首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Juveniles of a number of corals with horizontal transmission of dinoflagellate endosymbionts naturally acquire and maintain Symbiodinium types that differ from those found in adult populations. However, the duration of this early period of symbiont flexibility and successional changes leading to dominance by the characteristic adult (homologous) type are unknown. To document natural succession of Symbiodinium types within juvenile corals, we monitored Symbiodinium communities in juveniles of Acropora tenuis and Acropora millepora for 3.5 years. Juveniles originating from one of three reef populations, characterized by differing adult coral- Symbiodinium associations, were raised in a common environment. In four out of five cases, juveniles became dominated initially by a nonhomologous adult type. Changes in Symbiodinium communities associated with A. tenuis juveniles led to the establishment of the adult homologous association at ∼3.5 years of age. These changes were not linked to the onset of reproductive maturity, but may be linked to micro-environmental changes associated with vertical growth of juvenile corals. We hypothesize that fine-tuning of specificity mechanisms takes place during ontogeny in A. tenuis , leading to the eventual establishment of the adult homologous association. However, Symbiodinium communities in A. millepora juveniles did not change significantly over the 3.5 years, potentially reflecting (i) lack of specificity, (ii) more than a 3.5-year delay in the onset of specificity, or (iii) lack of availability of the adult Symbiodinium type. This study demonstrates that juvenile corals may survive for extended periods of time with nonhomologous Symbiodinium types and that closely related species of Acropora differ in the timing of the onset of specificity for algal symbionts.  相似文献   

2.
Species boundaries among five sympatric coral species of the Indo-Pacific Acropora aspera group were examined by a combination of in vitro breeding trials, comparisons of spawning times and DNA sequence analysis of ribosomal DNA internal transcribed spacer (rDNA ITS) and 5.8S regions. The breeding trials showed that reproductive compatibility exists between at least some colonies of all the species pairs tested, suggesting a large potential for natural hybridization and introgression. The Acropora ITS regions exhibited extremely high levels of variability (up to approximately 62% for ITS1, approximately 11% for 5.8S and approximately 43% for ITS2), but most of the variation was shared among four of the five species, A. millepora, A. papillare, A. pulchra and A. spathulata, consistent with extensive introgression. Phylogenetic analyses did not resolve these four species as distinct clusters across a wide biogeographic region stretching from the southern Great Barrier Reef to Papua New Guinea. However, most colonies of the fifth species, A. aspera, constituted a distinct clade in phylogenetic analyses. This is consistent with our observations of a semi-permeable temporal barrier involving differences in spawning times between this and the other four species. Although the majority of colonies of all five species generally spawned within 90 min of each other, in two out of four years, gametes were absent prior to mass spawning episodes from at least some A. aspera colonies. Hence, our data suggest that transient reproductive barriers may be the result of year-to-year variation in the date of spawning and that this difference in spawning time contributes to the genetic structure detected among Acropora species in this group. Occasional leakage through the reproductive barrier was confirmed by the observation of A. aspera xA. pulchra F1 hybrids, identified based on additivity of ITS sequences.  相似文献   

3.
Surface seawater pH is currently 0.1 units lower than pre-industrial values and is projected to decrease by up to 0.4 units by the end of the century. This acidification has the potential to cause significant perturbations to the physiology of ocean organisms, particularly those such as corals that build their skeletons/shells from calcium carbonate. Reduced ocean pH could also have an impact on the coral microbial community, and thus may affect coral physiology and health. Most of the studies to date have examined the impact of ocean acidification on corals and/or associated microbiota under controlled laboratory conditions. Here we report the first study that examines the changes in coral microbial communities in response to a natural pH gradient (mean pHT 7.3–8.1) caused by volcanic CO2 vents off Ischia, Gulf of Naples, Italy. Two Mediterranean coral species, Balanophyllia europaea and Cladocora caespitosa, were examined. The microbial community diversity and the physiological parameters of the endosymbiotic dinoflagellates (Symbiodinium spp.) were monitored. We found that pH did not have a significant impact on the composition of associated microbial communities in both coral species. In contrast to some earlier studies, we found that corals present at the lower pH sites exhibited only minor physiological changes and no microbial pathogens were detected. Together, these results provide new insights into the impact of ocean acidification on the coral holobiont.  相似文献   

4.
Rising concentrations of atmospheric carbon dioxide are acidifying the world''s oceans. Surface seawater pH is 0.1 units lower than pre-industrial values and is predicted to decrease by up to 0.4 units by the end of the century. This change in pH may result in changes in the physiology of ocean organisms, in particular, organisms that build their skeletons/shells from calcium carbonate, such as corals. This physiological change may also affect other members of the coral holobiont, for example, the microbial communities associated with the coral, which in turn may affect the coral physiology and health. In the present study, we examined changes in bacterial communities in the coral mucus, tissue and skeleton following exposure of the coral Acropora eurystoma to two different pH conditions: 7.3 and 8.2 (ambient seawater). The microbial community was different at the two pH values, as determined by denaturing gradient gel electrophoresis and 16S rRNA gene sequence analysis. Further analysis of the community in the corals maintained at the lower pH revealed an increase in bacteria associated with diseased and stressed corals, such as Vibrionaceae and Alteromonadaceae. In addition, an increase in the number of potential antibacterial activity was recorded among the bacteria isolated from the coral maintained at pH 7.3. Taken together, our findings highlight the impact that changes in the pH may have on the coral-associated bacterial community and their potential contribution to the coral host.  相似文献   

5.
In sessile modular marine invertebrates, chimeras can originate from fusions of closely settling larvae or of colonies that come into contact through growth or movement. While it has been shown that juveniles of brooding corals fuse under experimental conditions, chimera formation in broadcast spawning corals, the most abundant group of reef corals, has not been examined. This study explores the capacity of the broadcast spawning coral Acropora millepora to form chimeras under experimental conditions and to persist as chimeras in the field. Under experimental conditions, 1.5-fold more larvae settled in aggregations than solitarily, and analyses of nine microsatellite loci revealed that 50 per cent of juveniles tested harboured different genotypes within the same colony. Significantly, some chimeric colonies persisted for 23 months post-settlement, when the study ended. Genotypes within persisting chimeric colonies all showed a high level of relatedness, whereas rejecting colonies displayed variable levels of relatedness. The nearly threefold greater sizes of chimeras compared with solitary juveniles, from settlement through to at least three months, suggest that chimerism is likely to be an important strategy for maximizing survival of vulnerable early life-history stages of corals, although longer-term studies are required to more fully explore the potential benefits of chimerism.  相似文献   

6.
This study compared the effect of heat stress on coral‐associated bacterial communities among juveniles of the coral, Acropora tenuis, hosting different Symbiodinium types. In comparison to a control temperature treatment (28 °C), we documented dramatic changes in bacterial associates on juvenile corals harbouring ITS 1 type D Symbiodinium when placed in a high (32 °C) temperature treatment. In particular, there was a marked increase in the number of retrieved Vibrio affiliated sequences, which coincided with a 44% decline in the photochemical efficiency of the D‐juveniles. Interestingly, these Vibrio sequences affiliated most closely with the coral pathogen, Vibrio coralliilyticus, which has been implicated in some coral disease outbreaks. In contrast, A. tenuis hosting ITS 1 type C1 Symbiodinium did not exhibit major bacterial shifts in the elevated temperature treatment, indicating a more stable bacterial community during thermal stress; concomitantly a decline (10%) in photochemical efficiency was minimal for this group. D juveniles that had been exposed to moderately elevated sea temperatures (30 °C) in the field before being placed in the control temperature treatment displayed a decrease in the number of Vibrio affiliated sequences and bacterial profiles shifted to become more similar to profiles of corals harbouring type C1 Symbiodinium. In combination, these results demonstrate that thermal stress can result in shifts in coral‐associated bacterial communities, which may lead to deteriorating coral health. The lower resilience of A. tenuis to thermal stress when harbouring Symbiodinium D highlights the importance of inter‐kingdom interactions among the coral host, dinoflagellate endosymbiont and bacterial associates for coral health and resilience.  相似文献   

7.
种子固有细菌是植物内生细菌的重要来源, 对植物的健康以及接种细菌的定殖能产生重要影响。该文以杂交水稻(Oryza sativa)种子为研究对象, 比较研究了不同品种水稻种子中固有细菌群落的多样性。利用799f和1492r这对引物成功地从水稻种子中扩增出固有细菌16S rDNA片段; 通过构建16S rDNA文库和扩增核糖体RNA基因酶切分型(ARDRA)的方法, 对杂交水稻 ‘丰优611’ (‘丰源A’ × ‘远恢611’)、‘金优611’ (‘金23A’ × ‘远恢611’)和‘金23A/09H013’ ( ‘金23A’ × ‘09H013’) 3个组合的子代及其各自亲本的种子固有细菌群落结构的多样性进行了研究。构建的7个克隆文库中, 每个文库含有200-300个克隆, 30-40个操作分类单元(OTU), 对ARDRA分型得到的代表序列进行分析, 在16S rDNA文库中发现多种细菌类群, 包括α变形杆菌(α-Proteobacteria)、β变形杆菌、γ变形杆菌、放线菌(Actinobacteria)、厚壁菌(Firmicutes)和拟菌(Bacteroidetes), 优势菌属是泛菌属(Pantoea)和芽孢杆菌属(Bacillus)。不同品种的水稻种子固有细菌群落结构不同, 而杂交子代种子中的优势菌与亲本种子中的优势菌在种类和数量上都具有一定的相关性。此外, 子代种子中丰度5%以上的细菌也能在各自父本或母本中检测到。  相似文献   

8.
Corals, considered the rainforests of the oceans, harbour an abundance of different bacterial populations throughout the coral structure. In the present study we attempted to characterize the cultivable bacterial population associated within the mucus and tissue of the coral Acropora digitifera from the Gulf of Mannar. 16S rRNA gene was amplified from the cultured mucus and tissue isolates. Amplified ribosomal DNA restriction analysis, performed with a combination of restriction enzymes to determine the polymorphic groups of bacteria, generated 19 distinct groups in the coral mucus and 17 distinct groups in the coral tissue. Phylogenetic analyses based on the full-length sequences of 16S rRNA gene sequences showed that the majority of bacterial isolates belonged to the group Firmicutes , followed by Gammaproteobacteria and Actinobacteria . On investigating their antimicrobial activity, mucus isolates showed about 25% activity and tissue isolates showed 48% activity. This study revealed the presence of actinomycetes in both the coral mucus and the coral tissue, which had high activity against pathogens. This study, for the first time, demonstrates that actinomycetes existing within corals also have potential antibacterial activity. This has been overlooked so far, and indicates that, in addition to mucus, bacteria within the tissue of corals might defend the coral host against pathogens.  相似文献   

9.
Intra- and intercolony diversity and distribution of zooxanthellae in acroporid corals is largely uncharted. In this study, two molecular methods were applied to determine the distribution of zooxanthellae in the branching corals Acropora tenuis and A. valida at several reef locations in the central section of the Great Barrier Reef. Sun-exposed and shaded parts of all colonies were examined. Single-stranded conformational polymorphism analysis showed that individual colonies of A. tenuis at two locations harbour two strains of Symbiodinium belonging to clade C (C1 and C2), whereas conspecific colonies at two other reefs harboured a single zooxanthella strain. A. valida was found to simultaneously harbour strains belonging to two distinct phylogenetic clades (C and D) at all locations sampled. A novel method with improved sensitivity (quantitative polymerase chain reaction using Taqman fluorogenic probes) was used to map the relative abundance distribution of the two zooxanthella clades. At two of the five sampling locations both coral species were collected. At these two locations, composition of the zooxanthella communities showed the same pattern in both coral species, i.e. correlation with ambient light in Pioneer Bay and an absence thereof in Nelly Bay. The results show that the distribution of genetically distinct zooxanthellae is correlated with light regime and possibly temperature in some (but not all) colonies of A. tenuis and A. valida and at some reef locations, which we interpret as acclimation to local environmental conditions.  相似文献   

10.
The responses of epilithic bacterial and algal communities to sewage-treatment-works (STW) effluent were studied in three streams in North Yorkshire, England, using both conventional microbiological techniques and the techniques of molecular genomics. Cod Beck, Thornton Beck and the River Wiske, were visited in May–June 2000 and January 2001 and the epilithic communities on submerged stones were sampled to determine chlorophyll-a, leucine assimilation, bacterial abundance, identity and abundance of microalgae, and epilithon dry and organic weights. Additionally, DNA from the epilithon of stones, collected in March–April and November 2000, was extracted, and samples were amplified using universal primers appropriate, respectively, for bacteria [Muyzer et al., 1993. Applied and Environmental Microbiology 59: 695–700] and microscopic phototrophs [Nübel et al., 1997. Applied and Environmental Microbiology 63: 3327–3332] followed by DGGE (Denaturing Gradient Gel Electrophoresis). Differences in algal community composition and abundance were greater between streams than between sites upstream and downstream of the STW outfalls. DGGE banding profiles of bacterial communities revealed grouping according to stream, and not the formation of communities characteristic of downstream sites; seasonal variation was also evident. Thus the discharge of STW effluent to the streams did not bring about the development of communities that are characteristically associated with organic pollution. Changes in composition and structure of bacterial and micro-algal epilithic communities were detected, but the relatively high quality effluents had only mild effects, not altering the environments sufficiently to override the natural differences between the three streams.  相似文献   

11.
水产养殖不同物种对水体和沉积物中细菌群落的影响   总被引:2,自引:0,他引:2  
为探究水产养殖中养殖不同物种对水体和沉积物中细菌群落的影响,以养殖克氏原螯虾(Procambarus clarkii, PC)和中华鳖(Pelodiscus sinensis, PS)的水体和沉积物样品为研究对象,利用基于16S rRNA基因的高通量测序技术,对细菌群落多样性和群落组成进行分析,并结合环境因子,探究水产养殖对细菌群落的影响。结果显示,水体和沉积物中细菌群落的α多样性均呈现PS>PC的显著差异(P<0.05)。非度量多维尺度分析的结果显示,PC和PS区的水体和沉积物细菌群落结构均呈现明显差异。冗余分析(RDA)的结果表明,水体氨氮(NH~+4-N)和硝酸盐氮(NO~-3-N)是影响水体细菌群落结构的最主要环境因子,沉积物总氮(TN)、总磷(TP)和有机碳(OC)均对沉积物细菌群落结构有显著影响(P<0.05)。PC和PS区中的细菌隶属于34门、114纲、258目、504科和955属,水体中共筛选出了11个优势菌门(相对丰度>0.5%),沉积物中筛选出了13个。2个养殖区域的水体样品中共筛选出了15个优势(...  相似文献   

12.
Cyanobacterial harmful algal blooms are prevalent around the world, influencing aquatic organisms and altering the physico-chemical properties in freshwater systems. However, the response of bacterial communities to toxic cyanobacterial blooms and associated microcystins (MC) remain poorly understood even though global concentrations of MC have increased dramatically in the past few decades. To address this issue, the dynamics of bacterial community composition (BCC) in the water column and how BCC is influenced by both harmful cyanobacterial blooms and environmental factors were investigated on a monthly basis from August 2013 to July 2014 in Lake Taihu, China. Non-metric multidimensional scaling (NMDS) revealed that seasonal variation in BCC was significant, and that the succession of BCC greatly depends on changes in environmental conditions. Redundancy analysis (RDA) results showed that the overall variation of BCC was explained mainly by dissolved oxygen (DO), nitrate nitrogen (NO3-N), and Microcystis. The alpha biodiversity of the bacterial community was different among months with the highest diversity in February and the lowest diversity in October. Furthermore, significant negative relationships were found between alpha biodiversity indices and Microcystis abundance as well as with intracellular MC concentrations, indicating that Microcystis and associated MC may influence the bacterial community structure by reducing its biodiversity. This study shows that potential associations exist between toxic cyanobacterial blooms and bacterial communities but more investigations are needed to obtain a mechanistic understanding of their complex relationships.  相似文献   

13.
Microbial fuel cells (MFCs) are often inoculated from a single wastewater source. The extent that the inoculum affects community development or power production is unknown. The stable anodic microbial communities in MFCs were examined using three inocula: a wastewater treatment plant sample known to produce consistent power densities, a second wastewater treatment plant sample, and an anaerobic bog sediment. The bog-inoculated MFCs initially produced higher power densities than the wastewater-inoculated MFCs, but after 20 cycles all MFCs on average converged to similar voltages (470±20 mV) and maximum power densities (590±170 mW m−2). The power output from replicate bog-inoculated MFCs was not significantly different, but one wastewater-inoculated MFC (UAJA3 (UAJA, University Area Joint Authority Wastewater Treatment Plant)) produced substantially less power. Denaturing gradient gel electrophoresis profiling showed a stable exoelectrogenic biofilm community in all samples after 11 cycles. After 16 cycles the predominance of Geobacter spp. in anode communities was identified using 16S rRNA gene clone libraries (58±10%), fluorescent in-situ hybridization (FISH) (63±6%) and pyrosequencing (81±4%). While the clone library analysis for the underperforming UAJA3 had a significantly lower percentage of Geobacter spp. sequences (36%), suggesting that a predominance of this microbe was needed for convergent power densities, the lower percentage of this species was not verified by FISH or pyrosequencing analyses. These results show that the predominance of Geobacter spp. in acetate-fed systems was consistent with good MFC performance and independent of the inoculum source.  相似文献   

14.
15.
In grazed pastures, soil pH is raised in urine patches, causing dissolution of organic carbon and increased ammonium and nitrate concentrations, with potential effects on the structure and functioning of soil microbial communities. Here we examined the effects of synthetic sheep urine (SU) in a field study on dominant soil bacterial and fungal communities associated with bulk soil and plant roots (rhizoplane), using culture-independent methods and a new approach to investigate the ureolytic community. A differential response of bacteria and fungal communities to SU treatment was observed. The bacterial community showed a clear shift in composition after SU treatment, which was more pronounced in bulk soil than on the rhizoplane. The fungal community did not respond to SU treatment; instead, it was more affected by the time of sampling. Redundancy analysis of data indicated that the variation in the bacterial community was related to change in soil pH, while fungal community was more responsive to dissolution of organic carbon. Like the universal bacterial community, the ureolytic community was influenced by the SU treatment. However, different taxa within the ureolytic bacterial community responded differentially to the treatment. The ureolytic community comprised of members from a range of phylogenetically different taxa and could be used to measure the effect of environmental perturbations on the functional diversity of natural ecosystems.  相似文献   

16.
Symbiotic bacteria often help their hosts acquire nutrients from their diet, showing trends of co-evolution and independent acquisition by hosts from the same trophic levels. While these trends hint at important roles for biotic factors, the effects of the abiotic environment on symbiotic community composition remain comparably understudied. In this investigation, we examined the influence of abiotic and biotic factors on the gut bacterial communities of fish from different taxa, trophic levels and habitats. Phylogenetic and statistical analyses of 25 16S rRNA libraries revealed that salinity, trophic level and possibly host phylogeny shape the composition of fish gut bacteria. When analysed alongside bacterial communities from other environments, fish gut communities typically clustered with gut communities from mammals and insects. Similar consideration of individual phylotypes (vs. communities) revealed evolutionary ties between fish gut microbes and symbionts of animals, as many of the bacteria from the guts of herbivorous fish were closely related to those from mammals. Our results indicate that fish harbour more specialized gut communities than previously recognized. They also highlight a trend of convergent acquisition of similar bacterial communities by fish and mammals, raising the possibility that fish were the first to evolve symbioses resembling those found among extant gut fermenting mammals.  相似文献   

17.
土壤细菌类克隆群落及其结构的生态学特征   总被引:19,自引:0,他引:19  
夏北成  Zhou J  Tiedje J M 《生态学报》2001,21(4):574-578
以16SrDNA分析方法为基础,获得来自不同土壤环境的细菌克隆群落(Cloning community),并分析了这些土壤细菌群落结构特征,在不同土壤环境中,细菌种类非常丰富,但其多样性将受到植被,土壤水分或土壤层次等因子的影响,表层土壤环境中细菌种类最丰富,多样性最高,且基因型中无明显的优势类群,不同土壤环境间细菌群落的相似性好低,表明群落结构以及空间隔离的复杂性。  相似文献   

18.
19.
Mutualistic organisms can be particularly susceptible to climate change stress, as their survivorship is often limited by the most vulnerable partner. However, symbiotic plasticity can also help organisms in changing environments by expanding their realized niche space. Coral–algal (Symbiodinium spp.) symbiosis exemplifies this dichotomy: the partnership is highly susceptible to ‘bleaching’ (stress‐induced symbiosis breakdown), but stress‐tolerant symbionts can also sometimes mitigate bleaching. Here, we investigate the role of diverse and mutable symbiotic partnerships in increasing corals' ability to thrive in high temperature conditions. We conducted repeat bleaching and recovery experiments on the coral Montastraea cavernosa, and used quantitative PCR and chlorophyll fluorometry to assess the structure and function of Symbiodinium communities within coral hosts. During an initial heat exposure (32 °C for 10 days), corals hosting only stress‐sensitive symbionts (Symbiodinium C3) bleached, but recovered (at either 24 °C or 29 °C) with predominantly (>90%) stress‐tolerant symbionts (Symbiodinium D1a), which were not detected before bleaching (either due to absence or extreme low abundance). When a second heat stress (also 32 °C for 10 days) was applied 3 months later, corals that previously bleached and were now dominated by D1a Symbiodinium experienced less photodamage and symbiont loss compared to control corals that had not been previously bleached, and were therefore still dominated by Symbiodinium C3. Additional corals that were initially bleached without heat by a herbicide (DCMU, at 24 °C) also recovered predominantly with D1a symbionts, and similarly lost fewer symbionts during subsequent thermal stress. Increased thermotolerance was also not observed in C3‐dominated corals that were acclimated for 3 months to warmer temperatures (29 °C) before heat stress. These findings indicate that increased thermotolerance post‐bleaching resulted from symbiont community composition changes, not prior heat exposure. Moreover, initially undetectable D1a symbionts became dominant only after bleaching, and were critical to corals' resilience after stress and resistance to future stress.  相似文献   

20.
Great Boiling Spring is a large, circumneutral, geothermal spring in the US Great Basin. Twelve samples were collected from water and four different sediment sites on four different dates. Microbial community composition and diversity were assessed by PCR amplification of a portion of the small subunit rRNA gene using a universal primer set followed by pyrosequencing of the V8 region. Analysis of 164 178 quality-filtered pyrotags clearly distinguished sediment and water microbial communities. Water communities were extremely uneven and dominated by the bacterium Thermocrinis. Sediment microbial communities grouped according to temperature and sampling location, with a strong, negative, linear relationship between temperature and richness at all taxonomic levels. Two sediment locations, Site A (87–80 °C) and Site B (79 °C), were predominantly composed of single phylotypes of the bacterial lineage GAL35 (p̂=36.1%), Aeropyrum (p̂=16.6%), the archaeal lineage pSL4 (p̂=15.9%), the archaeal lineage NAG1 (p̂=10.6%) and Thermocrinis (p̂=7.6%). The ammonia-oxidizing archaeon ‘Candidatus Nitrosocaldus'' was relatively abundant in all sediment samples <82 °C (p̂=9.51%), delineating the upper temperature limit for chemolithotrophic ammonia oxidation in this spring. This study underscores the distinctness of water and sediment communities in GBS and the importance of temperature in driving microbial diversity, composition and, ultimately, the functioning of biogeochemical cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号