首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Bats (Chiroptera) are one of the most successful extant mammalian orders, uniquely capable of powered flight and laryngeal echolocation. The timing and evidence for evolution of their novel adaptations have been difficult to ascertain from the fossil record due to chronological gaps and the fragmentary nature of most fossil bat material. Here, we quantify the quality of the bat fossil record using skeletal and character completeness metrics, which respectively document for each taxon what proportion of a complete skeleton is preserved, and the proportion of phylogenetic characters that can be scored. Completeness scores were collected for 441 valid fossil bat species in 167 genera from the Eocene to the Pleistocene. All metrics record similar temporal patterns: peak completeness in the Lutetian stage reflects the presence of Lagerstätten, while subsequent stages have very low completeness, except an Aquitanian high and a Pleistocene peak in skeletal completeness. Bat completeness is not correlated with intensity of sampling through geological time but has a weak negative correlation with publication date. There is no correlation between taxonomic richness and completeness, as the bat record predominately consists of diagnostic but isolated teeth. Consequently, bat skeletal completeness is the lowest of any previously assessed tetrapod group, but character completeness is similar to parareptiles and birds. Bats have significantly higher character completeness in the northern hemisphere, probably due to heightened historical interest and presence of Lagerstätten. Taxa derived from caves are more complete than those from fluviolacustrine and marine deposits, but do not preserve highly complete specimens.  相似文献   

2.
    
Pterosaurs, a Mesozoic group of flying archosaurs, have become a focal point for debates pertaining to the impact of sampling biases on our reading of the fossil record, as well as the utility of sampling proxies in palaeo‐diversity reconstructions. The completeness of the pterosaur fossil specimens themselves potentially provides additional information that is not captured in existing sampling proxies, and might shed new light on the group's evolutionary history. Here we assess the quality of the pterosaur fossil record via a character completeness metric based on the number of phylogenetic characters that can be scored for all known skeletons of 172 valid species, with averaged completeness values calculated for each geological stage. The fossil record of pterosaurs is observed to be strongly influenced by the occurrence and distribution of Lagerstätten. Peaks in completeness correlate with Lagerstätten deposits, and a recovered correlation between completeness and observed diversity is rendered non‐significant when Lagerstätten species are excluded. Intervals previously regarded as potential extinction events are shown to lack Lagerstätten and exhibit low completeness values: as such, the apparent low diversity in these intervals might be at least partly the result of poor fossil record quality. A positive correlation between temporal patterns in completeness of Cretaceous pterosaurs and birds further demonstrates the prominent role that Lagerstätten deposits have on the preservation of smaller bodied organisms, contrasting with a lack of correlation with the completeness of large‐bodied sauropodomorphs. However, we unexpectedly find a strong correlation between sauropodomorph and pterosaur completeness within the Triassic–Jurassic, but not the Cretaceous, potentially relating to a shared shift in environmental preference and thus preservation style through time. This study highlights the importance of understanding the relationship between various taphonomic controls when correcting for sampling bias, and provides additional evidence for the prominent role of sampling on observed patterns in pterosaur macroevolution.  相似文献   

3.
    
Ichthyosaurs were highly successful marine reptiles with an abundant and well‐studied fossil record. However, their occurrences through geological time and space are sporadic, and it is important to understand whether times of apparent species richness and rarity are real or the result of sampling bias. Here, we explore the skeletal completeness of 351 dated and identified ichthyosaur specimens, belonging to all 102 species, the first time that such a study has been carried out on vertebrates from the marine realm. No correlations were found between time series of different skeletal metrics and ichthyosaur diversity. There is a significant geographical variation in completeness, with the well‐studied northern hemisphere producing fossils of much higher quality than the southern hemisphere. Medium‐sized ichthyosaurs are significantly more complete than small or large taxa: the incompleteness of small specimens was expected, but it was a surprise that larger specimens were also relatively incomplete. Completeness varies greatly between facies, with fine‐grained, siliciclastic sediments preserving the most complete specimens. These findings may explain why the ichthyosaur diversity record is low at times, corresponding to facies of poor preservation potential, such as in the Early Cretaceous. Unexpectedly, we find a strong negative correlation between skeletal completeness and sea level, meaning the most complete specimens occurred at times of global low sea level, and vice versa. Completeness metrics, however, do not replicate the sampling signal and have limited use as a global‐scale sampling proxy.  相似文献   

4.
    
Exceptionally preserved fossils are the product of complex interplays of biological and geological processes including burial, autolysis and microbial decay, authigenic mineralization, diagenesis, metamorphism, and finally weathering and exhumation. Determining which tissues are preserved and how biases affect their preservation pathways is important for interpreting fossils in phylogenetic, ecological, and evolutionary frameworks. Although laboratory decay experiments reveal important aspects of fossilization, applying the results directly to the interpretation of exceptionally preserved fossils may overlook the impact of other key processes that remove or preserve morphological information. Investigations of fossils preserving non‐biomineralized tissues suggest that certain structures that are decay resistant (e.g., the notochord) are rarely preserved (even where carbonaceous components survive), and decay‐prone structures (e.g., nervous systems) can fossilize, albeit rarely. As we review here, decay resistance is an imperfect indicator of fossilization potential, and a suite of biological and geological processes account for the features preserved in exceptional fossils.  相似文献   

5.
    
Extant aplacophorans, a group of shell‐less vermiform molluscs, respire through appendages within or projecting from a posterior cavity. Respiratory structures differ between the subclasses Caudofoveata (ctenidia within the cavity) and Solenogastres (folds of the mantle itself). Acaenoplax hayae, a Silurian vermiform mollusc from the Herefordshire Lagerstätte, England, exhibits characteristics of both these groups. While recent work places it within the crown group Aplacophora, near the caudofoveates, initial observations suggested that its respiratory structures were closer to those of the solenogastres. Here, we present new reconstructions of the posterior of Acaenoplax prepared with the aim of resolving features obscured when prior studies were undertaken. These reconstructions detail a novel posterior architecture, not closely comparable to that of either extant aplacophoran group, in which respiratory projections arise from a membrane that partly encloses a central posterior cavity. The posterior membrane is flanked by small spherical projections; both membrane and spherical projections are apparently unique within the Aplacophora. The existence of this previously undocumented respiratory system underlines the diversity of the aplacophoran clade during the Palaeozoic.  相似文献   

6.
    
Palaeoscolecid worms are a ubiquitous group of Early Palaeozoic ecdysozoans that are curiously lacking in the archetypal Cambrian Lagerstätten, the Burgess Shale. Here I describe Scathascolex minor gen. et sp. nov, the first unequivocal palaeoscolecid from this site. Scathascolex is armoured with simple Hadimopanella‐like plates, but lacks smaller platelets, pointing to a close affinity with the Palaeoscolecida sensu stricto. Neither preservational nor environmental factors account for the scarcity of palaeoscolecids in the Burgess Shale, which presumably represents an ecological phenomenon.  相似文献   

7.
    
For a long time, the genus Knebelia Van Straelen, 1922 has comprised two species of eryonid lobster, K. bilobata (Münster, 1839) and K. schuberti (Meyer, 1836), both recorded exclusively from Late Jurassic Lagerstätten in southern Germany. Recently, the latter has been suggested to represent a juvenile individual of Cycleryon propinquus (Schlotheim, 1822). A re‐examination of the type and new material has led to our rejection of that interpretation and confirmation of assignment of this species to Knebelia. Two specimens, both possessing short frontal lobes, from plattenkalks at Nusplingen (late Kimmeridgian) and at Solnhofen (early Tithonian), respectively, are here assigned to a new species, K. totoroi sp. nov. This new species and a review of K. bilobata have furnished new insights into the origin and function of the frontal lobes, which are expansions articulated to the front of the carapace. They probably functioned as rudders facilitating ‘tail‐flip swimming’ as observed in the paddle‐like antennae of extant scyllarids (Eucrustacea, Decapoda, Scyllaridae). The rudder‐like lobes identified in Knebelia may therefore represent a case of convergent evolution.  相似文献   

8.
    
Lagerstätten, places where soft‐bodied organisms became mineralized, provide a substantial bulk of palaeobiological information, but the detailed mechanisms of how soft‐tissue preservation takes place remain debatable. An experimental taphonomy approach, which allows for direct study of decay and mineralization, offers a means to study the preservational potential of different soft‐bodied organisms under controlled conditions. Here we compare the preservational capacity of two types of clay (kaolinite and montmorillonite) through a long‐term (24 month) experiment involving the burial and decay of small crustaceans. Our experimental design is innovative in that it models catastrophic sedimentation in fine‐grained colloidal suspension, which is believed to form Lagerstätten deposits. We demonstrated better preservation of buried organisms in clays compared to water, and in kaolinite compared to montmorillonite. As aluminium cations were present in high concentrations in kaolinite sediment but not in montmorillonite, the better preservation in kaolinite is attributed to the tanning properties of aluminium, which catalyses cross‐linking in proteins, protecting them from bacterial degradation. Anaerobic environments and acidification also slow down decay, but they are less effective than tanning. Kaolinite and montmorillonite replaced the crustacean integuments differently: in the remains buried in kaolinite, Al and Si were detected in equal proportions, while in those buried in montmorillonite, the Si content appeared to be much higher even in comparison with the initial sample of the clay. These variations probably arose from the different dynamics of acidic hydrolysis in the two clays associated with anaerobic decomposition of organic matter. Our results show that the preservation mechanism includes multi‐component interactions between the solution, mineral, sediment and organic remains; taken separately, any single component explains little. The specific conditions that occur within the colloidal clay sediments can facilitate conservation and start fast mineralization according to chemical properties and elemental content.  相似文献   

9.
    
Spatiotemporal changes in fossil specimen completeness can bias our understanding of a group's evolutionary history. The quality of the sauropodomorph fossil record was assessed a decade ago, but the number of valid species has since increased by 60%, and 17% of the taxa from that study have since undergone taxonomic revision. Here, we assess how 10 years of additional research has changed our outlook on the group's fossil record. We quantified the completeness of all 307 sauropodomorph species currently considered valid using the skeletal completeness metric, which calculates the proportion of a complete skeleton preserved for each taxon. Taxonomic and stratigraphic age revisions, rather than new species, are the drivers of the most significant differences between the current results and those of the previous assessment. No statistical differences appeared when we use our new dataset to generate temporal completeness curves based solely on taxa known in 2009 or 1999. We now observe a severe drop in mean completeness values across the Jurassic–Cretaceous boundary that never recovers to pre-Cretaceous levels. Explaining this pattern is difficult, as we find no convincing evidence that it is related to environmental preferences or body size changes. Instead, it might result from: (1) reduction of terrestrial fossil preservation space due to sea level rise; (2) ecological specificities and relatively high diagnosability of Cretaceous species; and/or (3) increased sampling of newly explored sites with many previously unknown taxa. Revisiting patterns in this manner allows us to test the longevity of conclusions made in previous quantitative studies.  相似文献   

10.
    
The Emu Bay Shale Lagerstätte (Cambrian Series 2, Stage 4) occurs on the north coast of Kangaroo Island, South Australia. Over 50 species are known from here, including trilobites and non‐biomineralized arthropods, palaeoscolecids, a lobopodian, a polychaete, vetulicolians, nectocaridids, hyoliths, brachiopods, sponges and chancelloriids. A new chelicerate, Wisangocaris barbarahardyae gen. et sp. nov., is described herein, based on a collection of some 270 specimens. It is up to 60 mm long, with the length of the cephalic shield comprising about 30% that of the exoskeleton. The cephalic margin has three pairs of bilaterally‐symmetrical small triangular spines. A pair of small eyes is placed well forwards on the ventral margin of the cephalic shield. The trunk comprises 11 segments that increase in length while narrowing posteriorly, each possibly bearing a pair of biramous appendages; the most posterior segment is almost square whereas the others are transversely elongated. The spatulate telson is proportionately longer than in taxa such as Sanctacaris, Utahcaris and Leanchoilia. Up to eight (?four pairs) of 3 mm‐long elements bearing alternating inward‐curving short and long spines beneath the cephalic shield are interpreted as basipodal gnathobases, part of a complex feeding apparatus. A well‐developed gut includes a stomach within the cephalic shield; it extends to the base of the telson. In a few specimens there are shell fragments within the gut, including those of the trilobite Estaingia bilobata (the most common species in the biota); these fragments have sharp margins and extend across the gut lumen. The species may have been a predator or a scavenger, ingesting material already broken up by a larger predator/scavenger. The morphology of this taxon shares many overall body features with Sanctacaris, and some with Sidneyia, particularly its gnathobasic complex. These chelicerate affinities are corroborated by phylogenetic analyses.  相似文献   

11.
    
Trilobites dominate the Emu Bay Shale (EBS) assemblage (Cambrian Series 2, Stage 4, South Australia) in terms of numbers, with Estaingia bilobata Pocock 1964 being extremely abundant, and the larger Redlichia takooensis Lu 1950 , being common. Many specimens within the EBS represent complete moulted exoskeletons, which is unusual for Cambrian fossil deposits. The abundance of complete moults provides an excellent record that has allowed the recognition of various recurrent moult configurations for both species, enabling the inference of movement sequences required to produce such arrangements. Moult configurations of E. bilobata are characterized by slight displacement of the joined rostral plate and librigenae, often accompanied by detachment of the cranidium, suggesting ecdysis was achieved by anterior withdrawal via opening of the cephalic sutures. Moulting in R. takooensis often followed the same method, but configurations show greater displacement of cephalic sclerites, suggesting more vigorous movement by the animal during moulting. Both species also show rare examples of Salter's configuration, with the entire cephalon anteriorly inverted, and several other unusual configurations. These results indicate that moulting in trilobites was a more variable process than originally thought. In contrast, other Cambrian Konservat‐Lagerstätten with an abundance of trilobites (e.g. Wheeler Shale, USA, and Mount Stephen Trilobite Beds, Canada) show larger numbers of ‘axial shields’ and isolated sclerites, often interpreted as disarticulated exuviae. This points to a higher level of disturbance from factors, such as animal activity, depositional processes or water movement, compared to that of the EBS, where quiescent conditions and intermittent seafloor anoxia contributed to an unparalleled trilobite moulting record.  相似文献   

12.
Lloyd GT 《Biology letters》2012,8(1):123-126
Modelling has been underdeveloped with respect to constructing palaeobiodiversity curves, but it offers an additional tool for removing sampling from their estimation. Here, an alternative to subsampling approaches, which often require large sample sizes, is explored by the extension and refinement of a pre-existing modelling technique that uses a geological proxy for sampling. Application of the model to the three main clades of dinosaurs suggests that much of their diversity fluctuations cannot be explained by sampling alone. Furthermore, there is new support for a long-term decline in their diversity leading up to the Cretaceous–Paleogene (K–Pg) extinction event. At present, use of this method with data that includes either Lagerstätten or ‘Pull of the Recent’ biases is inappropriate, although partial solutions are offered.  相似文献   

13.
    
The morphology of two new bivalved arthropods, Loricicaris spinocaudatus gen. et sp. nov. and Nereocaris briggsi sp. nov. from the middle Cambrian (Series 3, Stage 5) Burgess Shale Formation (Collins Quarry locality on Mount Stephen, Yoho National Park, British Columbia, Canada), is described. The material was originally assigned to the genus Branchiocaris, but exhibits distinctive character combinations meriting its assignment to other taxa. Loricicaris spinocaudatus possesses an elongate and spinose abdomen comparable to the contemporaneous Perspicaris and Canadaspis, as well as chelate second head appendages and subtriangular exopods, comparable to Branchiocaris. Nereocaris briggsi possesses a laterally compressed carapace, elongate and delicate appendages and a medial eye located between a pair of lateral eyes on a rhomboidal eye stalk. Although undoubtedly congeneric with Nereocaris exilis from a slightly younger horizon of the Burgess Shale Formation, N. briggsi differs in overall proportions and segment number, warranting assignment to a new species. The newly described taxa were coded into an extensive cladistic analysis of 755 characters, and 312 extinct and extant panarthropods, including a variety of Cambrian bivalved arthropods from both the Burgess Shale and the Chengjiang Lagerstätten. Cambrian bivalved arthropods consistently resolved as a paraphyletic assemblage at the base of Arthropoda. Important innovations in arthropod history such as the specialization of the deutocerebral head appendages and a shift from a nekton‐benthic deposit feeding habit to a benthic scavenging/predatory habit, the symplesiomorphic feeding condition of Euarthropoda (crown‐group arthropods), were found to have occurred among basal bivalved arthropods.  相似文献   

14.
Palaeobiodiversity analysis underpins macroevolutionary investigations, allowing identification of mass extinctions and adaptive radiations. However, recent large-scale studies on marine invertebrates indicate that geological factors play a central role in moulding the shape of diversity curves and imply that many features of such curves represent sampling artefacts, rather than genuine evolutionary events. In order to test whether similar biases affect diversity estimates for terrestrial taxa, we compiled genus-richness estimates for three Mesozoic dinosaur clades (Ornithischia, Sauropodomorpha and Theropoda). Linear models of expected genus richness were constructed for each clade, using the number of dinosaur-bearing formations available through time as a proxy for the amount of fossiliferous rock outcrop. Modelled diversity estimates were then compared with observed patterns. Strong statistically robust correlations demonstrate that almost all aspects of ornithischian and theropod diversity curves can be explained by geological megabiases, whereas the sauropodomorph record diverges from modelled predictions and may be a stronger contender for identifying evolutionary signals. In contrast to other recent studies, we identify a marked decline in dinosaur genus richness during the closing stages of the Cretaceous Period, indicating that the clade decreased in diversity for several million years prior to the final extinction of non-avian dinosaurs at the Cretaceous–Palaeocene boundary.  相似文献   

15.
Burgess Shale-type deposits are renowned for their exquisite preservation of soft-bodied organisms, representing a range of animal body plans that evolved during the Cambrian ‘explosion’. However, the rarity of these fossil deposits makes it difficult to reconstruct the broader-scale distributions of their constituent organisms. By contrast, microscopic skeletal elements represent an extensive chronicle of early animal evolution—but are difficult to interpret in the absence of corresponding whole-body fossils. Here, we provide new observations on the dorsal spines of the Cambrian lobopodian (panarthropod) worm Hallucigenia sparsa from the Burgess Shale (Cambrian Series 3, Stage 5). These exhibit a distinctive scaly microstructure and layered (cone-in-cone) construction that together identify a hitherto enigmatic suite of carbonaceous and phosphatic Cambrian microfossils—including material attributed to Mongolitubulus, Rushtonites and Rhombocorniculum—as spines of Hallucigenia-type lobopodians. Hallucigeniids are thus revealed as an important and widespread component of disparate Cambrian communities from late in the Terreneuvian (Cambrian Stage 2) through the ‘middle’ Cambrian (Series 3); their apparent decline in the latest Cambrian may be partly taphonomic. The cone-in-cone construction of hallucigeniid sclerites is shared with the sclerotized cuticular structures (jaws and claws) in modern onychophorans. More generally, our results emphasize the reciprocal importance and complementary roles of Burgess Shale-type fossils and isolated microfossils in documenting early animal evolution.  相似文献   

16.
    
Vegetal remains are considered labile structures that quickly become decayed in ecosystems. However, certain lignified tissues (woody plants) can largely resist decomposition, becoming sometimes exceptionally well preserved. At the Upper Cretaceous site of ‘Lo Hueco’ (Cuenca, Spain), those woody remains (trunks and branches) with resinous material in the inner tracheids and parenchyma cells that were buried rapidly under anoxic conditions experienced a low degree of maturation, becoming exceptionally well preserved. Those woody remains deposited under oxic conditions (sub‐aerial or sub‐aquatic exposure) were more intensely biodegraded and subsequently carbonified, partially or completely mineralized in gypsum and covered by a ferruginous crust. These two modes of preservation are scarce, with silicification or carbonification processes much more common, and both can be considered as ‘exceptional preservation’. Other vegetal remains, such as carbonified leaves, stems and roots, were collected in the site. The different modes of preservation depend directly on: depositional micro‐environment (sandy distributary channel, muddy flood plain); and type (trunk, branch, stem, leave, root) and state (presence or absence of resinous material) of the material. The great abundance and diversity of fossils in ‘Lo Hueco’ identify it as Konzentrat‐Lagerstätten, sequentially formed by alternated events of flooding and drying depositional events, but the exceptional quality and rarity of determinate vegetal macroremains preservation suggest that certain deposits of this site can be considered as conservation deposits.  相似文献   

17.
    
The Middle Cambrian (series 3, Drumian, Bolaspidella Biozone) Ravens Throat River Lagerstätte in the Rockslide Formation of the Mackenzie Mountains, northwestern Canada, contains a Burgess Shale‐type biota of similar age to the Wheeler and Marjum formations of Utah. The Rockslide Formation is a unit of deep‐water, mixed carbonate and siliciclastic facies deposited in a slope setting on the present‐day northwestern margin of Laurentia. At the fossil‐bearing locality, the unit is about 175 m thick and the lower part onlaps a fault scarp cutting lower Cambrian sandstones. It consists of a succession of shale, laminated to thin‐bedded lime mudstone, debris‐flow breccias, minor calcareous sandstone, greenish‐coloured calcareous mudstone and dolomitic siltstone, overlain by shallow‐water dolostones of the Broken Skull Formation, which indicates an overall progradational sequence. Two ~1‐m‐thick units of greenish calcareous mudstone in the upper part exhibit soft‐bodied preservation, yielding a biota dominated by bivalved arthropods and macrophytic algae, along with hyoliths and trilobites. It represents a low‐diversity in situ community. Most of the fossils occur in the lower unit, and only the more robust components are preserved. Branching burrows are present under the carapaces of some arthropods, and common millimetre‐sized disruptions of laminae are interpreted as bioturbation. The fossiliferous planar‐laminated calcareous mudstone consists of chlorite, illite, quartz silt, calcite and dolomite and is an anomalous facies in the succession. It was deposited via hemipelagic fallout of a mixture of platform‐derived and terrestrial mud. Geochemical analysis and trace‐element proxies indicate oxic bottom waters that only occasionally might have become dysoxic. Productivity in the water column was dominated by cyanobacteria. Fragments of microbial mats are common as carbonaceous seams. Complete decay of soft tissues was interrupted due to the specific sediment composition, providing support for the role of clay minerals, possibly chlorite, in the taphonomic process.  相似文献   

18.
Abstract: Three‐dimensional fragments of palaeoscolecid cuticle have been recovered from the Furongian (upper Cambrian) of Hunan, South China. Extraordinary preservation of the fossils shows exquisite surface details indicating a three‐layered structure of the cuticle. One new genus and two new species Dispinoscolex decorus gen. et sp. nov. and Schistoscolex hunanensis sp. nov. are described. The co‐occurrence of these palaeoscolecid remains with those of Markuelia hunanensis allowed us to test the hypothesis that Markuelia, known hitherto only from embryonic remains, is an embryonic palaeoscolecid. The comparative anatomy of Markuelia and the co‐occurring palaeoscolecids shows a number of distinctions, particularly in the structure of the tail; all similarities are scalidophoran or introvertan (cycloneuralian) symplesiomorphies. The available evidence does not support the interpretation of Markuelia as an embryonic palaeoscolecid.  相似文献   

19.
    
The Sirius Passet Lagerstätte (SP), Peary Land, North Greenland, occurs in black slates deposited at or just below storm wave base. It represents the earliest Cambrian microbial mat community with exceptional preservation, predating the Burgess Shale by 10 million years. Trilobites from the SP are preserved as complete, three‐dimensional, concave hyporelief external moulds and convex epirelief casts. External moulds are shown to consist of a thin veneer of authigenic silica. The casts are formed from silicified cyanobacterial mat material. Silicification in both cases occurred shortly after death within benthic cyanobacterial mats. Pore waters were alkali, silica‐saturated, high in ferric iron but low in oxygen and sulphate. Excess silica was likely derived from remobilized biogenic silica. The remarkable siliceous death mask preservation opens a new window on the environment and location of the Cambrian Explosion. This window closed with the appearance of abundant mat grazers later as the Cambrian Explosion intensified.  相似文献   

20.
    
A detailed investigation of the morphology and ontogeny of the redlichioid trilobite Eoredlichia intermediata (Bulletin of the Geological Society of China, 3–4, 1940, 333) from the lower Cambrian Yu'anshan Member of the Heilinpu Formation, in Kunming, Yunnan Province, southwest China, is presented. The new material comprises a relatively complete ontogenetic series ranging from the early meraspid to the holaspid period, which reveals more details on morphological variation such as the appearance of bacculae in some holaspid specimens, contraction and disappearance of fixigenal spines, and macropleural spines of the first and second thoracic segments, which are all documented for the first time and can also be used as developmental markers defining ontogenetic phases. Two distinct morphotypes, possibly an expression of intraspecific variation or sexual dimorphism, are distinguished by the morphology of pleural spines of the second thoracic segment in meraspid degree 14 and holaspides. The trunk segmentation schedule of E. intermediata is also discussed and conforms to the protarthrous developmental mode. The distinction of the thoracic region into two portions can be observed during late meraspid and early holaspid periods, which might be considered as a reference for a better understanding on the relationship of tagmosis and growth segmentation among the Cambrian redlichiid trilobites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号