 fish species on the planet, parallel and sensitive methods such as NGS will be required to support effective biomonitoring at both regional and global scales. 相似文献
8.
DNA metabarcoding for diet analysis and biodiversity: A case study using the endangered Australian sea lion (Neophoca cinerea) 下载免费PDF全文
Tina E. Berry Sylvia K. Osterrieder Dáithí C. Murray Megan L. Coghlan Anthony J. Richardson Alicia K. Grealy Michael Stat Lars Bejder Michael Bunce 《Ecology and evolution》2017,7(14):5435-5453
The analysis of apex predator diet has the ability to deliver valuable insights into ecosystem health, and the potential impacts a predator might have on commercially relevant species. The Australian sea lion (Neophoca cinerea) is an endemic apex predator and one of the world's most endangered pinnipeds. Given that prey availability is vital to the survival of top predators, this study set out to understand what dietary information DNA metabarcoding could yield from 36 sea lion scats collected across 1,500 km of its distribution in southwest Western Australia. A combination of PCR assays were designed to target a variety of potential sea lion prey, including mammals, fish, crustaceans, cephalopods, and birds. Over 1.2 million metabarcodes identified six classes from three phyla, together representing over 80 taxa. The results confirm that the Australian sea lion is a wide‐ranging opportunistic predator that consumes an array of mainly demersal fauna. Further, the important commercial species Sepioteuthis australis (southern calamari squid) and Panulirus cygnus (western rock lobster) were detected, but were present in <25% of samples. Some of the taxa identified, such as fish, sharks and rays, clarify previous knowledge of sea lion prey, and some, such as eel taxa and two gastropod species, represent new dietary insights. Even with modest sample sizes, a spatial analysis of taxa and operational taxonomic units found within the scat shows significant differences in diet between many of the sample locations and identifies the primary taxa that are driving this variance. This study provides new insights into the diet of this endangered predator and confirms the efficacy of DNA metabarcoding of scat as a noninvasive tool to more broadly define regional biodiversity. 相似文献
9.
Tom Oosting Elena Hilario Maren Wellenreuther Peter A. Ritchie 《Ecology and evolution》2020,10(16):8643-8651
The more demanding requirements of DNA preservation for genomic research can be difficult to meet when field conditions limit the methodological approaches that can be used or cause samples to be stored in suboptimal conditions. Such limitations may increase rates of DNA degradation, potentially rendering samples unusable for applications such as genome‐wide sequencing. Nonetheless, little is known about the impact of suboptimal sampling conditions. We evaluated the performance of two widely used preservation solutions (1. DESS: 20% DMSO, 0.25 M EDTA, NaCl saturated solution, and 2. Ethanol >99.5%) under a range of storage conditions over a three‐month period (sampling at 1 day, 1 week, 2 weeks, 1 month, and 3 months) to provide practical guidelines for DNA preservation. DNA degradation was quantified as the reduction in average DNA fragment size over time (DNA fragmentation) because the size distribution of DNA segments plays a key role in generating genomic datasets. Tissues were collected from a marine teleost species, the Australasian snapper, Chrysophrys auratus. We found that the storage solution has a strong effect on DNA preservation. In DESS, DNA was only moderately degraded after three months of storage while DNA stored in ethanol showed high levels of DNA degradation already within 24 hr, making samples unsuitable for next‐generation sequencing. Here, we conclude that DESS was the most promising solution when storing samples for genomic applications. We recognize that the best preservation protocol is highly dependent on the organism, tissue type, and study design. We highly recommend performing similar experiments before beginning a study. This study highlights the importance of testing sample preservation protocols and provides both practical and economical advice to improve DNA preservation when sampling for genome‐wide applications. 相似文献
10.
Ken Kraaijeveld Letty A. de Weger Marina Ventayol García Henk Buermans Jeroen Frank Pieter S. Hiemstra Johan T. den Dunnen 《Molecular ecology resources》2015,15(1):8-16
Pollen monitoring is an important and widely used tool in allergy research and creation of awareness in pollen‐allergic patients. Current pollen monitoring methods are microscope‐based, labour intensive and cannot identify pollen to the genus level in some relevant allergenic plant groups. Therefore, a more efficient, cost‐effective and sensitive method is needed. Here, we present a method for identification and quantification of airborne pollen using DNA sequencing. Pollen is collected from ambient air using standard techniques. DNA is extracted from the collected pollen, and a fragment of the chloroplast gene trnL is amplified using PCR. The PCR product is subsequently sequenced on a next‐generation sequencing platform (Ion Torrent). Amplicon molecules are sequenced individually, allowing identification of different sequences from a mixed sample. We show that this method provides an accurate qualitative and quantitative view of the species composition of samples of airborne pollen grains. We also show that it correctly identifies the individual grass genera present in a mixed sample of grass pollen, which cannot be achieved using microscopic pollen identification. We conclude that our method is more efficient and sensitive than current pollen monitoring techniques and therefore has the potential to increase the throughput of pollen monitoring. 相似文献
11.
A. Bush Z. Compson N. K. Rideout B. Levenstein M. Kattilakoski M. Hajibabaei W. A. Monk M. T. G. Wright D. J. Baird 《Molecular ecology resources》2023,23(6):1275-1287
The delivery of consistent and accurate fine-resolution data on biodiversity using metabarcoding promises to improve environmental assessment and research. Whilst this approach is a substantial improvement upon traditional techniques, critics note that metabarcoding data are suitable for establishing taxon occurrence, but not abundance. We propose a novel hierarchical approach to recovering abundance information from metabarcoding, and demonstrate this technique using benthic macroinvertebrates. To sample a range of abundance structures without introducing additional changes in composition, we combined seasonal surveys with fish-exclusion experiments at Catamaran Brook in northern New Brunswick, Canada. Five monthly surveys collected 31 benthic samples for DNA metabarcoding divided between caged and control treatments. A further six samples per survey were processed using traditional morphological identification for comparison. By estimating the probability of detecting a single individual, multispecies abundance models infer changes in abundance based on changes in detection frequency. Using replicate detections of 184 genera (and 318 species) from metabarcoding samples, our analysis identified changes in abundance arising from both seasonal dynamics and the exclusion of fish predators. Counts obtained from morphological samples were highly variable, a feature that limited the opportunity for more robust comparison, and emphasizing the difficulty standard methods also face to detect changes in abundance. Our approach is the first to demonstrate how quantitative estimates of abundance can be made using metabarcoding, both among species within sites as well as within species among sites. Many samples are required to capture true abundance patterns, particularly in streams where counts are highly variable, but few studies can afford to process entire samples. Our approach allows study of responses across whole communities, and at fine taxonomic resolution. We discuss how ecological studies can use additional sampling to capture changes in abundance at fine resolution, and how this can complement broad-scale biomonitoring using DNA metabarcoding. 相似文献
12.
插入位点分析对于金针菇功能基因组学的研究极为重要,分析方法常用反向PCR、热不对称交错PCR、Tail-PCR、染色体步移等,存在操作复杂、消耗时间长、特异性较差、效率低等缺点。近年来开始应用基因组重测序的方法,对转化子逐一测序与分析,工作量较大、费用较高。本研究应用矩阵设计,把多个转化子的DNA混合构成样品池,重测序后分析插入位点,M个样品池的测序数据可分析M×(M+1)/2个转化子的插入位点。应用矩阵设计构建6个样品池检测21个转化子,获得21个插入位点,表明这种方法可行、适合大样本分析,如突变体库。 相似文献
13.
14.
Josianne C. S. Rosa Angus Morrison‐Saunders Michael Hughes Luis E. Snchez 《Restoration Ecology》2020,28(4):937-946
Mining companies are expected to return land to a stable, productive, and self‐sustaining condition by rehabilitating degraded areas to also deliver social benefits, an essential dimension of sustainable land management. This research aimed to develop a framework for mine rehabilitation planning based on an integrated analysis of the social‐ecological system provided by the ecosystem services concept to facilitate community engagement and the delivery of social benefits. An Ecosystem Services Assessment for Rehabilitation framework was tested at two bauxite mines undergoing ecological restoration. The mines are operated by the same company in two countries. Key results showed that the framework can help companies, regulators, and community members alike identify whether biophysical restoration efforts translate into key human benefits. Overall the framework provides a means for enhancing community engagement to explicitly address social benefits that, with a business as usual focus on ecological goals, may not be delivered. The ecosystem services concept provides a practical approach to link ecological and social outcomes of mine restoration. 相似文献
15.
Joanne E. Littlefair Axel Zander Clara de Sena Costa Elizabeth L. Clare 《Molecular ecology》2019,28(2):281-292
Resource variation along abiotic gradients influences subsequent trophic interactions and these effects can be transmitted through entire food webs. Interactions along abiotic gradients can provide clues as to how organisms will face changing environmental conditions, such as future range shifts. However, it is challenging to find replicated systems to study these effects. Phytotelmata, such as those found in carnivorous plants, are isolated aquatic communities and thus form a good model for the study of replicated food webs. Due to the degraded nature of the prey, molecular techniques provide a useful tool to study these communities. We studied the pitcher plant Sarracenia purpurea L. in allochthonous populations along an elevational gradient in the Alps and Jura. We predicted that invertebrate richness in the contents of the pitcher plants would decrease with increasing elevation, reflecting harsher environmental conditions. Using metabarcoding of the COI gene, we sequenced the invertebrate contents of these pitcher plants. We assigned Molecular Operational Taxonomic Units at ordinal level as well as recovering species‐level data. We found small but significant changes in community composition with elevation. These recovered sequences could belong to invertebrate prey, rotifer inquilines, pollinators and other animals possibly living inside the pitchers. However, we found no directional trend or site‐based differences in MOTU richness with elevational gradient. Use of molecular techniques for dietary or contents analysis is a powerful way to examine numerous degraded samples, although factors such as DNA persistence and the relationship with species presence still have to be completely determined. 相似文献
16.
Genetic monitoring of open ocean biodiversity: An evaluation of DNA metabarcoding for processing continuous plankton recorder samples 下载免费PDF全文
Bruce E. Deagle Laurence J. Clarke John A. Kitchener Andrea M. Polanowski Andrew T. Davidson 《Molecular ecology resources》2018,18(3):391-406
DNA metabarcoding is an efficient method for measuring biodiversity, but the process of initiating long‐term DNA‐based monitoring programmes, or integrating with conventional programs, is only starting. In marine ecosystems, plankton surveys using the continuous plankton recorder (CPR) have characterized biodiversity along transects covering millions of kilometres with time‐series spanning decades. We investigated the potential for use of metabarcoding in CPR surveys. Samples (n = 53) were collected in two Southern Ocean transects and metazoans identified using standard microscopic methods and by high‐throughput sequencing of a cytochrome c oxidase subunit I marker. DNA increased the number of metazoan species identified and provided high‐resolution taxonomy of groups problematic in conventional surveys (e.g., larval echinoderms and hydrozoans). Metabarcoding also generally produced more detections than microscopy, but this sensitivity may make cross‐contamination during sampling a problem. In some samples, the prevalence of DNA from large plankton such as krill masked the presence of smaller species. We investigated adding a fixed amount of exogenous DNA to samples as an internal control to allow determination of relative plankton biomass. Overall, the metabarcoding data represent a substantial shift in perspective, making direct integration into current long‐term time‐series challenging. We discuss a number of hurdles that exist for progressing DNA metabarcoding from the current snapshot studies to the requirements of a long‐term monitoring programme. Given the power and continually increasing efficiency of metabarcoding, it is almost certain this approach will play an important role in future plankton monitoring. 相似文献
17.
eDNA metabarcoding: a promising method for anuran surveys in highly diverse tropical forests 下载免费PDF全文
Carla M. Lopes Thais Sasso Alice Valentini Tony Dejean Marcio Martins Kelly R. Zamudio Célio F. B. Haddad 《Molecular ecology resources》2017,17(5):904-914
Understanding the geographical distribution and community composition of species is crucial to monitor species persistence and define effective conservation strategies. Environmental DNA (eDNA) has emerged as a powerful noninvasive tool for species detection. However, most eDNA survey methods have been developed and applied in temperate zones. We tested the feasibility of using eDNA to survey anurans in tropical streams in the Brazilian Atlantic forest and compared the results with short‐term visual and audio surveys. We detected all nine species known to inhabit our focal streams with one single visit for eDNA sampling. We found a higher proportion of sequence reads and larger number of positive PCR replicates for more common species and for those with life cycles closely associated with the streams, factors that may contribute to increased release of DNA in the water. However, less common species were also detected in eDNA samples, demonstrating the detection power of this method. Filtering larger volumes of water resulted in a higher probability of detection. Our data also show it is important to sample multiple sites along streams, particularly for detection of target species with lower population densities. For the three focal species in our study, the eDNA metabarcoding method had a greater capacity of detection per sampling event than our rapid field surveys, and thus, has the potential to circumvent some of the challenges associated with traditional approaches. Our results underscore the utility of eDNA metabarcoding as an efficient method to survey anuran species in tropical streams of the highly biodiverse Brazilian Atlantic forest. 相似文献
18.
Ida Bærholm Schnell Kristine Bohmann M. Thomas P. Gilbert 《Molecular ecology resources》2015,15(6):1289-1303
Metabarcoding of environmental samples on second‐generation sequencing platforms has rapidly become a valuable tool for ecological studies. A fundamental assumption of this approach is the reliance on being able to track tagged amplicons back to the samples from which they originated. In this study, we address the problem of sequences in metabarcoding sequencing outputs with false combinations of used tags (tag jumps). Unless these sequences can be identified and excluded from downstream analyses, tag jumps creating sequences with false, but already used tag combinations, can cause incorrect assignment of sequences to samples and artificially inflate diversity. In this study, we document and investigate tag jumping in metabarcoding studies on Illumina sequencing platforms by amplifying mixed‐template extracts obtained from bat droppings and leech gut contents with tagged generic arthropod and mammal primers, respectively. We found that an average of 2.6% and 2.1% of sequences had tag combinations, which could be explained by tag jumping in the leech and bat diet study, respectively. We suggest that tag jumping can happen during blunt‐ending of pools of tagged amplicons during library build and as a consequence of chimera formation during bulk amplification of tagged amplicons during library index PCR. We argue that tag jumping and contamination between libraries represents a considerable challenge for Illumina‐based metabarcoding studies, and suggest measures to avoid false assignment of tag jumping‐derived sequences to samples. 相似文献
19.
Ramn Gallego Emily Jacobs-Palmer Kelly Cribari Ryan P. Kelly 《Proceedings. Biological sciences / The Royal Society》2020,287(1940)
Studies of the ecological effects of global change often focus on one or a few species at a time. Consequently, we know relatively little about the changes underway at real-world scales of biological communities, which typically have hundreds or thousands of interacting species. Here, we use COI mtDNA amplicons from monthly samples of environmental DNA to survey 221 planktonic taxa along a gradient of temperature, salinity, dissolved oxygen and carbonate chemistry in nearshore marine habitat. The result is a high-resolution picture of changes in ecological communities using a technique replicable across a wide variety of ecosystems. We estimate community-level differences associated with time, space and environmental variables, and use these results to forecast near-term community changes due to warming and ocean acidification. We find distinct communities in warmer and more acidified conditions, with overall reduced richness in diatom assemblages and increased richness in dinoflagellates. Individual taxa finding more suitable habitat in near-future waters are more taxonomically varied and include the ubiquitous coccolithophore Emiliania huxleyi and the harmful dinoflagellate Alexandrium sp. These results suggest foundational changes for nearshore food webs under near-future conditions. 相似文献
20.
Kristy Deiner Holly M. Bik Elvira Mächler Mathew Seymour Anaïs Lacoursière‐Roussel Florian Altermatt Simon Creer Iliana Bista David M. Lodge Natasha de Vere Michael E. Pfrender Louis Bernatchez 《Molecular ecology》2017,26(21):5872-5895
The genomic revolution has fundamentally changed how we survey biodiversity on earth. High‐throughput sequencing (“HTS”) platforms now enable the rapid sequencing of DNA from diverse kinds of environmental samples (termed “environmental DNA” or “eDNA”). Coupling HTS with our ability to associate sequences from eDNA with a taxonomic name is called “eDNA metabarcoding” and offers a powerful molecular tool capable of noninvasively surveying species richness from many ecosystems. Here, we review the use of eDNA metabarcoding for surveying animal and plant richness, and the challenges in using eDNA approaches to estimate relative abundance. We highlight eDNA applications in freshwater, marine and terrestrial environments, and in this broad context, we distill what is known about the ability of different eDNA sample types to approximate richness in space and across time. We provide guiding questions for study design and discuss the eDNA metabarcoding workflow with a focus on primers and library preparation methods. We additionally discuss important criteria for consideration of bioinformatic filtering of data sets, with recommendations for increasing transparency. Finally, looking to the future, we discuss emerging applications of eDNA metabarcoding in ecology, conservation, invasion biology, biomonitoring, and how eDNA metabarcoding can empower citizen science and biodiversity education. 相似文献