首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Type II toxin‐antitoxin (TA) modules, which are important cellular regulators in prokaryotes, usually encode two proteins, a toxin that inhibits cell growth and a nontoxic and labile inhibitor (antitoxin) that binds to and neutralizes the toxin. Here, we demonstrate that the res‐xre locus from Photorhabdus luminescens and other bacterial species function as bona fide TA modules in Escherichia coli. The 2.2 Å crystal structure of the intact Pseudomonas putida RES‐Xre TA complex reveals an unusual 2:4 stoichiometry in which a central RES toxin dimer binds two Xre antitoxin dimers. The antitoxin dimers each expose two helix‐turn‐helix DNA‐binding domains of the Cro repressor type, suggesting the TA complex is capable of binding the upstream promoter sequence on DNA. The toxin core domain shows structural similarity to ADP‐ribosylating enzymes such as diphtheria toxin but has an atypical NAD+‐binding pocket suggesting an alternative function. We show that activation of the toxin in vivo causes a depletion of intracellular NAD+ levels eventually leading to inhibition of cell growth in E. coli and inhibition of global macromolecular biosynthesis. Both structure and activity are unprecedented among bacterial TA systems, suggesting the functional scope of bacterial TA toxins is much wider than previously appreciated.  相似文献   

3.
Toxin–antitoxin (TA) systems are widespread genetic modules in the genomes of bacteria and archaea emerging as key players that modulate bacterial physiology. They consist of two parts, a toxic component that blocks an essential cellular process and an antitoxin that inhibits this toxic activity during normal growth. According to the nature of the antitoxin and the mode of inhibition, TA systems are subdivided into different types. Here, we describe the characterization of a type II‐like TA system in Escherichia coli called EzeT. While in conventional type II systems the antitoxin is expressed in trans to form an inactive protein–protein complex, EzeT consists of two domains combining toxin and cis‐acting antitoxin functionalities in a single polypeptide chain. We show that the C‐terminal domain of EzeT is homologous to zeta toxins and is toxic in vivo. The lytic phenotype could be attributed to UDP‐N‐acetylglucosamine phosphorylation, so far only described for type II epsilon/zeta systems from Gram‐positive streptococci. Presence of the N‐terminal domain inhibits toxicity in vivo and strongly attenuates kinase activity. Autoinhibition by a cis‐acting antitoxin as described here for EzeT‐type TA systems can explain the occurrence of single or unusually large toxins, further expanding our understanding of the TA system network.  相似文献   

4.
DNA gyrase is an essential bacterial enzyme required for the maintenance of chromosomal DNA topology. This enzyme is the target of several protein toxins encoded in toxin-antitoxin (TA) loci as well as of man-made antibiotics such as quinolones. The genome of Vibrio cholerae, the cause of cholera, contains three putative TA loci that exhibit modest similarity to the RK2 plasmid-borne parDE TA locus, which is thought to target gyrase although its mechanism of action is uncharacterized. Here we investigated the V. cholerae parDE2 locus. We found that this locus encodes a functional proteic TA pair that is active in Escherichia coli as well as V. cholerae. ParD2 co-purified with ParE2 and interacted with it directly. Unlike many other antitoxins, ParD2 could prevent but not reverse ParE2 toxicity. ParE2, like the unrelated F-encoded toxin CcdB and quinolones, targeted the GyrA subunit and stalled the DNA-gyrase cleavage complex. However, in contrast to other gyrase poisons, ParE2 toxicity required ATP, and it interfered with gyrase-dependent DNA supercoiling but not DNA relaxation. ParE2 did not bind GyrA fragments bound by CcdB and quinolones, and a set of strains resistant to a variety of known gyrase inhibitors all exhibited sensitivity to ParE2. Together, our findings suggest that ParE2 and presumably its many plasmid- and chromosome-encoded homologues inhibit gyrase in a different manner than previously described agents.  相似文献   

5.
6.
Toxin–antitoxin (TA) systems are small genetic modules usually consisting of two elements—a toxin and an antitoxin. The abundance of TA systems among various bacterial strains may indicate an important evolutionary role. Pseudomonas aeruginosa, which can be found in a variety of niches in nature, is an opportunistic pathogen for various hosts. While P. aeruginosa strains are very versatile and diverse, only a few TA systems were characterized in this species. Here, we describe a newly characterized TA system in P. aeruginosa that is encoded within the filamentous Pf4 prophage. This system, named PfiT/PfiA, is a homologue of the ParE/YefM TA system. It is a type II TA system, in which the antitoxin is a protein that binds the toxic protein and eliminates the toxic effect. PfiT/PfiA carries several typical type II characteristics. Specifically, it constitutes two small genes expressed in a single operon, PfiT inhibits growth and PfiA eliminates this effect, PfiA binds PfiT, and PfiT expression results in elongated cells. Finally, we assigned a novel function to this TA system, where an imbalance between PfiT and PfiA, favouring the toxin, resulted in cell elongation and an increase in virion production.  相似文献   

7.
8.
Toxin‐antitoxin loci, which encode a toxic protein alongside with either RNA or a protein able to counteract the toxicity, are widespread among archaea and bacteria. These loci are implicated in persistence, and as addiction modules to ensure stable inheritance of plasmids and phages. In type I toxin‐antitoxin systems, a small RNA acts as an antitoxin, which prevents the synthesis of the toxin. Most type I toxins are small hydrophobic membrane proteins generally assumed to induce pores, or otherwise permeabilise the cytoplasmic membrane and, as a result, induce cell death by energy starvation. Here we show that this mode of action is not a conserved property of type I toxins. The analysis of the cellular toxicity caused by Bacillus subtilis prophage SPβ‐encoded toxin BsrG revealed that, surprisingly, it neither dissipates membrane potential nor affects cellular ATP‐levels. In contrast, BsrG strongly interferes with the cell envelope biosynthesis, causes membrane invaginations together with delocalisation of the cell wall synthesis machinery and triggers autolysis. Furthermore, efficient inhibition of protein biosynthesis is observed. These findings question the simplistic assumption that small membrane targeting toxins generally act by permeabilising the membrane.  相似文献   

9.
Toxin-antitoxin (TA) systems contribute to plasmid stability by a mechanism that relies on the differential stabilities of the toxin and antitoxin proteins and leads to the killing of daughter bacteria that did not receive a plasmid copy at the cell division. ParE is the toxic component of a TA system that constitutes along with RelE an important class of bacterial toxin called RelE/ParE superfamily. For ParE toxin, no crystallographic structure is available so far and rare in vitro studies demonstrated that the target of toxin activity is E. coli DNA gyrase. Here, a 3D Model for E. coli ParE toxin by molecular homology modeling was built using MODELLER, a program for comparative modeling. The Model was energy minimized by CHARMM and validated using PROCHECK and VERIFY3D programs. Resulting Ramachandran plot analysis it was found that the portion residues failing into the most favored and allowed regions was 96.8%. Structural similarity search employing DALI server showed as the best matches RelE and YoeB families. The Model also showed similarities with other microbial ribonucleases but in a small score. A possible homologous deep cleft active site was identified in the Model using CASTp program. Additional studies to investigate the nuclease activity in members of ParE family as well as to confirm the inhibitory replication activity are needed. The predicted Model allows initial inferences about the unexplored 3D structure of the ParE toxin and may be further used in rational design of molecules for structure-function studies.  相似文献   

10.
Broad-host-range plasmid RK2 encodes a post-segregational killing system, parDE, which contributes to the stable maintenance of this plasmid in Escherichia coli and many distantly related bacteria. The ParE protein is a toxin that inhibits cell growth, causes cell filamentation and eventually cell death. The ParD protein is a specific ParE antitoxin. In this work, the in vitro activities of these two proteins were examined. The ParE protein was found to inhibit DNA synthesis using an E. coli oriC supercoiled template and a replication-proficient E. coli extract. Moreover, ParE inhibited the early stages of both chromosomal and plasmid DNA replication, as measured by the DnaB helicase- and gyrase-dependent formation of FI*, a highly unwound form of supercoiled DNA. The presence of ParD prevented these inhibitory activities of ParE. We also observed that the addition of ParE to supercoiled DNA plus gyrase alone resulted in the formation of a cleavable gyrase-DNA complex that was converted to a linear DNA form upon addition of sodium dodecyl sulphate (SDS). Adding ParD before or after the addition of ParE prevented the formation of this cleavable complex. These results demonstrate that the target of ParE toxin activity in vitro is E. coli gyrase.  相似文献   

11.
12.
13.
Escherichia coli RnlA–RnlB is a newly identified toxin–antitoxin (TA) system that plays a role in bacteriophage resistance. RnlA functions as a toxin with mRNA endoribonuclease activity and the cognate antitoxin RnlB inhibits RnlA toxicity in E. coli cells. Interestingly, T4 phage encodes the antitoxin Dmd, which acts against RnlA to promote its own propagation, suggesting that RnlA‐Dmd represents a novel TA system. Here, we have determined the crystal structure of RnlA refined to 2.10 Å. RnlA is composed of three independent domains: NTD (N ‐t erminal d omain), NRD (N r epeated d omain) and DBD (D md‐b inding d omain), which is an organization not previously observed among known toxin structures. Small‐angle X‐ray scattering (SAXS) analysis revealed that RnlA forms a dimer in solution via interactions between the DBDs from both monomers. The in vitro and in vivo functional studies showed that among the three domains, only the DBD is responsible for recognition and inhibition by Dmd and subcellular location of RnlA. In particular, the helix located at the C‐terminus of DBD plays a vital role in binding Dmd. Our comprehensive studies reveal the key region responsible for RnlA toxicity and provide novel insights into its structure–function relationship.  相似文献   

14.
CcdB is the toxic component of a bacterial toxin–antitoxin system. It inhibits DNA gyrase (a type II topoisomerase), and its toxicity can be neutralized by binding of its antitoxin CcdA. Here we report the sequential backbone and sidechain 1H, 15N and 13C resonance assignments of CcdBVfi from the marine bacterium Vibrio fischeri. The BMRB accession number is 16135.  相似文献   

15.
16.
Streptococcus suis has emerged as a causative agent of human meningitis and streptococcal toxic shock syndrome over the last years. The high pathogenicity of S. suis may be due in part to a laterally acquired pathogenicity island (renamed SsPI‐1), which can spontaneously excise and transfer to recipients. Cells harboring excised SsPI‐1 can potentially lose this island if cell division occurs prior to its reintegration; however, attempts to cure SsPI‐1 from the host cells have been unsuccessful. Here, we report that an SsPI‐1‐borne Epsilon/Zeta toxin–antitoxin system (designated SezAT) promotes SsPI‐1 stability in bacterial populations. The sezAT locus consists of two closely linked sezT and sezA genes encoding a toxin and its cognate antitoxin, respectively. Overproduction of SezT induces a bactericidal effect that can be neutralized by co‐expression of SezA, but not by its later action. When devoid of a functional SezAT system, large‐scale deletion of SsPI‐1 is straightforward. Thus, SezAT serves to ensure inheritance of SsPI‐1 during cell division, which may explain the persistence of epidemic S. suis. This report presents the first functional characterization of TA loci in S. suis, and the first biochemical evidence for the adaptive significance of the Epsilon/Zeta system in the evolution of pathogen virulence.  相似文献   

17.
Prokaryotic toxin–antitoxin (TA) systems are linked to many roles in cell physiology, such as plasmid maintenance, stress response, persistence and protection from phage infection, and the activities of toxins are tightly regulated. Here, we describe a novel regulatory mechanism for a toxin of Escherichia coli TA systems. The MazF toxin of MazE‐MazF, which is one of the best characterized type II TA systems, was modified immediately after infection with bacteriophage T4. Mass spectrometry demonstrated that the molecular weight of this modification was 542 Da, corresponding to a mono‐ADP‐ribosylation. This modification disappeared in cells infected with T4 phage lacking Alt, which is one of three ADP‐ribosyltransferases encoded by T4 phage and is injected together with phage DNA upon infection. In vivo and in vitro analyses confirmed that T4 Alt ADP‐ribosylated MazF at an arginine residue at position 4. Finally, the ADP‐ribosylation of MazF by Alt resulted in the reduction of MazF RNA cleavage activity in vitro, suggesting that it may function to inactivate MazF during T4 infection. This is the first example of the chemical modification of an E. coli toxin in TA systems to regulate activity.  相似文献   

18.
AbiQ is a phage resistance mechanism found on a native plasmid of Lactococcus lactis that abort virulent phage infections. In this study, we experimentally demonstrate that AbiQ belongs to the recently described type III toxin–antitoxin systems. When overexpressed, the AbiQ protein (ABIQ) is toxic and causes bacterial death in a bacteriostatic manner. Northern and Western blot experiments revealed that the abiQ gene is transcribed and translated constitutively, and its expression is not activated by a phage product. ABIQ is an endoribonuclease that specifically cleaves its cognate antitoxin RNA molecule in vivo. The crystal structure of ABIQ was solved and site‐directed mutagenesis identified key amino acids for its anti‐phage and/or its RNase function. The AbiQ system is the first lactococcal abortive infection system characterized to date at a structural level.  相似文献   

19.
In bacteria, initiation of DNA replication requires the DnaA protein. Regulation of DnaA association and activity at the origin of replication, oriC, is the predominant mechanism of replication initiation control. One key feature known to be generally important for replication is DNA topology. Although there have been some suggestions that topology may impact replication initiation, whether this mechanism regulates DnaA‐mediated replication initiation is unclear. We found that the essential topoisomerase, DNA gyrase, is required for both proper binding of DnaA to oriC as well as control of initiation frequency in Bacillus subtilis. Furthermore, we found that the regulatory activity of gyrase in initiation is specific to DnaA and oriC. Cells initiating replication from a DnaA‐independent origin, oriN, are largely resistant to gyrase inhibition by novobiocin, even at concentrations that compromise survival by up to four orders of magnitude in oriC cells. Furthermore, inhibition of gyrase does not impact initiation frequency in oriN cells. Additionally, deletion or overexpression of the DnaA regulator, YabA, significantly modulates sensitivity to gyrase inhibition, but only in oriC and not oriN cells. We propose that gyrase is a negative regulator of DnaA‐dependent replication initiation from oriC, and that this regulatory mechanism is required for cell survival.  相似文献   

20.
Toxin–antitoxin (TA) systems are widely distributed in bacteria and play an important role in maintaining plasmid stability. The leading foodborne pathogen, Campylobacter jejuni, can carry multiple plasmids associated with antibiotic resistance or virulence. Previously a virulence plasmid named pVir was identified in C. jejuni 81‐176 and IA3902, but determining the role of pVir in pathogenesis has been hampered because the plasmid cannot be cured. In this study, we report the identification of two TA systems that are located on the pVir plasmid in 81‐176 and IA3902, respectively. The virA (proteic antitoxin)/virT (proteic toxin) pair in IA3902 belongs to a Type II TA system, while the cjrA (RNA antitoxin)/cjpT (proteic toxin) pair in 81‐176 belongs to a Type I TA system. Notably, cjrA (antitoxin) represents the first noncoding small RNA demonstrated to play a functional role in Campylobacter physiology to date. By inactivating the TA systems, pVir was readily cured from Campylobacter, indicating their functionality in Campylobacter. Using pVir‐cured IA3902, we demonstrated that pVir is not required for abortion induction in the guinea pig model. These findings establish the key role of the TA systems in maintaining plasmid stability and provide a means to evaluate the function of pVir in Campylobacter pathobiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号