首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The QTL mapping results were compared with the genotypically selected and random samples of the same size on the base of a RIL population. The results demonstrated that there were no obvious differences in the trait distribution and marker segregation distortion between the genotypically selected and random samples with the same population size. However, a significant increase in QTL detection power, sensitivity, specificity, and QTL resolution in the genotypically selected samples were observed. Moreover, the highly significant effect was detected in small size of genotypically selected samples. In QTL mapping, phenotyping is a more sensitive limiting factor than genotyping so that the selection of samples could be an attractive strategy for increasing genome-wide QTL mapping resolution. The efficient selection of samples should be more helpful for QTL maker assistant selection, fine mapping, and QTL cloning.  相似文献   

2.
基于基因型选择提高QTL作图的精度——以一个RIL群体为例   总被引:4,自引:0,他引:4  
以PCR为基础的分子标记以及其他检测技术的发展,使得大规模的标记分析成为现实。这也为通过大群体标记分析,然后基于基因型选择挑选合适的小群体,从而提高QTL定位准确性和精度提供了可能。以一个包含294个家系的重组自交系(RIL)群体为例,通过基因型选择和随机选择的办法产生了一系列大小不等的亚群体,比较了两类群体QTL定位的结果。分析表明:相同大小的基因型选择群体与随机群体相比性状的表型分布都符合正态分布;标记的偏分离情况也没有明显的差别,都随着群体大小的增大,偏分离的比例也逐渐增大。但同等大小的基因型选择群体比随机群体的交换富集率(CE)要大,且随着选择强度的增大不断增大,如群体大小为270时,CE=1.04,群体大小为30时,CE=1.45。总体上,随着群体大小的增加,不管是随机群体还是选择群体,其QTL检测能力、灵敏性和特异性也随之增加,但选择群体的检测能力、灵敏性和特异性总体上要好于随机群体。当群体大于或等于240时,其QTL检测能力基本没有差别;群体大小大于或等于210时,其QTL检测的灵敏性和特异性也没有什么差别。这也说明:选择强度越大,效果越明显。以QTLI—LOD区间作为衡量QTL精度的一个指标,结果显示所有基因型选择群体都比相同大小随机群体的QTL定位精度高。目前QTL定位研究中,基因型数据较表型数据而言更容易准确获得,因此通过基因型选择可以更好的优化群体结构,减少田间实验的工作量,提高全基因组水平QTL作图的精度,为随后的QTL辅助选择和精细定位以及克隆提供帮助。  相似文献   

3.
    
A fast, partly recursive deterministic method for calculating Identity-by-Descent (IBD) probabilities was developed with the objective of using IBD in Quantitative Trait Locus (QTL) mapping. The method combined a recursive method for a single marker locus with a method to estimate IBD between sibs using multiple markers. Simulated data was used to compare the deterministic method developed in the present paper with a stochastic method (LOKI) for precision in estimating IBD probabilities and performance in the task of QTL detection with the variance component approach. This comparison was made in a variety of situations by varying family size and degree of polymorphism among marker loci. The following were observed for the deterministic method relative to MCMC: (i) it was an order of magnitude faster; (ii) its estimates of IBD probabilities were found to agree closely, even though it does not extract information when haplotypes are not known with certainty; (iii) the shape of the profile for the QTL test statistic as a function of location was similar, although the magnitude of the test statistic was slightly smaller; and (iv) the estimates of QTL variance was similar. It was concluded that the method proposed provided a rapid means of calculating the IBD matrix with only a small loss in precision, making it an attractive alternative to the use of stochastic MCMC methods. Furthermore, developments in marker technology providing denser maps would enhance the relative advantage of this method.  相似文献   

4.
以高产陆地棉栽培品种中棉所12和8891的杂交组合湘杂棉2号为材料,采用单粒传法构建了含有180个家系的重组自交系(RILs)群体。本研究的目的是分析产量及其构成因子的相互关系并进行相应的QTL定位。重组自交系群体、两亲本和F1于2002年、2003年分别种植于南京农业大学江浦实验农场和江苏省灌云棉花基地。收获每行中间五株的籽棉并考察产量及产量构成因子性状。调查的产量及产量构成因子性状包括单株籽棉产量、单株皮棉产量、单株铃数、铃重、衣分、衣指和籽指。筛选了4,106对SSR引物和384个AFLP引物组合,分别得到127和18个多态位点;此外,2个RAPD引物、1个SRAP引物组合以及来自亲本8891的显性黄花药基因P1也被用来作为标记检测群体基因型。最终共获得149个多态位点,其中132个位点分布于26个染色体/连锁群,覆盖865.20cM,约占棉花基因组的18.57%,标记间平均距离6.55cM。利用此遗传图谱结合重组自交系群体3个环境下的产量及产量构成因子性状,应用QTLCartographer2.0的复合区间作图法进行单位点QTL定位。对各环境资料的分离分析共定位出34个QTL,而利用三环境平均值的联合分析定位出15个QTL。本研究定位的QTL可为棉花产量育种提供信息,其中衣分QTLqLP-A10-1在联合分析及分离分析下的两个环境都能检测到,可能对标记辅助选择有实际应用价值。通径分析结果表明,各产量构成因子中,铃数对皮棉产量贡献最大,这与产量构成因素性状在F1的杂种优势表现一致;因此,在棉花育种上,可优先考虑单株铃数并结合其它产量构成因素进行品种选育和杂交组合选配。  相似文献   

5.
利用重组自交系群体检测水稻条纹叶枯病抗性基因及QTL分析   总被引:32,自引:0,他引:32  
利用81个株系组成的Kinmaze(japonica)/DV85(indica)重组自交系(recombinant inbred lines,RIL)群体,采用苗期强迫饲毒的鉴定方法,以病情指数作为条纹叶枯病的表型值,鉴定亲本及81个RILs对水稻抗条纹叶枯病毒(rice stripe virus,RSV)的抗性。利用QTL Cartographer软件,对水稻条纹叶枯病抗性基因进行检测分析。检测到3个QTL位点:qStv1、qStv7、qStv11分别位于第1、7、11染色体上,各QTL的LOD值为2.44~3.83,贡献率为19.8%~30.9%。根据抗性基因加性效应的方向,在qStv7、qStv11位点上,亲本DV85存在抗条纹叶枯病增效基因,Kinmaze具有抗条纹叶枯病减效基因,而qStv1位点抗性基因效应来源正好相反。  相似文献   

6.
Marker assisted selection was employed to pyramid three bacterial blight resistance genes Xa21, xa13 and xa5 into high yielding susceptible rice cultivars ADT43 and ADT47. With the assistance of PCR markers, homozygous and heterozygous genotypes were identified in F2 generation of two crosses (ADT43 × IRBB60 and ADT47 × IRBB60) and goodness of fit was tested. Eighty nine plants from F3 generation of ADT43 × IRBB60 were also screened for resistance genes. The genotypes carrying resistance genes in different combinations were identified. The pyramided lines showed a wider spectrum and higher level of resistance against two Xoo isolates under field conditions.  相似文献   

7.
Marker assisted selection of bacterial blight resistance genes in rice   总被引:4,自引:0,他引:4  
Bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae is one of the most important diseases affecting rice production in Asia. We were interested in surveying rice genotypes that are popularly used in the Indian breeding program for conferring resistance to bacterial blight, using 11 STMS and 6 STS markers. The basis of selection of these DNA markers was their close linkage to xa5, xa13, and Xa21 genes and their positions on the rice genetic map relative to bacterial blight resistance genes. Eight lines were found to contain the xa5 gene while two lines contained Xa21 gene and none of the lines contained the xa13 gene with the exception of its near-isogenic line. Using the polymorphic markers obtained in the initial survey, marker-assisted selection was performed in the F3 population of a cross between IR-64 and IET-14444 to detect lines containing multiple resistance genes. Of the 59 progeny lines analyzed, eight lines contained both the resistance genes, xa5 and Xa4.  相似文献   

8.
杂交水稻亲本明恢63对纹枯病水平抗性的QTL定位   总被引:21,自引:1,他引:21  
利用240份源于组合珍汕97/明恢63的重组自交群体(F11、F12),连续两年进行2重复的随机区组田间试验,运用改进的纹枯病人工接种鉴定的方法,调查其纹枯病病级,结合该组合F9群体构建的分子标记遗传连锁图谱,运用区间作图法对抗纹枯病QTLs进行了定位。两年在第5染色体的相邻区间C624-C246(1999年)和C246-RM26(2000年)上各检测到一个抗纹枯病QTL,两者一个LOD值置信区间存在较大的重叠,而且LOD峰值位点很接近,推测它们可能是同一个QTL。两年在第9染本上均检测到一个QTL,分别位于C472-R26389(1999年)和RM247-RM242(2000年)区间上,两区间相距9.8cM。两年检测到的所有抗纹枯病QTLs均业自明恢63。  相似文献   

9.
    
Over the last 20 years, studies of Caenorhabditis elegans natural diversity have demonstrated the power of quantitative genetic approaches to reveal the evolutionary, ecological, and genetic factors that shape traits. These studies complement the use of the laboratory-adapted strain N2 and enable additional discoveries not possible using only one genetic background. In this chapter, we describe how to perform quantitative genetic studies in Caenorhabditis, with an emphasis on C. elegans. These approaches use correlations between genotype and phenotype across populations of genetically diverse individuals to discover the genetic causes of phenotypic variation. We present methods that use linkage, near-isogenic lines, association, and bulk-segregant mapping, and we describe the advantages and disadvantages of each approach. The power of C. elegans quantitative genetic mapping is best shown in the ability to connect phenotypic differences to specific genes and variants. We will present methods to narrow genomic regions to candidate genes and then tests to identify the gene or variant involved in a quantitative trait. The same features that make C. elegans a preeminent experimental model animal contribute to its exceptional value as a tool to understand natural phenotypic variation.  相似文献   

10.
Three previously identified grain yield quantitative trait loci (QTL) on chromosomes 2S(2HS), 3C(3HC) and 5L(1HL), designated QTL-2S, QTL-3 and QTL-5L, respectively, were evaluated for their potential to increase yields of high-quality malting barley without disturbing their favorable malting quality profile. QTL mapping of yield related traits was performed and near-isogenic lines (NILs) were developed. QTL for plant height, head shattering, seed weight and number of rachis nodes/spike were detected in the QTL-3 region. NILs developed by introgressing QTL-3 from the high-yielding cv. Steptoe to the superior malting quality, moderate-yielding cv. Morex acquired reduced height, lodging and head shattering features of Steptoe without major changes in malting quality. The yield of NILs, measured by minimizing the losses due to lodging and head shattering, did not exceed that of Morex. Steptoe NILs, with the Morex QTL-2S region, flowered 10 days later than Steptoe but the grain yield was not changed. None of the 3 QTL studied altered the measured yield of the recipient genotype, per se, although QTL 2S and QTL-3 affected yield-related traits. We conclude that these yield QTL must interact with other genes for full expression. Alternatively, they affect the harvestable yield through reduced lodging, head shattering, and/or altered flowering time.  相似文献   

11.
  总被引:1,自引:0,他引:1  
Guo T  Liu X  Wan X  Weng J  Liu S  Liu X  Chen M  Li J  Su N  Wu F  Cheng Z  Guo X  Lei C  Wang J  Jiang L  Wan J 《植物学报(英文版)》2011,53(8):598-607
High chalkiness is a major problem in many rice-producing areas of the world, especially in hybrid rice (Oryza sativa L.) in China. We previously showed a major quantitative trait locus for the percentage of grains with white chalkiness (QTLqPGWC-8) in the interval G1149-R727 on chromosome 8 using a chromosome segment substitution line (CSSL). Here, we selected the line-CSSL50 harboring the QTLqPGWC-8 allele from the CSSLs derived from a cross between Asominori (as a recurrent parent) and IR24 (as a donor parent), which had higher percentage chalkiness, markedly different from that of Asominori. There were also significant differences in starch granules, appearance of amylose content (AAC) and milling qualities between Asominori and CSSL50, but not in grain size or thousand grain weight (TGW). The BC(4) F(2) and BC(4) F(3) populations from a cross between CSSL50 and Asominori were used for fine mapping of qPGWC-8. We narrowed down the location of this QTL to a 142 kb region between Indel markers 8G-7 and 8G-9. QTLqPGWC-8 accounted for 50.9% of the difference in PGWC between the parents. The markers tightly linked to qPGWC-8 should facilitate cloning of the gene underlying this QTL and will be of value for marker-assisted selection in breeding rice varieties with better grain quality.  相似文献   

12.
玉米抗南方锈病基因的QTL定位   总被引:1,自引:0,他引:1  
为发掘新的抗南方锈病基因资源,本研究以感病自交系黄早四为母本、抗病自交系W456为父本,构建F2群体并开展抗病基因定位研究。采用人工接种鉴定的方法对两个亲本、F1、F2群体及对照材料进行表型鉴定和遗传分析。利用均匀覆盖10条染色体的200个SSR标记,分析240个F2单株的基因型并构建含有200个SSR位点的遗传连锁图,连锁图总长度3331 cM,标记间平均距离16.6 cM。使用QTL IciMapping V4.1软件中的完备区间作图法对抗病QTL进行分析,共检测到6个控制南方锈病的QTL:qSCR3、qSCR7、qSCR8-1、qSCR8-2、qSCR9和qSCR10,邻近标记分别为umc2105和umc1729、umc1066和bnlg2271、umc1904和umc1984、umc1984和bnlg1651、umc1957和bnlg1401、umc2034和umc1291,分别位于3、7、8、9和10号染色体上,其中8号染色体上有两个位点,标记区间长度在5~19 cM之间。单个QTL的表型贡献率在2.61%~24.19%之间,可以解释表型总变异的62.3%,其中3个QTL贡献率大于10%,位于10号染色体上的qSCR10贡献率最大,可解释表型变异的24.19%。通过对目标区间标记加密,将该位点的定位区间进一步缩小到2.51 cM内,与两侧标记的距离分别是2.15 cM和0.36 cM。初步定位得到10号染色体上存在抗南方锈病的主效QTL,可为抗病品种的培育提供参考。  相似文献   

13.
This study investigated the effect of a major QTL for resistance to IPN in salmon on performance and production traits. The traits studied were related to growth, fillet and gutted yields, and fat content. Two different analyses were performed: (1) regression of the phenotypic data of the production traits on the predicted number of resistant IPN‐QTL alleles in individuals and (2) a variance component analysis using the (co)variance matrix calculated at the putative location of the QTL. No significant effect of the QTL was detected on any of the traits investigated by either method. The result has important practical implications in that it encourages the use of MAS to reduce the risks and impact of IPN mortality.  相似文献   

14.
15.
The recent cloning of several agronomically important genes has facilitated the development of functional markers. These markers reside within the target genes themselves and can be used with great reliability and efficiency to identify favorable alleles in a breeding program. Bacterial blight (BB) is a severe rice disease throughout the world that is controlled primarily through use of resistant cultivars. xa5 is a race-specific, recessive gene mediating resistance to BB. It is widely used in rice breeding programs throughout the tropics. Due to its recessive nature, phenotypic selection for xa5-mediated resistance is both slow and costly. Previously, marker assisted selection (MAS) for this resistance gene was not efficient because it involved markers that were only indirectly linked to xa5 and ran the risk of being separated from the trait by recombination. Recently, the cloning of the gene underlying this trait made it possible to develop functional markers. Here we present a set of CAPS markers for easy, quick and direct identification of cultivars or progeny carrying xa5-mediated resistance and provide evidence that these markers are 100% predictive of the presence of the xa5 allele. These markers are expected to enhance the reliability and cost-effectiveness of MAS for xa5-mediated resistance.  相似文献   

16.
    
We have mapped genes causing life-history trade-offs, and they behave as predicted by ecological theory. Energetic and quantitative-genetic models suggest a trade-off between age and size at first reproduction. Natural selection favored plants that flower early and attain large size at first reproduction. Response to selection was opposed by a genetic trade-off between these two components of fitness. Two quantitative-trait loci (QTLs) influencing flowering time were mapped in a recombinant inbred population of Arabidopsis. These QTLs also influenced size at first reproduction, but did not affect growth rate (resource acquisition). Substitutions of small chromosomal segments, which may represent allelic differences at flowering time loci, caused genetic trade-offs between life-history components. One QTL explained 22% of the genetic variation in flowering time. It is within a few centiMorgans (cM) of the gigantea (GI) locus, and may be allelic with GI. Sixteen percent of the genetic variation was explained by another QTL, FDR1, near 18 cM on chromosome II, which does not correspond to any previously identified flowering-time locus. These life-history genes regulate patterns of resource allocation and life-history trade-offs in this population.  相似文献   

17.
The strength and extent of gene flow from crops into wild populations depends, in part, on the fitness of the crop alleles, as well as that of alleles at linked loci. Interest in crop–wild gene flow has increased with the advent of transgenic plants, but nontransgenic crop–wild hybrids can provide case studies to understand the factors influencing introgression, provided that the genetic architecture and the fitness effects of loci are known. This study used recombinant inbred lines (RILs) generated from a cross between crop and wild sunflowers to assess selection on domestication traits and quantitative trait loci (QTL) in two contrasting environments, in Indiana and Nebraska, USA. Only a small fraction of plants (9%) produced seed in Nebraska, due to adverse weather conditions, while the majority of plants (79%) in Indiana reproduced. Phenotypic selection analysis found that a mixture of crop and wild traits were favoured in Indiana (i.e. had significant selection gradients), including larger leaves, increased floral longevity, larger disk diameter, reduced ray flower size and smaller achene (seed) mass. Selection favouring early flowering was detected in Nebraska. QTLs for fitness were found at the end of linkage groups six (LG6) and nine (LG9) in both field sites, each explaining 11–12% of the total variation. Crop alleles were favoured on LG9, but wild alleles were favoured on LG6. QTLs for numerous domestication traits overlapped with the fitness QTLs, including flowering date, achene mass, head number, and disk diameter. It remains to be seen if these QTL clusters are the product of multiple linked genes, or individual genes with pleiotropic effects. These results indicate that crop trait values and alleles may sometimes be favoured in a noncrop environment and across broad geographical regions.  相似文献   

18.
    
Late blight disease of potato caused by Phytophthora infestans poses a significant threat to potato production in Ethiopia. The development of new high yielding genotypes with adequate late blight disease resistance will provide a strong component of an integrated management strategy for farmers. The objective of this study was to determine late blight resistance and yield of potato clones under field condition in north‐western Ethiopia. Twenty‐four clones (17 from the International Potato Centre B3C2 population and seven widely grown cultivars) were evaluated at three locations. The experiment was laid in a randomized complete block design with two replications. Late blight resistance and yield‐related traits were determined. Results showed that clones differ significantly for all traits across locations. The following five clones combine high to moderate resistance to late blight with high yields: 396029.250, 395017.229, 396004.263, 396034.103 and 395077.12. These clones are useful genetic resources for resistance breeding against late blight disease and for enhanced yields.  相似文献   

19.
    
To identify the ecological and genetic mechanisms of local adaptation requires estimating selection on traits, identifying their genetic basis, and evaluating whether divergence in adaptive traits is due to conditional neutrality or genetic trade‐offs. To this end, we conducted field experiments for three years using recombinant inbred lines (RILs) derived from two ecotypes of Arabidopsis thaliana (Italy, Sweden), and at each parental site examined selection on flowering time and mapped quantitative trait loci (QTL). There was strong selection for early flowering in Italy, but weak selection in Sweden. Eleven distinct flowering time QTL were detected, and for each the Italian genotype caused earlier flowering. Twenty‐seven candidate genes were identified, two of which (FLC and VIN3) appear under major flowering time QTL in Italy. Seven of eight QTL in Italy with narrow credible intervals colocalized with previously reported fitness QTL, in comparison to three of four in Sweden. The results demonstrate that the magnitude of selection on flowering time differs strikingly between our study populations, that the genetic basis of flowering time variation is multigenic with some QTL of large effect, and suggest that divergence in flowering time between ecotypes is due mainly to conditional neutrality.  相似文献   

20.
Genetic dissection of a major Fusarium head blight QTL in tetraploid wheat   总被引:9,自引:0,他引:9  
The devastating effect of Fusarium head blight (FHB) caused by Fusarium graminearum has led to significant financial losses across the Upper Midwest of the USA. These losses have spurred the need for research in biological, chemical, and genetic control methods for this disease. To date, most of the research on FHB resistance has concentrated on hexaploid wheat (Triticum aestivum L.) lines originating from China. Other sources of resistance to FHB would be desirable. One other source of resistance for both hexaploid wheat and tetraploid durum wheat (T. turgidum L. var. durum) is the wild tetraploid, T. turgidum L. var. dicoccoides (T. dicoccoides). Previous analysis of the `Langdon'-T. dicoccoides chromosome substitution lines, LDN(Dic), indicated that the chromosome 3A substitution line expresses moderate levels of resistance to FHB. LDN(Dic-3A) recombinant inbred chromosome lines (RICL) were used to generate a linkage map of chromosome 3A with 19 molecular markers spanning a distance of 155.2 cM. The individual RICL and controls were screened for their FHB phenotype in two greenhouse seasons. Analysis of 83 RICL identified a single major quantitative trait locus, Qfhs.ndsu-3AS, that explains 37% of the phenotypic or 55% of the genetic variation for FHB resistance. A microsatellite locus, Xgwm2, is tightly linked to the highest point of the QTL peak. A region of the LDN (Dic-3A) chromosome associated with the QTL for FHB resistance encompasses a 29.3 cM region from Xmwg14 to Xbcd828.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号