首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Proteins belonging to the enhancer of RNA interference‐1 subfamily of 3′–5′ exoribonucleases participate in divergent RNA pathways. They degrade small interfering RNAs (siRNAs), thus suppressing RNA interference, and are involved in the maturation of ribosomal RNAs and the degradation of histone messenger RNAs (mRNAs). Here, we report evidence for the role of the plant homologue of these proteins, which we termed ENHANCED RNA INTERFERENCE‐1‐LIKE‐1 (ERIL1), in chloroplast function. In vitro assays with AtERIL1 proved that the conserved 3′–5′ exonuclease activity is shared among all homologues studied. Confocal microscopy revealed that ERL1, a nucleus‐encoded protein, is targeted to the chloroplast. To gain insight into its role in plants, we used Nicotiana benthamiana and Arabidopsis thaliana plants that constitutively overexpress or suppress ERIL1. In the mutant lines of both species we observed malfunctions in photosynthetic ability. Molecular analysis showed that ERIL1 participates in the processing of chloroplastic ribosomal RNAs (rRNAs). Lastly, our results suggest that the missexpression of ERIL1 may have an indirect effect on the microRNA (miRNA) pathway. Altogether our data point to an additional piece of the puzzle in the complex RNA metabolism of chloroplasts.  相似文献   

4.
Plant virus‐based gene‐silencing vectors have been extensively and successfully used to elucidate functional genomics in plants. However, only limited virus‐induced gene‐silencing (VIGS) vectors can be used in both monocot and dicot plants. Here, we established a dual gene‐silencing vector system based on Bamboo mosaic virus (BaMV) and its satellite RNA (satBaMV). Both BaMV and satBaMV vectors could effectively silence endogenous genes in Nicotiana benthamiana and Brachypodium distachyon. The satBaMV vector could also silence the green fluorescent protein (GFP) transgene in GFP transgenic N. benthamiana. GFP transgenic plants co‐agro‐inoculated with BaMV and satBaMV vectors carrying sulphur and GFP genes, respectively, could simultaneously silence both genes. Moreover, the silenced plants could still survive with the silencing of genes essential for plant development such as heat‐shock protein 90 (Hsp90) and Hsp70. In addition, the satBaMV‐ but not BaMV‐based vector could enhance gene‐silencing efficiency in newly emerging leaves of N. benthamiana deficient in RNA‐dependant RNA polymerase 6. The dual gene‐silencing vector system of BaMV and satBaMV provides a novel tool for comparative functional studies in monocot and dicot plants.  相似文献   

5.
6.
7.
8.
9.
10.
The breeding of plantation forestry trees for the possible afforestation of marginal land would be one approach to addressing global warming issues. Here, we developed novel transgenic Eucalyptus trees (Eucalyptus camaldulensis Dehnh.) harbouring an RNA‐Binding‐Protein (McRBP) gene derived from a halophyte plant, common ice plant (Mesembryanthemum crystallinum L.). We conducted screened‐house trials of the transgenic Eucalyptus using two different stringency salinity stress conditions to evaluate the plants’ acute and chronic salt stress tolerances. Treatment with 400 mM NaCl, as the high‐stringency salinity stress, resulted in soil electrical conductivity (EC) levels >20 mS/cm within 4 weeks. With the 400 mM NaCl treatment, >70% of the transgenic plants were intact, whereas >40% of the non‐transgenic plants were withered. Treatment with 70 mM NaCl, as the moderate‐stringency salinity stress, resulted in soil EC levels of approx. 9 mS/cm after 2 months, and these salinity levels were maintained for the next 4 months. All plants regardless of transgenic or non‐transgenic status survived the 70 mM NaCl treatment, but after 6‐month treatment the transgenic plants showed significantly higher growth and quantum yield of photosynthesis levels compared to the non‐transgenic plants. In addition, the salt accumulation in the leaves of the transgenic plants was 30% lower than that of non‐transgenic plants after 15‐week moderate salt stress treatment. There results suggest that McRBP expression in the transgenic Eucalyptus enhances their salt tolerance both acutely and chronically.  相似文献   

11.
Argonaute proteins and their associated small RNAs (sRNAs) are evolutionarily conserved regulators of gene expression. Gametocyte‐specific factor 1 (Gtsf1) proteins, characterized by two tandem CHHC zinc fingers and an unstructured C‐terminal tail, are conserved in animals and have been shown to interact with Piwi clade Argonautes, thereby assisting their activity. We identified the Caenorhabditis elegans Gtsf1 homolog, named it gtsf‐1 and characterized it in the context of the sRNA pathways of C. elegans. We report that GTSF‐1 is not required for Piwi‐mediated gene silencing. Instead, gtsf‐1 mutants show a striking depletion of 26G‐RNAs, a class of endogenous sRNAs, fully phenocopying rrf‐3 mutants. We show, both in vivo and in vitro, that GTSF‐1 interacts with RRF‐3 via its CHHC zinc fingers. Furthermore, we demonstrate that GTSF‐1 is required for the assembly of a larger RRF‐3 and DCR‐1‐containing complex (ERIC), thereby allowing for 26G‐RNA generation. We propose that GTSF‐1 homologs may act to drive the assembly of larger complexes that act in sRNA production and/or in imposing sRNA‐mediated silencing activities.  相似文献   

12.
13.
14.
The Russian dandelion Taraxacum koksaghyz synthesizes considerable amounts of high‐molecular‐weight rubber in its roots. The characterization of factors that participate in natural rubber biosynthesis is fundamental for the establishment of T. koksaghyz as a rubber crop. The cis‐1,4‐isoprene polymers are stored in rubber particles. Located at the particle surface, the rubber transferase complex, member of the cis‐prenyltransferase (cisPT) enzyme family, catalyzes the elongation of the rubber chains. An active rubber transferase heteromer requires a cisPT subunit (CPT) as well as a CPT‐like subunit (CPTL), of which T. koksaghyz has two homologous forms: TkCPTL1 and TkCPTL2, which potentially associate with the rubber transferase complex. Knockdown of TkCPTL1, which is predominantly expressed in latex, led to abolished poly(cis‐1,4‐isoprene) synthesis but unaffected dolichol content, whereas levels of triterpenes and inulin were elevated in roots. Analyses of latex from these TkCPTL1‐RNAi plants revealed particles that were similar to native rubber particles regarding their particle size, phospholipid composition, and presence of small rubber particle proteins (SRPPs). We found that the particles encapsulated triterpenes in a phospholipid shell stabilized by SRPPs. Conversely, downregulating the low‐expressed TkCPTL2 showed no altered phenotype, suggesting its protein function is redundant in T. koksaghyz. MS‐based comparison of latex proteomes from TkCPTL1‐RNAi plants and T. koksaghyz wild‐types discovered putative factors that convert metabolites in biosynthetic pathways connected to isoprenoids or that synthesize components of the rubber particle shell.  相似文献   

15.
RNA interference (RNAi)‐based tools are used in multiple organisms to induce antiviral resistance through the sequence‐specific degradation of target RNAs by complementary small RNAs. In plants, highly specific antiviral RNAi‐based tools include artificial microRNAs (amiRNAs) and synthetic trans‐acting small interfering RNAs (syn‐tasiRNAs). syn‐tasiRNAs have emerged as a promising antiviral tool allowing for the multi‐targeting of viral RNAs through the simultaneous expression of several syn‐tasiRNAs from a single precursor. Here, we compared in tomato plants the effects of an amiRNA construct expressing a single amiRNA and a syn‐tasiRNA construct expressing four different syn‐tasiRNAs against Tomato spotted wilt virus (TSWV), an economically important pathogen affecting tomato crops worldwide. Most of the syn‐tasiRNA lines were resistant to TSWV, whereas the majority of the amiRNA lines were susceptible and accumulated viral progenies with mutations in the amiRNA target site. Only the two amiRNA lines with higher amiRNA accumulation were resistant, whereas resistance in syn‐tasiRNA lines was not exclusive of lines with high syn‐tasiRNA accumulation. Collectively, these results suggest that syn‐tasiRNAs induce enhanced antiviral resistance because of the combined silencing effect of each individual syn‐tasiRNA, which minimizes the possibility that the virus simultaneously mutates all different target sites to fully escape each syn‐tasiRNA.  相似文献   

16.
17.
18.
Transgenic crops producing insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) are extensively cultivated worldwide. To counter rapidly increasing pest resistance to crops that produce single Bt toxins, transgenic plant ‘pyramids’ producing two or more Bt toxins that kill the same pest have been widely adopted. However, cross‐resistance and antagonism between Bt toxins limit the sustainability of this approach. Here we describe development and testing of the first pyramids of cotton combining protection from a Bt toxin and RNA interference (RNAi). We developed two types of transgenic cotton plants producing double‐stranded RNA (dsRNA) from the global lepidopteran pest Helicoverpa armigera designed to interfere with its metabolism of juvenile hormone (JH). We focused on suppression of JH acid methyltransferase (JHAMT), which is crucial for JH synthesis, and JH‐binding protein (JHBP), which transports JH to organs. In 2015 and 2016, we tested larvae from a Bt‐resistant strain and a related susceptible strain of H. armigera on seven types of cotton: two controls, Bt cotton, two types of RNAi cotton (targeting JHAMT or JHBP) and two pyramids (Bt cotton plus each type of RNAi). Both types of RNAi cotton were effective against Bt‐resistant insects. Bt cotton and RNAi acted independently against the susceptible strain. In computer simulations of conditions in northern China, where millions of farmers grow Bt cotton as well as abundant non‐transgenic host plants of H. armigera, pyramided cotton combining a Bt toxin and RNAi substantially delayed resistance relative to using Bt cotton alone.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号